Browse Topic: Electric vehicles

Items (4,482)
The main drivers for powertrain electrification of two-wheelers, motorcycles and ATVs are increasingly stringent emission and noise limitations as well as the upcoming demand for carbon neutrality. Two-wheeler applications face significantly different constraints, such as packaging and mass targets, limited charging infrastructure in urban areas and demanding cost targets. Battery electric two wheelers are the optimal choice for transient city driving with limited range requirements. Hybridization provides considerable advantages and extended operation limits. Beside efficiency improvement, silent and zero emission modes with solutions allowing fully electric driving, combined boosting enhances performance and transient response. In general, there are two different two-wheeler base categories for hybrid powertrains: motorcycles featuring frame-integrated internal combustion engine (ICE) and transmission units, coupled with secondary drives via chain or belt; and scooters equipped with
Schoeffmann, W.Fuckar, G.Hubmann, C.Gruber, M.
The rise of electric vehicles (EVs) highlights the need to transition to a renewable energy society, where power is generated from sustainable sources. This shift is driven by environmental, economic, and energy security concerns. However, renewable energy sources like wind and solar are intermittent, necessitating extensive energy storage systems. Vanadium redox flow batteries (VRFBs) are promising for large-scale energy storage due to their long cycle life, scalability, and safety. In VRFBs, cells are typically connected in series to increase voltage, with electrolytes introduced through parallel flow channels using a single manifold. This design, while simple and low in pressure drop, often leads to imbalanced flow rates among cells, affecting performance. Balancing flow rates is crucial to minimize uneven overpotential and enhance durability, presenting an optimization challenge between achieving uniform flow and minimizing pressure drop. This study developed numerical models to
Suwanpakdee, NutAiemsathit, PorametCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
In commercially available electric motorcycles, there is a notable shift in the cooling method, moving from air cooling to water cooling, and in the winding method, moving from concentrated winding to distributed winding, as the output increases. This shift occurs around 8 to 10 kW. However, there is a paucity of empirical investigations examining these combinations to ascertain their optimality. In order to verify this trend, a verification model has been constructed which allows for the comparison of the capacity and weight of the motor and cooling system according to the vehicle’s required output and thermal performance. A comparison and verification of the combinations of winding methods (concentrated winding or segment conductor distribution winding) and cooling systems (water-cooled or air-cooled) was conducted using the model that had been constructed. In the motor designed for this study, when the maximum output of the vehicle was 35 kW or less (European A2 license), the total
Otaki, RyotaTsuchiya, TeruyukiSakai, YuYamauchi, TakuyaShimizu, Tsukasa
In recent years, the importance of achieving carbon neutrality has been highlighted in response to the escalating severity of climate change. In the leading automobile market, the share of electric vehicles is gradually expanding, especially in passenger car sector. However, it is not same in commercial vehicle sector. In the off-road machinery market, as with electrification in commercial vehicles, the factors such as the need to install charging infrastructure and the requirement for large batteries to expand operating duration are significant challenge to full electrification. As one of the realistic solutions toward carbon neutrality for off-road machines, methods to utilize both internal combustion engines (ICE) and their applied products are being reconsidered. Under the circumstances, we have developed a mild-hybrid (MH) system for small off-road machinery. This system adopts a 48V power supply in order to minimize size of the system offers as a “Drop-in” package solution. This
Koyama, KazuakiKimura, RyotaNagamori, YukoHorita, TatsuhikoNosaka, Kento
The EU currently has very ambitious plans for the electrification of vehicles, particularly in the field of urban logistics. For example, the so-called “Transport White Paper” [1] aims to achieve essentially CO2-free logistics in major urban centers by 2030, while “Europe on the move” [2] has presented a series of legislative initiatives. The Strategic Research and Innovation Agenda for Transport proposes research priorities and actions to deploy innovative solutions, with a particular focus on the electrification of transport. Numerous advancements in electromobility have led to a growing number of vehicles available in various areas, particularly in urban logistics. New concepts like cargo bikes and micro-vehicles are being developed, but they cannot fully replace traditional light commercial vehicles. While some electrified options exist, they are often modified versions of existing platforms with internal combustion engines swapped for electric drives. The research work in this
Königshofer, ThomasTromayer, JürgenSchacht, Hans-JürgenWang, Eric
As the automotive sector shifts towards cleaner and more sustainable technologies, fuel cells and batteries have emerged as promising technologies with revolutionary potential. Hydrogen fuel cell vehicles offer faster refueling times, extended driving ranges, and reduced weight and space requirements compared to battery electric vehicles, making them highly appealing for future transportation applications. Despite these advantages, optimizing electrode structures and balancing various transport mechanisms are crucial for improving PEFCs’ performance for widespread commercial viability. Previous research has utilized topology optimization (TO) to identify optimal electrode structures and attempted to establish a connection between entropy generation and topographically optimized structures, aiming to strengthen TO numerical findings with a robust theoretical basis. However, existing studies have often neglected the coupling of transport phenomena. Typically, it is assumed that a single
Tep, Rotanak Visal SokLong, MenglyAlizadeh, MehrzadCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
The danger of lithium-ion batteries in electric vehicles (EVs) is intensified when they are used at inappropriate temperatures, leading to self-heating and eventually contributing to thermal runaway. Nevertheless, there is uncertainty through the safety of reusing batteries after they have been exposed to heat damage and water mist from fire extinguishers. To address these concerns, this study aimed to experimentally investigate the impact of temperature on batteries and introduce a thermal management using a water mist. Subjecting a battery to a temperature of 100°C for a duration of 39 minutes can immediately detect inoperability from a sudden drop in voltage. The use of water mist was proposed to rapidly mitigate the heat production inside the battery. The state of health (SOH) and the impedance were employed to confirm the battery’s functionality after exposure to thermal abuse and water spraying. The SOH of fresh cells was measured as a reference line for comparison to tested
Trinuruk, PiyatidaPatthathum, PathompornJumnongjit, Apiwit
A great number of performances of an electric vehicle such as driving range, powering performance, and the like are affected by its configured batteries. Having a good grasp of the electrical and thermal behavior of the battery before the detailed design stage is indispensable. This paper introduces an experiment characterization method of a lithium-ion battery with a coolant system from cell level to pack level in different ambient conditions. Corresponding cell and pack simulation models established in AMESim that aimed to capture the electrical and thermal features of the battery were also illustrated, respectively. First, the capacity test and hybrid pulse power characterization (HPPC) test were conducted in a thermotank to acquire basic data about the battery cell. Next, based on acquired data, first-order equivalent circuit model (1C-ECM) was built for the battery cell and further combined with environmental boundary conditions to check the simulation accuracy. Then, hybrid
Zhou, ShuaiLiu, HuaijuYu, HuiliYan, XuYan, Junjie
With the global issue of fossil fuel scarcity and the greenhouse effect, interest in electric vehicles (EVs) has surged recently. At that stage, because of the constraints of the energy density and battery performance degradation in low-temperature conditions, the mileage of EVs has been criticized. To guarantee battery performance, a battery thermal management system (BTMS) is applied to ensure battery operates in a suitable temperature range. Currently, in the industry, a settled temperature interval is set as criteria of positive thermal management activation, which is robust but leads to energy waste. BTMS has a kilowatt-level power usage under high- and low-temperature environments. Optimizing the BTMS control strategy becomes a potential solution to reduce energy consumption and overcome mileage issues. An appropriate system simulation model provides an effective tool to evaluate different BTMS control strategies. In this study, a predictive BTMS control strategy, which adjusts
Huang, ZhipeiChen, JiangboTang, Hai
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
Electric vehicles (EVs) are gaining popularity due to their zero tailpipe emissions, superior energy efficiency, and sustainable nature. EVs have various limitations, and crucial one is the occurrence of thermal runaway in the battery pack. During charging or discharging condition of battery pack may result in thermal runaway condition. This promotes the requirement of effective cooling arrangement in and around the battery pack to avoid localized peak temperature. In the present work, thermal management of a 26650 Lithium iron phosphate (LFP) cell using natural convection air cooling, composite biobased phase change material (CBPCM) and its combination with copper fins is numerically investigated using multi-scale multi dimension - Newman, Tiedenann, Gu and Kim (MSMD-NTGK) battery model in Ansys Fluent at an ambient temperature of 306 K. Natural convection air cooling was found effective at discharge rates of 1C to 3C, maintaining cell temperature below the safe limit of 318 K for 80
Srivastav, DurgeshPatil, Nagesh DevidasShukla, Pravesh Chandra
Electric vehicles (EVs) are particularly susceptible to high-frequency noise, with rubber eigenmodes significantly influencing these noise characteristics. Unlike internal combustion engine (ICE) vehicles, EVs experience pronounced variations in dynamic preload during torque rise, which are substantially higher. This dynamic preload variation can markedly impact the high-frequency behaviour of preloaded rubber bushings in their installed state. This study investigates the effects of preload and amplitude on the high-frequency dynamic performance of rubber bushings specifically designed for EV applications. These bushings are crucial for vibration isolation and noise reduction, with their role in noise, vibration, and harshness (NVH) management being more critical in EVs due to the absence of traditional engine noise. The experimental investigation examines how preload and excitation amplitude variations influence the dynamic stiffness, damping properties, and overall performance of
Hazra, SandipKhan, Arkadip Amitava
Motor drive control is crucial for achieving the performance, reliability, and comfort of electric vehicles. Multi-phase motors, represented by dual-winding permanent magnet synchronous motors (PMSMs), have significant research value in the electric vehicle field due to their high-power drive capabilities and strong fault tolerance. A simple and easily analyzable motor model is essential for achieving high precision in control. This paper employs VSD coordinate transformation (vector space decomposition) based on electromagnetic principles and the positional relationships between windings, treating the multi-phase motor as a whole and mapping various physical quantities to multiple subspaces for simplified analysis. Consequently, a mathematical model for the dual-winding PMSM is established. The vector control system based on VSD coordinate transformation adopts a dual closed-loop structure for speed and current. It focuses on a comparative analysis between traditional two-vector
Gao, ChaoFanZheng, HongyuKaku, Chuyo
Distributed electric vehicles, equipped with independent motors at each wheel, offer significant advantages in flexibility, torque distribution, and precise dynamic control. These features contribute to notable improvements in vehicle maneuverability and stability. To further elevate the overall performance of vehicles, particularly in terms of handling, stability, and comfort, this paper introduces an coordinated control strategies for longitudinal, lateral, and vertical motion of distributed electric vehicles. Firstly, a full-vehicle dynamics model is developed, encompassing interactions between longitudinal, lateral, and vertical forces, providing a robust framework for analyzing and understanding the intricate dynamic behaviors of the vehicle under various operating conditions. Secondly, a vehicle motion controller based on Model Predictive Control is designed. This controller employs a sophisticated multi-objective optimization algorithm to manage and coordinate several critical
Jia, JinchaoYue, YangSun, AoboLiu, Xiao-ang
Optimizing engine mounting systems is a complex task that requires balancing the isolation of vehicle vibrations with controlling powertrain movement within a limited dynamic envelope. Six Degrees of Freedom (6DOF) optimization is widely used for mounting stiffness and location optimization. This study investigates the application of various optimization algorithms for 6DOF analysis in engine mount design, where the system’s stochastic behaviour and probabilistic characteristics present additional challenges. Selecting an appropriate optimization framework is essential for achieving accurate and efficient NVH results. Recent advancements in research have introduced several 6DOF optimization algorithms to determine the optimal stiffness and location of engine mounts. The study evaluates a range of optimization methods, including Simultaneous Hybrid Exploration that is Robust, Progressive and Adaptive (SHERPA), Quadratic Programming (QP), Genetic Algorithm (GA), Particle Swarm
Hazra, SandipKhan, Arkadip
Electric vehicles (EVs) have experienced significant growth, and the battery safety of EVs has drawn increased attention. However, the mechanical responses of battery during crashes have rarely been studied. Hence, the objective of this study was to understand EV battery package mechanics during side-pole crashes at different impact locations and speeds beyond regulated side-pole test with one specific speed and one location. An EV finite element (FE) model with a battery package was used. Side-pole impact simulations were conducted at four impact locations, including the baseline impact location according to side-pole impact regulation, plus three positions by moving the rigid pole 400 mm toward the back of the EV and moving the pole 400 and 800 mm toward the front of the EV. In addition, the impact velocities at 32, 50, and 80 km/h were simulated. Based on simulations, the peak relative displacement, the maximum change in gap between batteries, the maximum change in gap between the
Chen, JianBian, KeweiMao, Haojie
Interest in Battery-Driven Electric Vehicles (EVs) has significantly grown in recent years due to the decline of traditional Internal Combustion Engines (ICEs). However, malfunctions in Lithium-Ion Batteries (LIBs) can lead to catastrophic results such as Thermal Runaway (TR), posing serious safety concerns due to their high energy release and the emission of flammable gases. Understanding this phenomenon is essential for reducing risks and mitigating its effects. In this study, a digital twin of an Accelerated Rate Calorimeter (ARC) under a Heat-Wait-and-Seek (HWS) procedure is developed using a Computational Fluid Dynamics (CFD) framework. The CFD model simulates the heating of the cell during the HWS procedure, pressure build-up within the LIB, gas venting phenomena, and the exothermic processes within the LIB due to the degradation of internal components. The model is validated against experimental results for an NCA 18650 LIB under similar conditions, focusing on LIB temperature
Gil, AntonioMonsalve-Serrano, JavierMarco-Gimeno, JavierGuaraco-Figueira, Carlos
The added connectivity and transmission of personal and payment information in electric vehicle (EV) charging technology creates larger attack surfaces and incentives for malicious hackers to act. As EV charging stations are a major and direct user interface in the charging infrastructure, ensuring cybersecurity of the personal and private data transmitted to and from chargers is a key component to the overall security. Researchers at Southwest Research Institute® (SwRI®) evaluated the security of direct current fast charging (DCFC) EV supply equipment (EVSE). Identified vulnerabilities included values such as the MAC addresses of both the EV and EVSE, either sent in plaintext or encrypted with a known algorithm. These values allowed for reprogramming of non-volatile memory of power-line communication (PLC) devices as well as the EV’s parameter information block (PIB). Discovering these values allowed the researchers to access the IPv6 layer on the connection between the EV and EVSE
Kozan, Katherine
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Yoo, Dong YeonChavare, SudeepViswanathan, SankarMouyianis, Adam
As a distributed wire control brake system, the electro-mechanical brake (EMB) may face challenges due to the need to integrate the actuator in the limited space beside the wheel. During extended downhill braking, especially on wet roads with reduced adhesion, the EMB must operate at high intensity. The significant heat generated by friction can lead to thermal deformation of components, such as the lead screw, compromising braking stability. This paper focuses on pure electric light trucks and proposes a tandem composite braking method. This approach uses an eddy current retarder (ECR) or motor to provide basic braking torque, while the EMB supplies the dynamic portion of the braking torque, thereby alleviating the braking pressure on the EMB. First, a driver model, tire model, motor model, and braking models are developed based on the vehicle's longitudinal dynamics. In addition, the impact of various factors, such as rainfall intensity, road slope, ramp length and vehicle speed, on
Liu, WangZhang, YuXiao, HongbiaoShen, Leiming
Trajectory tracking control is a key component of vehicle autonomous driving technology. Compared with traditional vehicles, Distributed Driven Electric Vehicle (DDEV) is an ideal vehicle for trajectory tracking control because of its high space utilization, redundant control freedom and fast system response. However, the chassis execution system of DDEV has a relatively large number of sensors, which significantly increases its probability of failure. In this paper, we propose a trajectory tracking fault-tolerant control method for DDEV considering steering actuator faults. Firstly, we establish the dynamic model of the steering actuator and the trajectory tracking model of DDEV. The model is linearized and discretized by using Taylor series expansion and forward Euler method. Next, considering multi-objective constraints such as motion comfort, actuator saturation and road adhesion boundary, the trajectory tracking control strategy of DDEV is designed by using model predictive
Wang, DepingLi, LunTeng, YuhanZhu, BingChen, Zhicheng
Electrified vehicles rely on batteries to store energy for propulsion. Batteries depend on chemistry that changes over time and with use. This aging has many effects. Historically, efforts to predict and be robust to battery aging have focused on capacity loss and power loss/resistance growth. While a battery’s state of charge-open circuit voltage (SOC-OCV) relationship is typically treated as static, data illustrates that it shifts with battery age. We are not aware of any published methods to account for this effect for on-board modeling or controls. Regulations by the European Union, the Environmental Protection Agency, and the California Air Resource Board have proposed a state of certified energy (SOCE) to provide vehicle owners with a common metric reflecting the vehicle battery age. This metric captures the capacity and power loss of an aged battery. However, SOC-OCV changes with age may make accurately estimating SOCE more challenging. The upcoming regulations require accurate
Vuylsteke, GabrielleWu, HaoMoore, WilliamWashington, Donnell
Due to the high-power density, high torque rating, low torque ripples and fault-tolerant capability, the Dual Three-Phase Permanent Magnet Synchronous Motor (DTP-PMSM) has recently emerged as a feasible alternative for automotive applications. However, it comes with its own challenge of increased losses at low torque due to the use of 6-phase inverter or two three-phase inverters. The DTP-PMSM drive model can be designed to function in two operating modes, double-channel (dual three-phase) mode with both the inverters operating, and single-channel (three-phase) with one of the two inverters shut down. This paper proposed an efficiency analysis between single channel and double channel modes in a DTP-PMSM drive. A simulation model is prepared to calculate efficiency, and the losses associated with different parts of battery fed DTP-PMSM drive system operated in both modes. Detailed loss model is simulated to represent efficiency of a battery-fed DTP-PMSM drive system. Both single
Sun, FengyangPradhan, SubarniYang, JingruNahid-Mobarakeh, BabakValencia Garcia, Diego FernandoMavalankar, DrushanAllocco, Alessandro
Items per page:
1 – 50 of 4482