Browse Topic: Hybrid electric vehicles

Items (3,055)
Hybrid powertrain for motorcycles has not been widely adopted to date but has recently shown significant increased interest and it is believed to have great potential for fuel economy containment in real driving conditions. Moreover, this technology is suitable for the expected new legislations, reduced emissions and enables riding in Zero Emissions Zones, so towards a more carbon neutral society while still guaranteeing “motorcycle passion” for the product [1, 2]. Several simulation tools and methods are available for the concept phase of the hybrid system design, allowing definition of the hybrid components and the basic hybrid strategies, but they are not able to properly represent the real on-road behaviour of the hybrid vehicle and its specific control system, making the fine tuning and validation work very difficult. Motorcycle riders are used to expect instant significant torque delivery on their demand, that is not properly represented in legislative cycles (e.g. WMTC); rider
Antoniutti, ChristianSweet, DavidHounsham, Sandra
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
Fuel cell electric vehicles (FCEVs) are gaining increasing interest due to contributions to zero emissions and carbon neutrality. Thermal management of FCEVs is essential for fuel cell lifespan and vehicle driving performance, but there is a lack of specialized thermal balance test standards for FCEVs. Considering differences in heat generating mechanism between FCEVs and internal combustion engine vehicles (ICEVs), current thermal balance method for ICEVs should be amended to suit for FCHVs. This study discussed thermal balance performance of ICEV and FCHVs under various regulated test conditions based on thermal balance tests in wind tunnel of two FCEVs and an ICEV. FCEVs reported overheat risk during low-speed climbing test due to continuous large power output from fuel cell (FC). Frequent power source switches between FC and battery were observed under dual constrains of fuel cell temperature and battery state of charge (SOC). Significant temperature exceedance of ICEV occurred
Fang, YanhuaMin, YihangMing, ChenLi, HongtaoLi, DongshengHe, ChongMao, Zhifei
In order to manage the serious global environmental problems, the automobile industry is rapidly shifting to electric vehicles (EVs) which have a heavier weight and a more rearward weight distribution. To secure the handling and stability of such vehicles, understanding of the fundamental principles of vehicle dynamics is inevitable for designing their performance. Although vehicle dynamics primarily concerns planar motion, the accompanying roll motion also influences this planar motion as well as the driver's subjective evaluation. This roll motion has long been discussed through various parameter studies, and so on. However, there is very few research that treats vehicle sprung mass behavior as “vibration modes”, and this perspective has long been an unexplored area of vehicle dynamics. In this report, we propose a method to analytically extract the vibration modes of the sprung mass by applying modal analysis techniques to the governing equations of vehicle handling and stability
Kusaka, KaoruYuhara, Takahiro
Based on the harmonic current injection method used to suppress the torsional vibration of the electric drive system, the selection of the phase and amplitude of the harmonic current based on vibration and noise has been explored in this paper. Through the adoption of the active harmonic current injection method, additional torque fluctuations are generated by actively injecting harmonic currents of specific amplitudes and phases, and closed-loop control is carried out to counteract the torque fluctuations of the motor body. The selection of the magnitude of the injected harmonic current is crucial and plays a vital role in the reduction of torque ripple. Incorrect harmonic currents may not achieve the optimal torque ripple suppression effect or even increase the motor torque ripple. Since the actively injected harmonic current is used to counteract the torque ripple caused by the magnetic flux linkage harmonics of the motor body, the target harmonic current command is very important
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
This paper initially delineates the control process of driver-initiated gear changes. The gear-shifting point control module computes the new target gear based on the current updated driving state, and the gear-shifting point decision module assesses the rationality of the new target gear and conveys it to the gear-shifting timing control module. The gear-shifting timing control module selects the reasonable new stage in accordance with the current execution status and outputs the new target gear, coordinating the clutch control module and the brake control module to regulate the clutch engagement/disengagement and the switches of the two clutches. Altering the intention regarding gear changes encompasses gear replacement and variations in power type, which involve the necessary recalculation of the target speed based on the new target gear. Secondly, the conditions for the “change of mind” request in the speed stage are stipulated, which is the stage where the input shaft speed is
Jing, JunchaoHuang, WeishanLi, DongfeiZuo, BotaoLiu, Yiqiang
Hybrid vehicles are driven by the vehicle controller, engine controller and motor controller through torque control, and there may be unexpected acceleration or deceleration of the vehicle beyond the driver's expectation due to systematic failure and random hardware failure. Based on the torque control strategy of hybrid vehicles, the safety monitoring model design of torque control is carried out according to the ISO 26262 safety analysis method. Through the establishment of safety goals and the analysis of safety concepts, this paper conducts designs including the driver allowable torque design for safety monitoring, the driver torque prediction design for safety monitoring, the rationality judgment design of driver torque for safety monitoring, the functional safety degradation design, and the engine start-stop status monitoring, enabling the system to transition to a safe state when errors occur. Firstly, the design of the driver's allowable torque includes the allowable requested
Jing, JunchaoWang, RuiguangLiu, YiqiangHuang, WeishanDai, Zhengxing
Reducing aerodynamic drag through Vehicle-Following is one of the energy reduction methods for connected and automated vehicles with advanced perception systems. This paper presents the results of an investigation aimed at assessing energy reduction in light-duty vehicles through on-road tests of reducing the aerodynamic drag by Vehicle-Following. This study provides insights into the effects of lateral positioning in addition to intervehicle distance and vehicle speed, and the profile of the lead vehicle. A series of tests were conducted to analyze the impact of these factors, conducted under realistic driving conditions. The research encompasses various light-duty vehicle models and configurations, with advanced instrumentation and data collection techniques employed to quantify energy-saving potential. The study featured two sets of L4 capable light duty vehicles, including the Stellantis Pacifica PHEV minivan and Stellantis RAM Truck, examined in various lead and following vehicle
Poovalappil, AmanRobare, AndrewSchexnaydre, LoganSanthosh, PruthwirajBahramgiri, MojtabaBos, Jeremy P.Chen, BoNaber, JeffreyRobinette, Darrell
In order to improve the safety and reliability of the inverter used in hybrid vehicles and reduce the risk of inverter failure, based on the functional safety ISO26262 development process and software architecture, a safe shutdown path scheme is designed in this paper. Firstly, after entering the initialization mode, on the basis of adding the inverter control signal feedback mechanism on the inverter control system, this scheme designs the control methods and specific processes of the shutdown path test and insulation detection. The shutdown path test and insulation detection designed in this scheme are implemented during the control initialization process, including designing the hardware diagnostic safety mechanism and the unique output shutdown path test method. If the shutdown path test or insulation detection fails, the risk of IGBT out of control can be avoided; the detection mechanism of this system can effectively reduce the failure rate and potential failure rate of faults
Jing, JunchaoLiu, YiqiangZuo, BotaoHuang, WeishanDai, Zhengxing
To take into account the drivers’ performance expectations in the comprehensive performance optimization of plug-in hybrid electric vehicles (PHEVs), we proposed an optimization method for the shift schedule of single-shaft parallel PHEVs considering drivers’ demands on both dynamic and economic performance. In accordance with torque distribution strategies developed for different working modes, the modes switching logic is formulated based on the demand torque along with the engine torque characteristics and the state of charge (SOC) of power battery. And a quantification model for driver’s intention is proposed using a fuzzy inference approach, which can compute the driver's dynamic and economic performance expectations using the driver's operation characteristics and vehicle status as input. With the help of a linear weighting method using the performance expectations as weights, a comprehensive performance evaluation function is constructed as the optimization objective of shift
Yin, XiaofengLi, HongZhang, JinhongLei, Yulong
Due to the frequent and significant changes of the motor torque of hybrid vehicles during driving often occurring with the driving conditions, and the existence of the transmission tooth surface switching caused by the change in torque direction, as well as the underdamping characteristics caused by the relatively simple transmission system, the vehicle is prone to vehicle body shaking problems under conditions such as the transformation from acceleration conditions to energy recovery conditions, and exit from energy recovery. In order to ensure the ride smoothness of the hybrid vehicle while improving its power response performance, aiming at the underdamping characteristics of its transmission system, this paper develops a transmission PCM vibration suppression control strategy based on the vehicle control system to enhance the torque response and smoothness after Tip out or Tip in after braking. This strategy includes the identification of preconditions and the active intervention
Jing, JunchaoZhang, JunzhiZuo, BotaoLiu, YiqiangHuang, WeishanXue, Tianjian
Energy management strategy is essential for HEV’s to achieve an optimum of energy consumption. With predictive energy management, taking future vehicle speed predicted from ADAS map information, in-vehicle navigation traffic flow status information, and current speed into account, one could anticipate a considerable improvement in energy-saving. The major validating approach widely adopted for energy management algorithms nowadays is real-world vehicle testing, of which the economic and time costs are relatively high. Moreover, with advanced algorithms featuring AI coming into light, putting forward higher requirement in the richness of test cases, the drawback in coverage of vehicle testing is revealed. This paper proposed a MIL/SIL testing approach for predictive energy management algorithms, providing a partial replacement to, and overcome the limitations of, vehicle testing. In the testing setup, random traffic generated by MATLAB® based on real-time traffic condition will be taken
Yan, YueMa, XiudanWei, XinliXiong, JieDeng, Yunfei
Mass estimation in light-duty vehicles (LDVs) is a crucial aspect of vehicle dynamics, control systems, energy optimization, range prediction, and overall performance. Accurate mass estimation is essential for precise energy predictions, which are used by energy optimization algorithms. It also enhances vehicle safety and the effectiveness of advanced driver assistance systems (ADAS). The mass of a vehicle can vary depending on occupancy and load. This paper presents a comprehensive study on in-situ mass learning in light-duty vehicles under real-world driving conditions. Utilizing simple longitudinal dynamics, road grade calculated from GPS with RTK correction, and the vehicle’s torque model, we developed a robust framework for vehicle mass estimation. A detailed sensitivity analysis was performed to evaluate the impact of uncertainties or errors in various inputs and parameters, identifying optimal regions for learning the mass and ensuring the model's reliability. This method was
Poovalappil, AmanRobare, AndrewApostol, PeterBahramgiri, MojtabaChen, BoNaber, JeffreyRobinette, Darrell
Honda Motor Corporation has developed a new naturally aspirated in-line 4-cylinder direct injection gasoline engine for C segment sedans that combines high environmental performance and power output. Development time and cost were greatly reduced by utilizing basic structures and components that had previously been developed engine for hybrid vehicles. In addition to the environmental performance at which hybrid engines excel, the driving performance required from a pure gasoline engine for C segment sedans with a low environmental impact was aimed to achieve by optimizing the shape of the combustion chamber to obtain rapid combustion, adjusting intake and exhaust valve timing, employing fuel injection control and adopting a two-piece water jacket that protects the exhaust system component by lowering the exhaust gas temperature at high load. As a result, the newly developed engine achieves a maximum thermal efficiency of 40% with knock suppression effect through rapid combustion
Kondo, TakashiOhmori, TakeyukiYamamoto, JunpeiMiki, Kentaro
Series hybrid vehicles with internal combustion range extenders are a promising solution for sustainable transportation. In this application, net zero carbon emissions can be achieved using renewable fuels. Fischer-Tropsch-derived e-gasolines/naptha allow for high energy density and safe liquid fuels. However, Fischer-Tropsch naptha fuel derivatives must undergo several processing stages to reach current engine-grade octane ratings, negatively affecting the synthesis's profitability and energy efficiency. Gasoline engine technologies capable of operating with low-octane fuels could allow the adoption of unprocessed Fischer-Tropsch gasoline. The rotary Wankel engine design suits range extenders thanks to its high power-to-size ratio. In this study, the knocking tendency of homogenous charge spark-ignition rotary Wankel engines is numerically assessed through Chemkin-Pro spark-ignition engine zonal model for knock assessment. Rotary Wankel engines are modeled by providing the
Brunialti, SirioVorraro, GiovanniTurner, JamesSarathy, Mani
Airborne compression ignition engines operating with aviation fuels are a promising option for reducing fuel consumption and increasing the range of hybrid-electric aircraft. However, the consistent ignition of Jet fuels at high-altitude conditions can be challenging. A potential solution to this problem is to ignite the fuel sprays by means of a glow-plug-based ignition assistant (IA) device. The interaction between the IA and the spray, and the subsequent combustion event result in thermal cycles that can significantly affect the IA’s durability. Therefore, designing an efficient and durable IA requires detailed understanding of the influence that the IA temperature and insertion depth have on the complex physics of fuel-air mixture ignition and flame propagation. The objective of this study is to design a conjugate heat transfer (CHT) modeling framework that can numerically replicate F-24 Jet fuel spray ignition using a glow-plug-based IA device in a rapid compression machine (RCM
Oruganti, Surya KaundinyaLien, Hao-PinTorelli, RobertoMotily, AustenLee, TonghunKim, KennethMayhew, EricKweon, Chol-Bum
This is a follow-up paper to the two previous reports [1, 2] regarding the development of a zeolite-based, hydrocarbon (HC) trap-type cold-start catalyst (CSC) as a method to meet future vehicle tailpipe emission standards. In this paper, vehicle tests at a low ambient temperature of -7°C have been performed and the CSC has been shown to further decrease the tailpipe cold start non-methane hydrocarbon (NMHC) emissions by 59% when compared to a standard 23°C WLTC test. This work has proven that the increased presence of condensed water at low ambient temperatures within the exhaust system does not affect the ability to provide a NMHC reduction, in fact the lower ambient temperature enables an increase in the reduction capability due to the ability to retain and then release the stored NMHC in a more controlled manner. Additionally, the impact of the zeolite loading level was investigated and the high zeolite loading within a CSC did improve the cold-start NMHC but the benefits did
Xu, LifengZhao, FuchengWei, HongZhao, PengfeiZhao, JiajiaMa, RuiboNewman, PhilipWang, LinQian, WangmuQian, Menghan
Plug-in hybrid electric vehicles combine the benefits of both battery electric and internal combustion engine drivetrains. There are multiple possibilities for hybrid configurations, each with its own advantages and disadvantages. In this study, two newly developed traction electric machines were employed alongside a gasoline engine in various hybrid configurations. These configurations, ranging from P1 to P4 and their combinations, were evaluated in terms of vehicle performance, energy consumption, and emissions. The impact of battery capacity was also examined. With a larger battery providing higher discharge power, the electric acceleration time significantly decreases from around 8.6 seconds to approximately 5.2 seconds as the battery capacity increases from 20 kWh to 40 kWh in configurations featuring two traction electric machines. In hybrid mode, the reduction in acceleration time is less pronounced, with a decrease of around 0.7 seconds compared to the configuration with a 20
Nguyen, Duc-KhanhTokat, AlexandraKristoffersson, AnnikaOlsson, Jan-Ola
The sustainable and healthy development of the new energy vehicle industry relies on supportive and guiding policies. However, China's auto industry currently faces challenges such as the gradual reduction of subsidies and the overaccumulation of credit points. To more effectively promote the high-quality development of new energy vehicles and support the achievement of carbon peaking and carbon neutrality goals, it is essential to seek innovative solutions to further refine the existing policy framework. Carbon quota policy is considered to be an effective measure to realize the dual-carbon goal and guide the high-quality development of China's new energy vehicle industry. Against this background, this study discusses the incentive mechanism of carbon quota policy on technological innovation of new energy vehicles and makes suggestions for policy implementation. First, this study forecasts China's annual automobile sales based on a multiple regression model using indicators such as
Zhao, Jiaqi
The hybrid electric drive system has the potential to make a significant contribution to the energy sustainability of the automotive industry. This paper investigates the improved adaptive equivalent consumption minimization strategy (A-ECMS) for a multi-mode series-parallel hybrid electric vehicle. First, a basic ECMS algorithm for the series-parallel vehicle is established, which considers the instantaneous optimal torque matching in the electric, serial hybrid, and engine driving modes. Under the condition that the future traffic information scenario is known, it is desired to realize the global optimal planning based on the combination of dynamic programming (DP) and ECMS. The SOC, engine speed, and torque results calculated by the DP strategy are used as benchmarks to develop the improved SOC-AECMS and S-AECMS strategies, which better incorporate the advantages of the global optimization results. Finally, a hardware-in-the-loop simulation platform is set up to validate the real
Zhu, JingyuHan, MengweiLiu, ChongfanYang, ChenfanNishida, Keiya
Optimizing energy providers like fuel cells and engines involves considering various factors, constraints, and requirements. These include NVH (Noise, Vibration, and Harshness), durability, operating point efficiency, and customer expectations. Different energy providers prioritize these factors differently. For instance, NVH is crucial for engines due to customer expectations regarding start-up, sound, and power delivery based on accelerator input. In contrast, fuel cells face fewer constraints but must consider noise from electrical AC compressors and other devices, especially at lower vehicle speeds. However, operating point efficiency and durability are paramount for fuel cells, as they are expected to last as long as engines in conventional vehicles sold today. This paper proposes a holistic approach that begins at the vehicle or powertrain architecture level and designs an operating strategy that integrates all the aforementioned factors to enhance the operation of a fuel cell
Patel, NadirshKudupley, Harshal
Onboard sensing and Vehicle-to-Everything (V2X) connectivity enhance a vehicle's situational awareness beyond direct line-of-sight scenarios. A team led by Southwest Research Institute (SwRI) demonstrated 20% energy savings by leveraging these information streams on a 2017 Prius Prime as part of the first phase of the ARPA-E-funded NEXTCAR program. Combining this technology with automation can improve vehicle safety and enhance energy efficiency further. In the second phase, SwRI demonstrated 30% energy savings over the baseline. This paper summarizes the efforts to achieve 30% savings on a 2021 Honda Clarity PHEV. The vehicle was outfitted with the SwRI Ranger automated driving suite for perception and localization. Model-based control schemes with selective interrupt and control (SIC) were used to override stock vehicle controls and actuate the accelerator, brake, and electric power steering system, enabling drive-by-wire and steer-by-wire functionalities. Key algorithms contributing
Bhagdikar, PiyushGankov, StanislavSarlashkar, JayantHotz, ScottRajakumar Deshpande, ShreshtaRengarajan, SankarAdsule, KartikDrallmeier, JosephD'Souza, DanielAlden, JoshuaBhattacharjya, Shuvodeep
The adoption of hybrid electric vehicles (HEVs) is becoming more popular during the last few years due to government incentives and favourable legislation both for automotive companies and final users. This type of vehicle claims very low carbon dioxide emissions while eliminating the range anxiety associated with battery electric vehicles thanks to the on-board range extender being able to recharge the battery throughout the journey. Unfortunately, the low emissions values are more representative of the particular mathematical model implemented by the legislation than the measured real driving emissions. Specifically, the legislation does not take into account the CO2 embedded in production of the batteries or of the electrical energy stored in it. This work analyses these aspects by means of a numerical model of the BMW i3 94Ah vehicle. The results obtained are collected from simulations conducted over the Worldwide harmonized Light vehicles Test Cycle (WLTC) by using the commercial
Turner, JamesVorraro, Giovanni
Battery electric vehicles (BEVs) are well-suited for many passenger vehicle applications, but high cost, short range, and long recharging times have limited their growth in commercial vehicle markets. These constraints can be eliminated with plug-in hybrid electric vehicles (PHEVs) which combine many benefits of BEVs with those of conventional vehicles. In this study, research was conducted to determine the optimal hybrid electric powertrain system for a Class 3, light duty commercial vehicle. The key technologies used in this hybrid powertrain include engine downsizing, P3 architecture hybridization, and active thermal management of aftertreatment. A vehicle cost of ownership analysis was conducted to determine the economic viability, a very important consideration for commercial vehicles. Several combinations of E-motor and battery pack sizes were evaluated during the cost analysis and the best possible configuration was determined. The resulting vehicle powertrain demonstrated ~60
Meruva, PrathikMichlberger, AlexanderBachu, PruthviBitsis, Daniel Christopher
In hybrid vehicle systems, the addition of a clutch at the engine end can significantly enhance the overall energy efficiency of the vehicle. In this paper, a novel multi-mode series-parallel configuration is proposed based on the Honda IMMD system and a comprehensive comparison is made with series and series-parallel configurations. Firstly, this paper analyses the various operational modes induced by the inclusion of a clutch at the engine end based on the IMMD system. Subsequently, the fuel consumption of the novel optimized series-parallel configuration is assessed using a rapid dynamic programming method aimed at minimizing fuel consumption during the powertrain operation; additionally, its dynamic performance is analyzed through dynamic programming algorithms. Finally, the performance of different configurations is quantitatively evaluated in terms of acceleration and fuel consumption. The findings reveal that the IMMD + Clutch configuration significantly enhances dynamic
Zhang, YuxinZou, YungeYang, Yalian
Plug-in hybrid electric vehicles (PHEVs) conceptually aim to offer the “best of both worlds” of battery-only electric vehicles (BEVs) in terms of utilizing grid electricity to power an appreciable portion of vehicle miles travelled (VMT), as well as long driving range, fast refueling while maintaining excellent fuel economy comparable to regular (non-plug-in) hybrid electric vehicles (HEVs) when travelling longer distances. However, theoretical estimates of greenhouse gas (GHG) emissions from PHEVs rely on several idealization assumptions, any/all of which may not necessarily be realized in the real world. With many real-world factors involved, including daily VMT profile, charging behavior, weather conditions and drive aggressiveness, all of which possibly having complex interactions, quantitative analysis of the contribution of each factor towards the real-world/attained Well-to-wheels (WtW) GHG could become a daunting task. This research proposes an approach for estimating the
Hamza, KarimLaberteaux, KennethChu, Kang-Ching
This paper explores the application of a modeled torque converter in the real-time control of a hybrid electric powertrain. The study aims to determine the optimal gear selection and engine speed target required to meet driver demands. It also delves into the concept of torque converter input inertia compensation, particularly during open, open-to-close, and close-to-open states. The primary objective is to achieve the intended driver torque while minimizing torque sag and bumps during these transitions. This approach ensures improved powertrain response and maintains system integrity within the operational limits of the battery, motors, and engine.
Madireddy, Krishna ChaitanyaBanuso, AbdulquadriSha, HangxingPatel, NadirshKarogal, IndrasenKhanal, Shishir
This study presents a control co-design method that utilizes a bi-level optimization framework for parallel electric-hydraulic hybrid powertrains, specifically targeting heavy-duty vehicles like class 8 semi-trailer trucks. The primary objective is to minimize battery energy consumption, particularly under high torque demand at low speed, thereby extending both battery lifespan and vehicle driving range. The proposed method formulates a bi-level optimization problem to ensure global optimality in hydraulic energy storage sizing and the development of a high-level energy management strategy. Two nested loops are used: the outer loop applies a Genetic Algorithm (GA) to optimize key design parameters such as accumulator volume and pre-charged pressure, while the inner loop leverages Dynamic Programming (DP) to optimize the energy control strategy in an open-loop format without predefined structural constraints. Both loops use a single objective function, i.e. battery energy consumption
Taaghi, AmirhosseinYoon, Yongsoon
A reemergence of manufacturer interest in range-extended electric vehicles is being driven by increasing diversification of consumer interest in low carbon-intensity technologies in the passenger vehicle and other markets. A major advantage of range-extended electric vehicles is that they curtail consumer vehicle range anxiety while maintaining a lower vehicle cost when compared with battery electric vehicles (BEV). By incorporating a small liquid-fueled internal combustion engine (ICE), the range and “refueling” time of electrified vehicles can be significantly improved while overcoming issues with cost and weight faced by long-range battery packs. Compared to ICEs designed for non-hybrid and mild hybrid vehicles, the ICE in a range-extended electric vehicle has a unique set of requirements focused on compact size, low cost, and efficient operation within a limited engine map. A Range Extender (REx) 0.9L 2-cylinder engine was selected which prioritizes these attributes in a
Peters, NathanMarion, JoshuaPothuraju Subramanyam, SaiHoth, AlexanderBunce, Mike
In hybrid electric vehicles (HEVs), optimizing energy management and reducing system losses are critical for enhancing overall efficiency and performance. This paper presents a novel control strategy for the boost converter in hybrid electric vehicles (HEVs), aimed at minimizing energy losses and optimizing performance by modulating to a higher boost converter voltage only when necessary. Traditional approaches to boost converter control often lead to unnecessary energy consumption by maintaining higher voltage levels even when not required. In contrast, the proposed strategy dynamically adjusts the converter's operation based on real-time vehicle demands, such as driver input, Engine Start-Stop (ESS) events, Active Electric Motor Damping (AEMD), entry and exit transitions for Engine Fuel Cut-Off (DFCO), Noise-Vibration-Harshness (NVH) events like lash-zone crossing and other specific operational conditions. The control strategy leverages predictive algorithms and real-time monitoring
Basutkar, AmeyaHuo, ShichaoSullivan, ClaireBerger, DanielTischendorf, Christoph
The propulsion system design of GM-Cadillac’s first electric vehicle Lyriq uses an optimized drive unit comprising interior permanent magnet (IPM) motors and silicon traction inverters. The main objective behind the drive unit design was to minimize energy losses and cost while maximizing hardware consolidation, range, performance, power density, and scalability. Two IPM motors with different length and number of stator turns are designed, while their rotor design and stator-conductor profile are kept the same. A high-speed rotor is designed to achieve higher power density. AC winding effect at higher speeds is mitigated by using a bar-conductor with much smaller cross section. The rotor surface has a special notch design to minimize acoustic noise, without use of rotor or stator skew. Also, the traction inverters in the Lyriq EV are engineered with a significant emphasis on being scalable and adaptable for various vehicle architectures while considering a broad range of requirements.
Momen, FaizulJensen, WilliamHe, SongChowdhury, MazharulZahid, AhsanForsyth, AlexanderAlam, KhorshedAnwar, MohammadKim, Young
This paper introduces a novel approach to optimize battery power usage and optimal engine torque for Axle disconnect device engagement under power constrained scenarios for range extended hybrid vehicles. Range extended hybrid architecture provides benefits of BEV architecture and relief the range anxiety that BEV drivers often have. The Axle disconnect device helps improve the efficiency of the battery power usage when it is disconnected and provides better drivability and performance to fulfill driver demand when it is connected [1]. Under power constraint scenario, the disconnect device engagement could take too long or eventually fail to engage and result in degradation for drivability and vehicle level performance. This novel approach is utilizing the engine to either generate more power to spin up the disconnect motor faster under discharge limited case or generate less power to allow the disconnect motor to spin down under charge limited case. The effectiveness of this approach
Sha, HangxingMadireddy, Krishna ChaitanyaBanuso, AbdulquadriKhanal, ShishirRock, JoePatel, Nadirsh
This paper presents a methodology to optimally select between routes proposed by mapping software. The objective of the optimization is to make the best trade-off between travel time and energy consumption when deciding between different routes. The method uses an Intelligent driver model to convert the data from the mapping software into a vehicle speed & torque profile, then uses a reduced order energy model to find the vehicle energy consumption for each route. Weightings are applied to the difference in energy and travel time for each route compared to the primary route. The vehicle used in this investigation is the Stellantis Pacifica PHEV. Results support energy savings of up to 20% compared to the primary route, which depends on the routes and initial battery State of Charge (SOC).
Robare, AndrewPoovalappil, AmanUdipi, AnirudhBhure, MayurBahramgiri, MojtabaRobinette, DarrellNaber, JeffreyChen, Bo
The rise of electric and hybrid vehicles with separate axle or wheel drives enables precise torque distribution between the front and rear wheels. The smooth control of electric motors allows continuous operation on high-resistance roads, optimizing torque distribution and improving efficiency. In hybrid vehicles, synergistic control of both internal combustion engines and electric motors can minimize energy consumption. Using the internal combustion engine for steady driving and electric power for acceleration enhances dynamic performance. Keeping the internal combustion engine at a constant speed is key to improving energy efficiency and vehicle responsiveness. The proposed method aids in selecting optimal power levels for both engines during the design phase. As acceleration time decreases, the ratio of electric motor power to internal combustion engine power increases. The torque distribution system, relying on sensors for axle loads, vehicle speed, and engine power, can reduce
Podrigalo, MikhailSergyjovych, Oleksandr PolianskyiKaidalov, RuslanDubinin, YevhenAbramov, DmytriiMolodan, AndriiAndrey, KorobkoKholodov, MykhailoOmelchenko, VasylKrasnokutskyi, Maksym
In the domain of new energy vehicles, the role of the bidirectional DC/DC converter holds great significance. Based on the two-phase interleaved parallel BOOST topology, this paper adopts the approach of combining the double-loop PI controller with the feedforward control algorithm respectively from the aspects of following the target voltage and response speed, and conducts research on the performance of the DC/DC converter in BOOST mode in terms of output voltage overshoot, steady-state error, and system adjustment time. The test results fully validate the feasibility and effectiveness of the design scheme. The test results indicate that the double-loop PI control + feedforward control method accelerates the circuit response speed, reduces the steady-state error, and significantly reduces the input/output current ripple, fully verifying the feasibility and effectiveness of the control method. Furthermore, regarding the overvoltage issue that occurs after a large accelerator pedal in
Jing, JunchaoLiu, YiqiangZuo, BotaoHuang, WeishanDai, Zhengxing
Fuel economy and the ability to maintain the state of charge (SOC) of the battery are two key metrics for the energy management of a full-power fuel cell hybrid vehicle fitted with a small-capacity battery pack. To achieve stable maintenance of SOC and near-optimal fuel consumption, this paper proposes an adaptive equivalent consumption minimization strategy (PA-ECMS) based on power prediction. The strategy realizes demand power prediction through a hybrid deep learning model, and periodically updates the optimal equivalent factor (EF) based on the predicted power to achieve SOC convergence and ensure fuel economy. Simulation results show that the hybrid deep learning network model has high prediction accuracy with a root mean square error (RMSE) of only 0.733 m/s. Compared with the traditional ECMS based on SOC feedback, the PA-ECMS effectively maintains the battery SOC in a more reasonable range, reduces the situation of the fuel cell directly charging the power cell in the high
Gao, XinyuJu, FeiChen, GangZong, YuhuaWang, Liangmo
As the agricultural industry seeks to enhance sustainability and reduce operational costs, the introduction of mild hybrid technology in tractors presents a promising solution. This paper focuses on downsizing internal combustion (IC) engine, coupled with integration of electric motor, to reduce fuel consumption and meet stringent emission regulations while maintaining power requirement for agricultural applications in India. The hybridization aims to deliver instant power boosts during peak loads and capitalizes on energy recovery during part loads and braking. Furthermore, the idle avoidance feature minimizes fuel consumption during periods of inactivity thus improving fuel efficiency. The hybridization also aims to hybridize auxiliary systems for flexible power management, enabling operation of either engine, auxiliaries, or both as needed. A newly developed hybrid supervisory control prototype efficiently manages electric power and mechanical power, enabling intelligent management
Prasad, Lakshmi P.PS, SatyanarayanaPaygude, TejasGangsar, PurushottamThakre, MangeshChoudhary, NageshGitapathi, Ajinkya
Items per page:
1 – 50 of 3055