Browse Topic: Hybrid electric vehicles

Items (3,097)
This paper focuses on the potential application of hydrogen fueled internal combustion engine (HICE) in the off-road market, examining HICE based on a diesel engine. In the transition to HICE, priority was given to compatibility with existing systems, minimizing changes from the base engine. By adopting a PFI (Port Fuel Injection) method for fuel injection, low-pressure hydrogen supply was achieved. To address the issue of backfire associated with PFI, optimization of injection pressure using a variable pressure control valve, along with adjustments to valve timing and injection timing, was implemented to suppress backflow of residual gases into the intake system and minimize hydrogen retention. Regarding pre-ignition, in addition to suppressing hotspots, the relationship between the homogenization of the air-fuel mixture and NOx emissions was examined, revealing a correlation. This engine was mounted on a generator, and efforts were made to improve the important characteristic of
Shiraishi, KentaroKishi, ShinjiKato, DaichiMitamura, KentaMurakami, KeiMikuni, Yusuke
While hybrid electric powertrains are the standard for passenger cars, the application to motorcycles is almost nil. The reason is the increase in weight, cost and overall dimensions, which can compromise the layout and dynamics of the motorcycle. A viable path is to replace the standard internal combustion engine with a much smaller and lighter unit, which leaves room for the installation of the electric components. The 2-Stroke (2S) cycle technology, thanks to double cycle frequency and inherent simplicity, can be the key to reduce engine dimensions, weight and cost, while keeping high power outputs. The HybridTec project, discussed in this paper, aims to develop a compact and lightweight V-90° two-cylinder 2S engine, coupled to an electric motor installed downstream of the gearbox (P3 configuration). The total installed power should be about 110 kW. The engine features loop-scavenging, actuated by a crankshaft-driven supercharger, while an exhaust rotary valve and electronic fuel
Rinaldini, Carlo AlbertoScrignoli, FrancescoVolza, AntonelloMattarelli, EnricoMontanari, LucaMagnani, Gianluca
The calibration of automotive electronic control units is a critical and resource-intensive task in modern powertrain development. Optimizing parameters such as transmission shift schedules for minimum fuel consumption traditionally requires extensive prototype testing by expert calibrators. This process is costly, time-consuming, and subject to variability in environmental conditions and human judgment. In this paper, an artificial calibrator is introduced – a software agent that autonomously tunes transmission shift maps using reinforcement learning (RL) in a Software-in-the-Loop (SiL) simulation environment. The RL-based calibrator explores shift schedule parameters and learns from fuel consumption feedback, thereby achieving objective and reproducible optimizations within the controlled SiL environment. Applied to a 7-speed dual-clutch transmission (DCT) model of a Mild Hybrid Electric Vehicle (MHEV), the approach yielded significant fuel efficiency improvements. In a case study on
Kengne Dzegou, Thierry JuniorSchober, FlorianRebesberger, RonHenze, Roman
The Formula SAE competitions often drive changes in the automotive research field by developing, implementing and emphasizing new technologies for both on-road and on-track applications and by training future engineers, mechanics, logistics and administrative personnel. In this work, the adaptation of a motorcycle, single-cylinder engine for the installation in an electric hybrid car for Formula SAE races is described, focusing on the design of intake and exhaust parts and on the development of the fully open-access Engine Control Unit (ECU) code. In the first part of the work, the 1-D model of the engine is developed and used to design the intake and the exhaust parts needed to make the Formula Student car rules compliant. In particular, the intake manifold and the intake ducts have been designed with the assistance of the engine model to optimize the engine response under transient conditions and to maximize the power. On the other hand, the exhaust line was designed to increase the
Brusa, AlessandroFabbri, PietroShethia, FenilBassani, DavidePetrone, BorisCavina, Nicolo
In response to the growing demand for environmental performance, the mobility industry is actively developing electrification, and in particular, the use of Battery Electric Vehicles (BEV) in commuting motorcycles is advancing. However, in the case of vehicles for leisure, which require high riding performance, there are problems such as cruising range and charging time, and there are currently few mass-produced models. Therefore, we proposed a Hybrid Electric Vehicle (HEV) type Motorcycle (MC) to achieve both environmental performance and high riding performance by means other than BEV. The proposed vehicle is equipped with a strong type hybrid system in which an engine and a drive motor are connected in parallel via a hydraulic electronically controlled clutch. It is possible to drive only by motor (EV driving) or by hybrid driving powered by both the engine and the motor (HEV driving). In order to improve environmental performance, it is necessary to develop a function for switching
Obayashi, KosukeTerai, ShoheiJino, KenichiKawai, Daisuke
The transition towards sustainable transportation necessitates the development of advanced thermal management systems (TMS) for electric vehicles (EVs), hybrid electric vehicles (HEVs), hydrogen fuel cell vehicles (FCVs), and hydrogen internal combustion engine vehicles (HICEVs). Effective thermal control is crucial for passenger comfort and the performance, longevity, and safety of critical vehicle components. This paper presents a rigorous and comparative analysis of TMS strategies across these diverse powertrain technologies. It systematically examines the unique thermal challenges associated with each subsystem, including cabin HVAC, battery packs, fuel cell stacks, traction motors, and power electronics. For cabin HVAC, the paper explores methods for minimizing energy consumption while maintaining thermal comfort, considering factors such as ambient temperature, humidity, and occupant load. The critical importance of battery thermal management is emphasized, with a focus on
K, NeelimaK, AnishaCh, KavyaC, SomasundarSatyam, SatyamP, Geetha
In the realm of electric and hybrid vehicles (EVs, HEVs), the intelligent thermal system control unit is essential for optimizing performance, safety, and efficiency. Unlike traditional internal combustion engines, EVs rely heavily on battery performance, which is significantly influenced by temperature. An intelligent thermal management system helps battery packs to operate within their optimal temperature range, enhancing energy efficiency, extending battery life, and maximizing driving range. Furthermore, it plays a crucial role in managing the thermal dynamics of power electronics and electric motors, preventing overheating, and ensuring reliable operation. As the demand for high-performance and efficient electric vehicles grows, the integration of advanced thermal control strategies becomes increasingly vital, paving the way for innovations in EV design and functionality. One of the key aspects of an intelligent thermal system control is their prediction capability. These
Golgar, SamratBoobalan, Anand
Zero emission vehicles are essential for achieving sustainable and clean transportation. Hybrid vehicles such as Fuel Cell Electric Vehicles (FCEVs) use multiple energy sources like batteries and fuel cell stacks to offer extended driving range without emitting greenhouse gases. Optimal performance and extended life of the important components like the high voltage battery and fuel-cell stack go a long way in achieving cost benefits as well as environmental safety. For this, energy management in FCEVs, particularly thermal management, is crucial for maintaining the temperature of these components within their specified range. The fuel cell stack generates a significant amount of waste heat, which needs to be dissipated to maintain optimal performance and prevent degradation, whereas the battery system needs to be operated within an optimal temperature range for its better performance and longevity. Overheating of batteries can lead to reduced efficiency and potential safety hazards
BHOWMICK, SAIKATChuri, Chetana
This paper offers a state-of-the-art energy-management strategy specifically developed for FCHEV focusing on robustness under uncertain operations. Currently, energy management strategies try to optimize fuel economy and take into account the sluggish response of fuel cells (FCs); however, they mostly do so assuming all system variables are explicit and deterministic. In real-world operations, however, a variety of sources may cause the uncertainty in power generation, energy conversion, and demand interactions, e.g., the variation of environmental variables, estimated error, and approximation error of system model, etc., which accumulates and adversely impacts the vehicle performance. Disregarding these uncertainities can result in overestimation of operating costs, overall efficiency and overstepped performance limitations, and, in serious cases can cause catastrophic system breakdown. To mitigate these risks, the current work introduces a neural network-based energy management
Deepan Kumar, SadhasivamM, BoopathiR, Vishnu Ramesh KumarKarthick, K NR, NithiyaR, KrishnamoorthyV, Dayanithi
The California Air Resources Board (CARB) and the United States Environmental Protection Agency (US EPA) have recently introduced targets for tailpipe emissions during high-power cold-start conditions for plug-in hybrid electric vehicles (PHEVs). However, the performance characteristics of hybrid powertrains and the effectiveness of cold-start strategies in PHEVs are not well known. In this two-part study, the performance of a production PHEV is examined with the objective of quantifying the impact of high-power cold-start events on overall tailpipe emissions. High temporal fidelity data of powertrain performance and tailpipe emissions generated during cold-start events for various driving conditions are presented for the first time. The selected P2 hybrid vehicle was tested using (i) the European Real Driving Emissions (RDE) test, (ii) the US06 (Supplemental Federal Test Procedure), and (iii) a custom drive cycle developed for this study. Results show that driving conditions leading
Chakrapani, VarunO’Donnell, RyanFatouraie, MohammadWooldridge, Margaret
The current work is the second installment of a two-part study designed to understand the impact of high-power cold-start events for plug-in electric vehicles (PHEVs) on tailpipe emissions. In part 1, tailpipe emissions and powertrain signals of a modern PHEV measured over three drive cycles identified that high-power cold-start events generated the highest amounts of gaseous and particulate emissions. The trends in emissions data and powertrain performance were specific to the P2-type hybrid topology used in the study. In this second part of the study, the effects of different PHEV hardware configurations are determined. Specifically, the tailpipe emissions of three production plug-in hybrid vehicles, operated over the US06 drive cycle, are characterized. The approach compared the tailpipe emissions of the test vehicles on the basis of the hybrid topologies and corresponding engine operational characteristics during a high-power cold-start event. Analysis of test results showed
Chakrapani, VarunO’Donnell, RyanFataouraie, MohammadWooldridge, Margaret
In view of the contradiction between the best engine monomer performance and the poor vehicle performance existing energy management strategies, the objective of this study is to leverage deep reinforcement learning to incorporate the thermal characteristics of the engine into the optimization process of energy management strategies, thereby enhancing fuel economy under real-world vehicle operating conditions. Combining the real-time road condition information provided by the vehicle network system, the state space and action space are formulated based on the Soft Actor-Critic (SAC) reinforcement learning algorithm, taking into account energy power and engine cooling constraints, while a generalized reward function design methodology is proposed. Based on bench test data, this paper establishes a series hybrid electric vehicle model with integrated engine thermal characteristics, and validates the effectiveness of the algorithm under actual road conditions by using the engine bench
Fu, WeiqiLei, NuoZhang, Hao
The paper assesses the impact of key factors influencing energy consumption for a Plug-in Hybrid Vehicle (PHEV) passenger car based on actual operating conditions over a period of one year. The tests were carried out in various climatic conditions, by random drivers, on the roads and streets of a medium-sized city in Poland. The use of PHEV with the prepared measuring procedure allowed for the analysis of energy consumption separately for the internal combustion and electric drive system. The total energy consumption directly depends on the way the car is used and on the availability of energy in fuel tank and traction battery. The calculated energy consumption varied from 20.19 to 41.97 kWh/100 km. The results were compared to other vehicles operated in real conditions, registered in a public database. The recorded minimum values of energy consumption correspond to the electric drive system, and the maximum values to the internal combustion drive system.
Mamala, JaroslawGraba, MariuszBieniek, AndrzejPrażnowski, KrzysztofHennek, KrystianBurdzik, Rafał
A major challenge for internal combustion engine vehicles is reduction of CO₂ emissions. Hybrid vehicle demand has recently increased as a countermeasure. However, in hybrid vehicles, the frequency of motor and engine usage varies depending on the driver's driving style, even when driving the same vehicle on the same route. As a result, CO₂ emissions can differ significantly between drivers. Analyzing the impact of driving characteristics on CO₂ emissions can contribute to improving the efficiency of engine and motor control in vehicles, leading to further reductions in CO₂ emissions. Therefore, this paper examines the impact of different driver behaviors on CO₂ emissions in hybrid vehicles. In this study, two drivers were asked to follow a preceding vehicle on real roads, and various data were collected during these drives. Conducting the experiments on actual roads allowed us to obtain results that closely reflect real-world driving conditions, thereby enhancing the relevance of the
Hosogi, TakafumiImamura, KotaroSato, Susumu
Due to strengthened CO2 regulations, the automotive industry is facing the challenge of reducing greenhouse gas emissions. In response, the industry has focused on developing various technologies that enhance fuel economy and reduce greenhouse gas emissions. Hybrid electric powertrains have demonstrated significant potential to improve fuel economy and reduce greenhouse gas emissions. The improvements resulting from hybrid electric powertrains depend on the degree of electrification, which is closely related to the sizing of the motor and battery. However, hybridization increases the complexity of the powertrain. As multiple power sources are involved, complex control algorithms must be developed to allocate power usage among various driving scenarios while fulfilling driver requests. One way to simplify hybrid power management control is to implement optimization strategies that determine the operating states for each component during different driving scenarios, aiming to minimize
Echeverri Marquez, ManuelBhoge, MaheshLago, RafaelEngineer, NayanBhadra, KaustavWhitney, ChristopherBaur, Andrew
The powertrain landscape of the future is sure to be a mix that includes clean diesel engines and other ICE options running alternative fuels. Zero-emissions technology such as battery-electric also will play a greater role in certain applications - despite the policy headwinds it currently faces in the U.S. “Eventually we have to decarbonize the heavy-duty industry,” Thomas Howell, segment lead for conventional powertrain, AVL in the U.S., told Truck & Off-Highway Engineering. A promising “best of both worlds” technology could be hybrid-electric. But as with BEVs, its impact will depend greatly on finding the right applications for it, Howell said. Read on for more of his thoughts on the hybridization of commercial vehicles.
Gehm, Ryan
The U.S. Army and broader Department of Defense (DoD) require increasingly advanced energy storage solutions to power modern military vehicles and command systems. The adoption of electrified platforms, as well as the demand for silent watch, high-power surges, and wide-temperature operation, is pushing battery technology beyond the capabilities of conventional lead-acid and standard lithium-ion (Li-ion) chemistries. Tyfast has introduced a novel lithium vanadium oxide (LVO) anode that delivers high power, rapid charge capability, exceptional cycle life, and broad operating temperatures – all while using 100% domestically sourced vanadium oxide and lithium feedstock. This paper presents an overview of LVO-based battery technology, its performance characteristics, safety evaluations, and potential applications in military operations. We also highlight how this novel chemistry complements Army modernization goals and provides a path for future hybrid-electric combat and tactical vehicles
Liu, Haodongla O’, Gerardo JoseLiu, Ping
Thermal or infrared signature management simulations of hybrid electric ground vehicles require modeling complex heat sources not present in traditional vehicles. Fast-running multi-physics simulations are necessary for efficiently and accurately capturing the contribution of these electrical drivetrain components to vehicle thermal signature. The infrared signature and heat transfer simulation tool, “Multi-Service Electro-optic Signature” (MuSES), is being updated to address these challenges by expanding its thermal-electrical simulation capabilities, provide a coupling interface to system zero- and one-dimensional modeling tools, and model three-dimensional air flow and its convection effects. These simulation capabilities are used to compare the infrared signatures of a tactical ground vehicle with a traditional powertrain to a hybrid electric version of the same vehicle and demonstrate a reduction in contrast while operating under electrically powered conditions of silent watch and
Patterson, StevenEdel, ZacharyCanull, LoganPryor, JoshuaRynes, PeteTison, NathanKorivi, Vamshi
In recent years, the powertrains of agricultural tractors have been transitioning toward hybrid electric configurations, paving the way for a greener future agricultural machinery. However, stability challenges arise in hybrid electric tractors due to the relative small capacity to perform power-intensive tasks, such as plowing and harvesting. These operations demand significant power, which are supplied by the electric power take-off system. The substantial disturbances introduced by the electric power take-off system during these tasks render conventional small-signal analysis methods inadequate for ensuring system stability. In this article, we first develop a large-signal model of the onboard power electronic systems, which includes components such as the diesel engine–generator set, batteries, in-wheel motors, and electric power take-off system. By employing mixed potential theory, we conduct a thorough analysis of this model and derive a stability criterion for the onboard power
Li, FangyuanLi, ChenhuiGao, LefeiMa, QichaoLiu, Yanhong
The electrification of the transportation sector relies on extensive research and data availability to accelerate technological advancements. However, for certain key components such as electric machines, detailed operational information remains scarce, which in turn limits the development of accurate system-level models for electrified powertrains. As a contribution to addressing this challenge, this study presents an experimental benchmark of the electric machine in the second-generation Toyota Mirai, a fuel cell hybrid electric vehicle (FCHEV) featuring a variable DC voltage bus, which was tested on a roller test bench. The proposed methodology aims to characterize the electric machine with minimal instrumentation and prior knowledge of the machine’s configuration, by identifying electrical and geometric parameters that are relevant for a steady-state model of the machine, applicable to system-level studies, with the objective of providing a methodology that can be used in future
Carlos Da Silva, DanielKefsi, LaidSciarretta, Antonio
The performance of electric machines for automotive applications is characterised by a high transient torque capability for low speed tractability and a large speed range of high energy conversion efficiency to achieve a desirable vehicle range. Inevitably, these conflicting requirements will introduce a compromise in the design process of electric machines and drives, generally resulting in heavier machines and overrated drive specifications. This paper discusses the principles of reconfigurable windings, explaining how altering winding connections directly influences key machine parameters like flux linkage, inductance, and resistance. It details the necessary switchgear for series-parallel winding reconfiguration, highlighting potential advantages such as enhanced fault tolerance and emergency braking capabilities. A prototype in-wheel motor with series-parallel reconfigurable windings, developed as part of the EM-TECH Horizon Europe project, is presented. Simulation results using
Best, JoshuaNoori Asiabar, AriaWang, BoHerzog, MaticTrinchuk, DanyloRomih, JakaVagg, Christopher
Eco-sustainability is one of the main aspects focused on motor industries, including those related to air transport, which work to realize alternative propulsion systems, such as Hybrid Electric Propulsion Systems, for reducing CO2 emissions. Despite the minor CO2 emission produced by Hybrid Electric Propulsion Systems, these categories of propulsors require a proper control architecture for managing combustion and electric energies based on driver decisions and the flight mission set. A supervisory control logic, based on a Nonlinear Model Predictive Control (NMPC), is presented in this work to guarantee a specific State of Charge level of batteries coupled with the minimization of fuel consumption of an aeronautical Hybrid Propulsion System. These two goals are achieved by the designed NMPC, which provides the best amount of torque between the propulsors belonging to the analysed aeronautical powertrain, consisting of an Internal Combustion Engine and an Electric Machine. The
Tordela, CiroFornaro, Enrico
As electric mobility spreads and evolves, non-exhaust Particulate Matter (PM) sources are gaining more attention for total vehicular emissions. A holistic approach for studying the involved phenomena is necessary to identify the parameters that have the greatest impact on this portion of emissions. To achieve this, it is necessary to develop a new platform capable of both creating testing methodologies for future regulations and enabling the parallel development of advanced tyres and brakes that meet these standards, by correlating vehicle dynamics, driving style, tyre and brake characteristics, and the resulting emissions. Here the authors present the Sustainable Integrated System for Total non-Exhaust Reduction (S.I.S.T.E.R.) project, funded by the Italian Centro Nazionale per la Mobilità Sostenibile (MOST), that aims to develop an integrated approach to study tyre/brake-related emissions from the initial stages of compound development to outdoor vehicle tests, allowing actions to be
Genovese, AndreaDe Robbio, RobertaLenzi, EmanueleCaiazza, AntonioLippiello, FeliceCostagliola, Maria AntoniettaMarchitto, LucaSerra, AntonioArimondi, MarcoBardini, Perla
The widespread adoption of battery electric vehicles (BEVs) is progressing more slowly than anticipated, making hybridization crucial for improving efficiency through load point shifting, running the engine at its most efficient operating points and kinetic energy recovery. As the world continues to use fossil fuels, enhancing powertrain efficiency is critical to reducing CO2 emissions. Improved efficiency will also increase the share of renewable e-fuels in the energy mix, supporting the transition to low-carbon mobility. A significant portion of energy in ICEs is lost through exhaust heat, which is a high-grate energy source that can be converted into electricity in hybrid systems. Conventional turbochargers, widely used to enhance volumetric efficiency and drivability, typically incorporate a wastegate (WG) to regulate boost pressure. However, this results in the intentional dumping of excess valuable exhaust energy leading to energy loss. This paper investigates the replacement of
Kodaboina, Raghu VamsiVorraro, GiovanniTurner, James W. G.
Achieving minimal fuel consumption in map-based energy management strategies or equivalent consumption minimization strategies (ECMS) for Plug-in Hybrid Electric Vehicles (PHEVs) requires prior knowledge of the optimal equivalence factor (EF). This factor, which weights the fuel consumption of the internal combustion engine (ICE) and electric energy consumption, can be calculated if the exact driving profile is known. However, in real-world scenarios, the exact driving profile and consequently the optimal EF is unknown. This uncertainty motivates the use of predictive information to estimate this factor, aiming to enable fuel optimal control in real-world driving. This paper presents a methodology to predict the optimal EF across various initial battery states of energy and real-world driving profiles using a regression model for a given powertrain configuration. Initially, the optimal EF is determined, and a range of possible input features based on driving profiles are calculated and
Kimmig, NikolaiSchlomann, Jan PhilippGoerke, DanielSchmiedler, StefanGeringer, BernhardHofmann, Peter
Fuel cell hybrid electric vehicles (FCHEVs) are a promising solution for decarbonizing heavy-duty transport by combining hydrogen fuel cells with battery storage to deliver long range, fast refuelling, and high payload capacity. However, many existing simulation models rely on outdated fuel cell parameters, limiting their ability to reflect recent technological improvements and accurately predict system-level performance. This study addresses this gap by integrating a state-of-the-art, physics-based model of a polymer electrolyte membrane fuel cell (PEMFC) into an open-source heavy-duty vehicle simulation framework. The updated model incorporates recent advancements in catalyst design and membrane conductivity, enabling improved representation of electrochemical behavior and real-time compressor control. Model performance was evaluated over a realistic 120 km long-haul drive cycle. Compared to the traditional fuel cell model, the updated system demonstrated up to 20% lower hydrogen
Dursun, BeyzaJohansson, MaxTunestal, Peraronsson, UlfEriksson, LarsAndersson, Oivind
Nowadays, a push towards decarbonisation to reduce the problem of the environmental pollution is increasingly pressing. In the current automotive context, a tendency among the cars manufacturer to consider the development of hybrid vehicles is growing. Indeed, thanks to the battery downsizing due to the addition of the range extender (REx), a hybrid electric vehicle (HEV) allows to overcome the limitations of pure electric vehicles (EV) such as the infrastructure which is linked to the battery charging process. Moreover, the performance of battery in terms of efficiency and operating limits are strictly related with the temperature of the battery pack and with the energy management strategy (EMS). The proposed work aims to analyse the performance of a Plug-In series hybrid vehicle (Plug-In HEV) depending on the temperature of battery pack and the EMS. The considered Plug-In HEV is equipped with a hydrogen-fuelled internal combustion engine that is used as REx. First, a lumped dynamic
Cervone, DavideSicilia, MassimoPolverino, PierpaoloPianese, Cesare
The need for greenhouse gas emission reductions leads to decreasing emission limits in road traffic. The development of efficient powertrains and the use of renewable energy sources are crucial in order to meet these targets. Electrification is one of the key technologies that can help to achieve higher efficiency and lower emissions. Besides the passenger car segment, electrification has started to play a more important role in heavy-duty applications as well. One technology that has been discussed in the last years is the electrification of heavy-duty semi-trailers. In the joint research project "evTrailer2" funded by the German Federal Ministry for Economic Affairs and Climate Action, the potential of different technologies for electrified semi-trailer systems in long-haul applications is evaluated. The overall project goal is the development of high-efficiency technologies to help reduce the fuel consumption and therefore the greenhouse gas impact of large semi-trailer trucks. The
Knaup, LarsBeidl, Christian
In the field of hybrid powertrains for sustainable mobility, fuel cells are a promising solution to improve the performance of battery electric vehicles by implementing PEMFCs as REx. The selection of proper power electronics, such as converters, is fundamental to guarantee tight control and electrical stability. In this paper, a comparison between different electrical architectures of an electric hybrid PEMFC/battery vehicle is proposed: a light battery electric quadricycle (EU L6e) with four in-wheel motors is hybridized with a 3 kW open-cathode PEMFC as REx in parallel layout. The battery accounts for a bi-directional DC/DC converter to stabilize the voltage at 48V, needed by EMGs. A passive architecture is firstly considered, with the PEMFC stack connected to the battery poles; the second architecture is a semi-active one, with the PEMFC connected after the battery DC/DC converter; the last considered layout is active, with a unidirectional DC/DC converter between PEMFC and
Sicilia, MassimoCervone, DavidePolverino, PierpaoloPianese, Cesare
Micro gas turbines are gaining renewed interest as range-extender engines in hybrid vehicles due to their superior power-to-weight ratio, fuel flexibility, and robust steady-state performance. However, their widespread adoption is hindered by modest efficiency and high component costs, particularly from recuperators. This study investigates the thermodynamic performance enhancement of two commercial micro gas turbines, the Capstone C-30 and C-60, through wave rotor integration as a topping device. Using Aspen Plus and Aspen Custom Modeler, three configurations were analyzed: a recuperated engine with a single wave rotor, and unrecuperated engines with a single and two cascaded wave rotors, respectively. Key performance metrics—including brake thermal efficiency, specific fuel consumption, and specific work—were evaluated across a range of wave rotor pressure ratios. Results show that the wave rotor significantly improves power output and pressure ratio while maintaining or improving
Babaji, BadamasiKenkoh, Kesty YongTurner, James W.G.
The combination of the electric drive and the internal combustion engine (ICE) in hybrid electric vehicles (HEV) requires the implementation of an Energy Management Strategy (EMS). The task of the EMS is to split the driving demand between the two energy converters. The design of the EMS in charge-sustaining operation is commonly targeted at the minimization of fuel consumption. For in-vehicle implementation of the EMS, supplementary objectives, such as the electric driving (ED) experience or the driving comfort, influenced by the frequency of state shifts, are considered. Therefore, this work extends the framework for EMS optimization from the fuel-optimal design to multi-objective target spaces. First, the general multi-objective optimal control problem (MOOCP) is formulated. In a next step the central target space for EMS calibration consisting of fuel consumption, ED time and number of ICE starts is considered and the resulting MOOCP is solved using Dynamic Programming (DP). The
Ehrenberg, BastianEngbroks, LukasSchmiedler, StefanGeringer, BernhardHofmann, Peter
Heavy-duty vehicles contribute significantly to global greenhouse gas emissions and are now facing challenges in meeting emission regulatory standards, particularly cold-start operations. These challenges are particularly significant during transient operations, where fuel efficiency drops and emissions peak due to suboptimal thermal conditions. Advanced powertrains that use hybridization and waste heat recovery with phase-changing materials offer potential pathways to mitigate fuel consumption and emissions under real-world driving conditions. Still, they need to be accurately sized, and the energy flows handled to overcome the disadvantages of increased mass and complexity. This investigation lays the groundwork for the development of advanced power systems by implementing a scalable, map-based model for heavy-duty diesel engines. The model is validated using an open-access dataset related to a heavy-duty vehicle equipped with a 6-cylinder diesel engine, which performed 28 different
Donateo, TeresaMujahid, TalhaMorrone, PietropaoloAlgieri, Angelo
This study presents the development and validation of a numerical model for a hybrid electric vehicle (HEV) and battery electric vehicle (BEV), with a focus on analyzing battery degradation under various driving scenarios and modes. The proposed model integrates a comprehensive vehicle dynamics framework with a detailed battery model to evaluate the impact of different driving conditions on battery performance and longevity. The vehicle model captures the hybrid powertrain's behavior, including energy management strategies, while the battery model incorporates electrochemical dynamics to predict degradation mechanisms such as capacity fade and resistance increase. Two primary driving scenarios are examined: urban driving, characterized by frequent stops, accelerations, and transitions between aggressive and relaxed driving styles, and long-distance highway driving, where cruising speeds and driving patterns vary. The urban scenario emphasizes the effects of stop-and-go traffic and
Martinez, SantiagoMerola, SimonaIrimescu, AdrianBibiloni Ipata, Sebastian
This study presents a comprehensive methodology for the design and optimization of hybrid electric powertrains across multiple vehicle segments and electrification levels. A full-factorial simulation framework was developed in MATLAB/Simulink, featuring a modular, physics-based vehicle model combined with a backward simulation approach and an ECMS (Equivalent Consumption Minimization Strategy) -based energy management algorithm. The objective is to evaluate three hybrid powertrain architectures, namely Series Hybrid (SH), Series-Parallel Hybrid with a single gear stage (SHP1), and Series-Parallel Hybrid with a double gear stage (SHP2), across three vehicle classes (Sedan, Mid-SUV, Large-SUV), four different internal combustion engines (ICEs), and three application types (HEV, PHEV, REEV). More than 10,000 unique configurations were simulated and filtered through a two-step performance requirements analysis. The first phase assessed individual vehicle-level performance targets, while
Amati, NicolaMarello, OmarMancarella, AlessandroCavallaro, DavideIanni, LucaCascone, ClaudioPaulides, Johannes JH
Traveling by a two-wheeler has a significant share of commute and non-commute trips, especially in developing and emerging countries. However, with the rising fuel prices and stringent environmental norms, feasibility of conventional two-wheelers needs to be contemplated. As a potential alternative, electric two-wheelers and hybrids/retrofitted are observed as credible travel mode shifts. Intuitively, hybrid or retrofitted are assumed to gain leveraged benefits of both conventional and electric two-wheelers. However, the intrusion of these two-wheelers will sprout out associated concerns, which need to be mitigated with the help of public (consumer) opinion. In this study, a survey of hybrid electric two-wheelers is conducted to examine people’s mindset and the necessity of hybrid electric two-wheelers in today’s market. The hybrid technology can be used on two-wheelers in two different ways: first, it can be retrofitted, and second, it can be fitted to a brand-new two-wheeler
Ghatage, Pankaj ShamraoHatiskar, AkashMore, SupriyaBhosale, AmrutWani, Kiran
This article details the development of a plug-in hybrid electric powertrain system for a wheel loader. The work included both computer modeling and fired engine testing. A methodical approach was utilized, which included identifying system requirements, an architecture study, component sizing, and cost analysis. After the optimal system was designed, the engine and hybrid motor were installed in a powertrain test cell and evaluated over an in-use duty cycle. A bespoke utility factor, relevant for wheel loader operation, was developed to enable realistic fuel economy and emissions weighting between charge depleting and charge sustaining operation. Finally, an exhaust heater was used to ensure rapid warmup of the aftertreatment system. Compared to an internal combustion engine–only baseline, the hybrid powertrain system resulted in a 48% reduction in CO2 and an 84% reduction in NOX emissions when operated over an 8-h shift, with daily recharging.
Bachu, PruthviMichlberger, AlexanderMeruva, PrathikBitsis, Daniel Christopher
The diversity of excitation sources and operating modes in hybrid electric vehicles (HEVs) exacerbates the torsional vibration issues, presenting significant challenges to the vehicle’s overall noise, vibration, and harshness performance. To address the complex torsional vibration challenges of the HEVs, this study proposed an active–passive collaborative vibration suppression approach. In terms of passive suppression, a multi-condition parameter optimization scheme for the torsional vibration dampers is designed. In terms of active suppression, a fuzzy control–based electronically controlled damper is proposed, and a hybrid feedforward–feedback motor torque compensation strategy is developed. Simulation results demonstrated that the proposed method reduces the root mean square value of the angular acceleration by over 65% under acceleration and idle conditions and the maximum transient vibration value by 55% during the engine starting condition.
Yan, ZhengfengLiu, ShaofeiHuang, TianyuZhong, BiqingBai, XianxuHuang, Yin
Light-duty vehicles (LDV) are scaling up electrification technologies from battery to dedicated hybrid engines (DHEs). The success from electrification of LDVs can be a starting point to look into a similar trending development of commercial vehicles (CV), which are bigger and heavier with more demanding work cycles. “Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles (HDV)—Phase 3” establishes new CO2 emission standards for MY 2032 (Model Year) and later HD vehicles with more stringent CO2 standards phasing in as early as MY 2027 for certain vehicle categories. In this article, the focus is about improving the operational efficiency of MDHD (medium-duty and heavy-duty) vehicles through a selected electrification technology in this study rather than pure BET (battery electric truck). Extended-range electric vehicle (EREVs) systems are studied here to address sustainability regarding charging infrastructure and by using the renewable fuels (hydrogen, ammonia, methanol, and
Wang, HailongMa, TiancaiShuai, ShijinWang, ZihuiSong, Xubin
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Green, Greg
In today’s electric age, the definition of ‘high-performance’ is being rewritten, courtesy of electric sports cars, supercars, and hypercars pushing limits that were once thought impossible to reach. Even Formula 1, quite surprisingly to many, has embraced electrification by integrating hybrid electric systems at the pinnacle of motorsport. Every jaw-dropping 0 to 60 mph time or record-breaking lap is backed by a battery system engineered with precision. Increasingly that precision is driven by simulation technology.
GKN Aerospace Birmingham, UK Marianne.Mulder@Fokker.com
In this article, the hybrid drive is discussed of the combination of conventional tractors with electrified trailers, usually referred to as E-trailer. We demonstrate that this approach offers the possibility of achieving fuel savings exceeding 20%. For regional trips, about half of this reduction is achieved without offline charging, i.e., without applying electric energy from the E-trailer battery. For motorway dominant trips, more use is required of the battery energy. A new control strategy is proposed, validated through simulations, in which only three control parameters are required, which can be tuned effectively to achieve maximum fuel reduction under certain trip and loading conditions. This control strategy adjusts the E-trailer torque request, based on the requested power for the tractor diesel engine, being estimated through a smart kingpin sensor. It ensures that the E-trailer supports the tractor propulsion when significant power is required, and recovers energy when the
Pauwelussen, JoopKural, KarelHetjes, Bas
The future of the internal combustion engine (ICE) is closely tied to its ability to achieve life cycle emissions comparable to those of pure battery electric vehicles (BEVs). To reach this goal, it is essential not only to utilize carbon-free fuels but also to enhance the hybridization of the powertrain to reduce fuel consumption. Additionally, it is crucial to minimize pollutant emissions to near-zero levels, necessitating the development of highly sophisticated exhaust aftertreatment systems. For Plug-In Hybrid Electric Vehicles (PHEVs), one particular use case is the High-Power Cold Start (HPCS). This scenario occurs when the transition from pure electric drive to ICE-assisted drive happens during a high load request, such as accelerating on a freeway ramp. This use case has been evaluated by CARB and in numerous other studies. However, in this paper, the authors aim to investigate which metallic substrate technology performs best during an HPCS. This condition differs
Montenegro, GianlucaOnorati, AngeloMarinoni, AndreaDella Torre, AugustoPace, LorenzoKonieczny, KatrinLaurell, MatsKlövmark, Henrik
This paper examines the influence of a detailed dynamic model of a Surface Permanent Magnet Synchronous Motor (SPMSM) on the accurate evaluation of kinetic energy recovery during braking in a mild hybrid vehicle. The model, implemented in MATLAB Simulink, is based on the motor’s DQ equivalent circuit, accounting for transient effects, inductance variability, and magnetic saturation. Also, a 2nd Order Thevenin Equivalent model of the battery is used in order to take into account the bus voltage variability. Simulations reveal that the dynamic model predicts significant variations in energy recovery potential, with differences of up to 25% compared to static models under specific braking conditions. These discrepancies are particularly pronounced during high-speed high-torque transitions, where transient electrical behaviors strongly influence energy recovery. The model’s accuracy enhances the reliability of energy simulations, especially in scenarios involving frequent or intense
Lombardi, SimoneFederici, LeonardoTribioli, LauraBella, Gino
The automotive industry is undergoing a major shift from internal combustion engines to hybrid and battery electric vehicles, which has led to significant advancements and increased complexity in drivetrain design and thermal management systems. This complexity reflects the growing need to optimize energy efficiency, extend vehicle range, and ensure system reliability in modern electric vehicles. At the Institute of Automotive Engineering, a specialized synthesis tool for drivetrain optimization is used to identify the best drivetrain configurations based on specific boundaries and requirements. Building up on this toolchain a modular and adaptable thermal management framework has been developed, addressing another critical aspect of vehicle and drive development: efficient thermal circuit layout and its impact on energy consumption and overall system reliability. The thermal framework emphasizes the dynamic interactions between key components, such as electric machines, power
Notz, FabianSturm, AxelSander, MarcelKässens, ChristophHenze, Roman
Items per page:
1 – 50 of 3097