Browse Topic: Spacecraft

Items (5,190)
In future planetary exploration missions, the Eight-Wheeled Planetary Laboratory (EWPL) will have sufficient capacity for tasks but will experience significant lateral slips during high-speed turns due to its large inertia. Modern technology allows for independent steering of all eight wheels, but controlling each wheel's steering angle is key to improving stability during turns. This paper introduces a novel rear-axle steering feed-forward controller to reduce sideslip. First, a mathematical model for the vehicle's steering is established, including kinematic equations based on Ackermann steering. Feed-forward zero side-slip control is applied to the third and fourth axles to counteract the side-slip angle of the center of mass. A multi-body dynamics model of the EWPL is then built in Chrono to evaluate the turning radius and optimize steering angle ratios for the rear axles. Finally, a steady-state cornering simulation on loose terrain compares the performance of the proposed
Liu, JunZhang, KaidiShi, JunweiYang, WenmiaoZhang, YunqingWu, Jinglai
The unicycle self-balancing mobility system offers superior maneuverability and flexibility due to its unique single-wheel grounding feature, which allows it to autonomously perform exploration and delivery tasks in narrow and rough terrains. In this paper, a unicycle self-balancing robot traveling on the lunar terrain is proposed for autonomous exploration on the lunar surface. First, a multi-body dynamics model of the robot is derived based on quasi-Hamilton equations. A three-dimensional terramechancis model is used to describe the interaction between the robot wheels and the lunar soil. To achieve stable control of the robot's attitude, series PID controllers are used for pitch and roll attitude self-balancing control as well as velocity control. The whole robot model and control strategy were built in MATLAB and the robot's traveling stability was analyzed on the lunar terrain.
Shi, JunweiZhang, KaidiDuan, YupengWu, JinglaiZhang, Yunqing
Exploration vehicles on Titan are to be developed with considerations on the atmosphere present, especially the abundance of Nitrogen. This study focuses on identification of optimum materials for the propellers supporting an airship specifically created for Titan exploration. The base airship is designed to accommodate the coaxial propeller. The base of this airship is to be developed with four weather stations for collection of data samples. The stations are installed on inflatable platforms and have storage devices for recording and transmitting data collected by the aerobot. The airship will operate in Titan's atmosphere and atmospheric conditions, focusing on its design and computational analysis of structural effects and fluid dynamics. The Titan aerobot is built with a co-axial 4-blade propeller, horizontal and vertical fins, and a reaction wheel for yaw maneuvers. The co-axial propulsive system is capable of overcoming drag during steady level flight in the Titan atmosphere
Baskar, SundharVinayagam, GopinathPisharam, Akhila AjithGnanasekaran, Raj KumarRaji, Arul PrakashStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
In this work, the large-angle rotational movement and vibration suppression of a flexible spacecraft are carried out based on an adjustable system. First the spacecraft model is transformed into a canonical affine control form, then two fuzzy systems are used: The first (of Takagi–Sugeno type) estimates the feedback linearization control law as a whole, while the second (of Mamdani type) adjusts and stabilizes the control parameters using the gradient descent technique and based on the minimization of the control error rather than the tracking error. Stability results are presented in terms of Lyapunov’s theory, and simulation tests illustrate the significant transient robustness of the closed-loop system against perturbations, the accurate trajectory control, and vibration suppression of the flexible spacecraft. Consequently, as will be shown later, the error will stay confined and converges quickly to zero, confirming the smoothing property of the proposed method using fuzzy logic
Bahita, Mohamed
Shipbuilders didn’t have the option of fiberglass when the nonprofit American Bureau of Shipping (ABS) was established 160 years ago to help safeguard life and property on the seas. Fortunately, technology to help better ensure the safety of ocean vessels has also come a long way in that time, in part because people have become a spacefaring species.
A Coventry University design and materials engineer is leading an international team of researchers in the creation of a new material for liquid hydrogen storage tanks that are used to propel rockets into space. Coventry University, Coventry, UK The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race. Dr. Ashwath Pazhani along with an international team of researchers have created a new material for storing the liquid hydrogen used to propel rockets into space by the likes of NASA.
Over the past decade, NASA’s Space Technology Mission Directorate and its team of development partners have developed several unique thermal protection system (TPS) technologies designed to protect spacecraft from the extreme heat conditions and entry environments that space missions face. Working closely with the NASA Ames Research Center, Bally Ribbon Mills (BRM), along with several other partners, have developed a new generation of unique strong and robust materials produced using three-dimensional (3D) weaving.
Researchers at the Max Planck Institute for Extraterrestrial Physics have developed a new way to produce and shape large, high-quality mirrors that are much thinner than conventional space-telescope mirrors. The final product is even flexible enough to be rolled up and stored compactly inside a launch vehicle.
Tracking the spread of COVID-19 through communities provided essential data for public-health officials and individuals to make informed decisions during the pandemic. One method that proved useful was collecting, concentrating, and testing municipal wastewater for the presence of the virus that caused the illness. As this testing ramped up, a technology developed for NASA to identify pathogens inside spacecraft saved time and produced dependable results on Earth.
Space lasers are transforming the world. Not the far-off future of science fiction, but the universe of how data and communications flow today - everywhere from deep space missions to countless applications here on earth, including consumer internet services, military operations, and banking transactions. Lasers can transmit vast amounts of data over great distances at the speed of light, 100 times faster than previously possible in space. The narrowness of the light beams makes laser communication remarkably efficient. The highly focused light is aimed at the receiver, resulting in minimal beam divergence and signal loss and allowing for reduced power consumption.
Innovators at NASA Johnson Space Center have designed a science enclosure system for science experiments conducted aboard the International Space Station (ISS). It allows users the ability to safely manipulate objects of study within the transparent enclosure by utilizing protective boundary layer innovations whose designs may be transferable to other containment systems. The science enclosure system can support experiments that would require Biosafety Level (BSL) 2 containment.
Innovators at NASA Johnson Space Center have developed and successfully flight tested a high-performance computing platform, known as the Descent and Landing Computer (DLC), to suit the demands of safe, autonomous, extraterrestrial spacecraft landings for robotic and human exploration missions.
Life for astronauts on the International Space Station has been, for the most part, less taxing than it was in the space shuttle days, when missions often included many goals and milestones compressed into a short period of time. That won’t be the case, however, for the first astronauts to journey to the surface of the Moon during the Artemis program, said Alexandra Whitmire, a NASA Scientist whose job concerns astronaut well-being and performance.
Manufacturing and servicing facilities in space are (finally) moving from the pages of science fiction to reality. For decades, we've seen movies with scenes of spacecraft being created and serviced in beautifully rendered factories with Earth in the background. And many more ideas have come from authors imagining bold futures where humanity does everything from creating giant nets of satellites to massive, spinning space stations. Some might lament that, back in reality, we’ve come so far with our achievements in space yet fallen short of the brightest visions. How can we have landed on the Moon 50 years ago and still be scrapping billion-dollar satellites when they run out of fuel? However, there’s good reason to believe that the space industry is almost done laying the foundations that will let us move from science fiction to engineering reality.
We are in the midst of a golden age of space travel with the upcoming launch of multiple reusable heavy lift rockets. These new craft will increase deliverable mass to LEO and decrease delivery costs. These rockets are essential to replacing the ISS with commercial space stations in the coming decade. These new commercial stations will enable the creation of in-space factories that leverage microgravity to improve products for use on Earth. Large-scale 3D bioprinting is one technology that will benefit from microgravity and has the potential to address the organ shortage and overreliance on animal models for drug discovery and testing.
The International Space Station cost more than $100 Billion to build and took 60 launches to complete. Yet, it has only 900 cubic meters of usable space. If we are to live and work in space, conduct meaningful research, and use our imaginations for sports and entertainment — we will need a lot more usable space in space. What if we could create stronger, scalable and more resilient space stations for a small fraction percent of this cost?
Over the last decade, a government-industry effort to advance the use of modern computer processors and networks in spacecraft avionics systems has quietly been making its own gains in industry adoption and a re-thinking of the way next generation spacecraft electronic systems could be designed in a less costly and more interoperable way. Spacecraft avionics systems are all of the electronic instruments, components, computers and subsystems that control primary spaceflight flight and data communications functionality.
Riding aboard NASA's Psyche spacecraft, the agency's Deep Space Optical Communications technology demonstration continues to break records. While the asteroid-bound spacecraft doesn't rely on optical communications to send data, the new technology has proven that it's up to the task. After interfacing with the Psyche's radio frequency transmitter, the laser communications demo sent a copy of engineering data from over 140 million miles (226 million kilometers) away, 1. times the distance between Earth and the Sun. This achievement provides a glimpse into how spacecraft could use optical communications in the future, enabling higher-data-rate communications of complex scientific information as well as high-definition imagery and video in support of humanity's next giant leap: sending humans to Mars.
In research that may lead to advancements in the design of next-generation airplane and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. Massachusetts Institute of Technology, Cambridge, MA To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures. But composite materials have one main vulnerability: the space between layers, which is typically filled with polymer “glue” to bond the layers together. In the event of an impact or strike, cracks can easily spread between layers and weaken the material, even though there may be no visible damage to the layers themselves. Over time, as these hidden cracks spread between layers, the composite
In any human space flight program, safety of the crew is of utmost priority. In case of exigency in atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew Escape System (CES). CES is a critical part of the Human Space Flight which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the CES during the mission abort are severe as the propulsive, aerodynamic and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight period considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters. Depending on the time of abort, the ignition delay of PM, LEM and HEM
S, SubashBabu P, GirishDaniel, Sajan
The winged body reusable launch vehicle needs to be tested and evaluated for its functionality during the pre-flight preparation at the runway. The ground based checkout systems for the avionics and the actuator performance testing during pre-flight evaluation are not designed for rapid movement. This new kind of launch vehicle with solid rocket first-stage and winged body upper-stage demands the system testing at Launchpad and at the runway. The safety protocol forbids the permanent structure for hosting the checkout system near runway. The alternative is to develop a rapidly deployable and removable checkout system. A design methodology adopting conventional industrial instrumentation systems and maintaining mobility is presented. This paper presents the design and development of a mobile checkout system for supporting the ground pre-flight testing during autonomous flight landing trials.
V, Vivekanand
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Kamal, AbhishekDeka, SushmitaSahoo, NiranjanKulkarni, Vinayak
The descent phase of Indian Manned Space Mission culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge loads are experienced by astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems uses honeycomb core, which is passive and can only be used once (at touchdown impact) during the entire mission. Active and reusable attenuation systems for crew modules are still an unexplored territory. Three configurations of impact attenuators are selected for this study for the crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems. All the subsystems are mathematically modelled, and initial sizes are estimated using Genetic Algorithm and SQP optimization techniques. Semi-active control for Hydraulic and Hydro-Pneumatic dampers are implemented and
Avirah, Nohin KLakshman, Dasu Deva KarthikPotnuru, Sai SanthoshPramod, Athul PKurian, Sabin
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere—Langmuir Probe) was one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the lunar plasma density and its variations near the lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized for deploying the probe at a distance of 1 meter to avoid the plasma sheath effect in the moon’s plasma environment. The RAMBHA-LP deployment system consists of a metallic spherical probe with Titanium Nitride coating on its surface, a long carbon-fiber-reinforced polymer boom, a spring-assisted deployment mechanism, a dust-protection subsystem, and a hold release mechanism (HRM) based on a shape-memory alloy-based actuator. The entire RAMBHA-LP system weighed nearly 1.3 kilograms. The system had undergone many sub-system and system-level tests in ambient, dynamic
Alam, Mohammed SabirPaul, JohnsUpadhyay, Nirbhay KumarNalluveettil, Santhosh JSateesh, GollangiA, Jothiramalingam
Today’s space programs are ambitious and require increased level of onboard autonomy. Various sensing techniques and algorithms were developed over the years to achieve the same. However, vision-based sensing techniques have enabled higher level of autonomy in the navigation of space systems. The major advantage of vison-based sensing is its ability to offer high precision navigation. However, the traditional vision-based sensing techniques translate raw image into data which needs to be processed and can be used to control the spacecraft. The increasingly complex mission requirements motivate the use of vision-based techniques that use artificial intelligence with deep learning. Availability of sufficient onboard processing resources is a major challenge. Though space-based deployment of deep learning is in the experimental phase, but the space industry has already adopted AI on the ground systems. Deep learning technique for spacecraft navigation in an unknown and unpredictable
Avanashilingam, Jayanth BalajiThokala, Satish
Lunar tubes, natural underground structures on the Moon formed by ancient volcanic activity, offer natural protection from extreme temperatures, radiation, and micro-meteorite impacts, making them prime candidates for future lunar bases. However, the exploration of lunar tubes requires a high degree of mobility. Given the Moon's gravity, which is approximately six times weaker than Earth's, efficient navigation across rugged terrains within these lava tubes is achievable through jumping. In this work, we present the design of subsystems for a miniature hexapod rover weighing 1 kg, which can walk, jump, and stow. The walking system consists of two subsystems: one for in-plane walking, employing four single-degree-of-freedom (DoF) legs utilizing the KLANN walking mechanism, and another for directional adjustments before jumping. The latter employs a novel three-DoF mechanism with the cable-pulley system to optimize space utilisation. The design of these legs prioritizes functionality
Shanbhag, Sushanth SureshSharma, ShachindraDamurothu, KrishnaSandeep, R
With the present state of the art technology, size and mass of the satellites have come down. This necessitated the need for a low shock separation system that does not have mass attached to the separated satellite. Development of Nano satellites with mass of the order of 1 to 24 kg has become popular among scientific/ academic institutions for carrying out scientific experiments. INLS 3U Uni-Pod System (Nano satellite dispenser system) is a satellite dispensing system designed by ISRO for accommodating four 3U class Nano satellites in a single structure where each satellite is deployed independently by separate actuation commands. INLS stands for ISRO's Nano satellite Launch System. The INLS 3U Uni-Pod separation system successfully flown in ISRO’s Launch Vehicle mission for deployment of three satellites from abroad. CubeSat separation system consists of a structure housing the satellite, Holding and release mechanism (HDRM), rattling arresting mechanism, satellite ejection mechanism
Paul, JohnsPM, Abdul SalamP, RajeevNalluveettil, Santhosh JA, Jothiramalingam
With regards to any aerospace mission, it is very useful to have awareness about the state of vehicle, i.e., the information about its position, velocity, attitude, rotational rates and other concerned data such as control surface deflections, landing gear touchdown, working of mechanisms and so on. The sensor data from the vehicle that is communicated to the ground can be difficult to perceive and analyze. A frame work for real-time motion simulation of an aerospace vehicle from onboard telemetry data is henceforth developed in order to improve the understanding about the current state of the mission and aid in real-time decision making if required. The telemetry data, that is transmitted through User Datagram Protocol (UDP), is received and decoded to usable format. The visualization software accepts the data in a fixed time interval and applies the required transformations in order to ensure one-to-one correspondence between actual vehicle and simulation. The transformations
Shaw, Sandeep PrasadThakur, AdarshNair, TharaKK, Raveendra
Launch vehicles are vulnerable to aeroelastic effects due to their lightweight, flexible, and higher aerodynamic loads. Aero elasticity research has therefore become an inevitable concern in the development of the Reusable Launch Vehicle (RLV). RLV is a unanimous solution to achieve more affordable access to space. The lightweight control surface of the RLV signifies the relevance of the study on static aeroelastic effects on the control surfaces. Control effectiveness is the capability of a control surface to produce aerodynamic forces and moments to maneuver the vehicle along the intended path. The static aeroelastic problem determines the efficiency of control, aircraft trim behavior, static stability, and maneuvering quality in steady flight conditions. In this paper, static aeroelastic analysis was performed on a typical RLV using MSC/NASTRAN inbuilt aerodynamics. This study is performed using a finite-element structural model (MSC/NASTRAN, MSC/PATRAN) coupled to an aerodynamic
Pavanasam, Ashok GandhiAnil, MaryRose, Jancy
Unsteady pressure fluctuations in launch vehicles can induce aerodynamic instabilities, potentially resulting in vibration, structural fatigue, and even catastrophic failure. These risks undermine structural integrity and jeopardize payload delivery, threatening mission success and crew safety. Therefore, precise measurements of unsteady pressure are vital for understanding dynamic pressure distribution and flow behaviour caused by phenomena like shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system designed for real-time unsteady pressure data acquisition. The system addresses the challenge of accurately resolving high-frequency pressure variations over very high base pressure values. It can be integrated into re-entry vehicles and stage recovery experiments, providing confidence in acquiring data for complex geometrical shapes. Moreover, the
Varma, RekhanshiSB, VidyaJogi, DeepakMM, NandakishorKC, Finitha
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). This analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis. In the present study, the satellite interface responses are validated
R, RajiRose, Jancy
Hypersonic flight vehicles have potential applications in strategic defence, space missions, and future civilian high-speed transportation systems. However, structural integration has significant challenges due to extreme aero-thermo-mechanical coupled effects. Scramjet-powered air-breathing hypersonic vehicles experience extreme heat loads induced by combustion, shock waves and viscous heat dissipation. An active cooling thermal protection system for scramjet applications has the highest potential for thermal load management, especially for long-duration flights, considering the weight penalty associated with the heavier passive thermal insulation structures. We consider the case of active cooling of scramjet engine structural walls with endothermic hydrocarbon fuel. We have developed a semi-analytical quasi-2D heat transfer model considering a prismatic core single cooling channel segment as a representative volume element (RVE) to analyse larger-scale problems. The model includes
Mukherjee, RaginiRoy Mahapatra, Debiprosad
Design of Launch vehicle is multidisciplinary process in which designers of all the domain of engineering like mechanical, electronics, chemical, materials etc contribute. For the mechanical design, Coupled Load Analysis (CLA) is statutory requirement without which no launch vehicle will be allowed to fly. In CLA, launch vehicle is subjected to various loads during its flight due to engine thrust depletion / shut-off, thrust oscillation, wind and gust, maneuvering loads. In aerospace industry a standard CLA is performed by generating the mathematical model of launch vehicle and coupling it with reduced mathematical model of payload and applying the boundary conditions. A CLA is a time consuming process as several flight instances and load cases need to be considered along with generation of structural dynamic model at each time instants. For every new mission, the payloads are mission specific whereas the launch vehicle and the loads remain unchanged. To take advantage of this fact, a
Kurudimath, KottreshJalan, Salil KanjRose, Jancy
Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second. In this regard, an indigenous inclinometer is being designed. The sensing element of this design comprises of a compliant mechanism which is designed to sense the tilt by measuring the displacement of a proof mass occurring due to the respective component of earth’s gravitational
Shaju, Tony MKrishna, NirmalRao, G NagamalleswaraKumar, T SureshK, Pradeep
Riding aboard NASA’s Psyche spacecraft, the agency’s Deep Space Optical Communications technology demonstration continues to break records. While the asteroid-bound spacecraft doesn’t rely on optical communications to send data, the new technology has proven that it’s up to the task. After interfacing with the Psyche’s radio frequency transmitter, the laser communications demo sent a copy of engineering data from over 140 million miles (226 million kilometers) away, 1½ times the distance between Earth and the Sun.
Just as NASA needs to reduce mass on a spacecraft so it can escape Earth’s gravity, automotive manufacturers work to reduce weight to improve vehicle performance. In the case of brake rotors, lighter is better for a vehicle’s acceleration, reliable stopping, and even gas mileage. Orbis Brakes Inc. licensed a NASA-patented technology to accomplish that and more. This revolutionary brake disc design is at least 42 percent lighter than conventional cast iron rotors, with performance comparable to much more expensive carbon-ceramic brakes.
Speed is everything in rocketry. To get into low-Earth orbit, a spacecraft needs to hit velocities around 17,000 mph. And any company building a commercial rocket must have it designed, built, tested, and flying payloads as fast as possible to begin recouping the astronomical cost of reaching commercial readiness.
From flying planes to leading space missions and conducting groundbreaking research, women have been contributing to the aerospace industry for decades. However, the number of women employed in the international space industry represents just 20-22 percent of the workforce, according to figures released by the United Nations in 2021. Only 11 percent of astronauts so far have been women.
In recent years, industry adoption of thermoplastic composites (TPCs) in lieu of thermosets and metallic structures has increased for the fabrication of air and launch vehicle components. Manufacturing of TPCs, performed via automated tape laying (ATL) and automated fiber placement (AFP), uses machines that place prepreg tow or tapes on molds in a unidirectional manner, which then undergo cure cycles, autoclaving, and other steps that require special tooling. The process is time, material, and energy intensive, requires large facilities to house equipment, and limits the size, mechanical properties and shapes of the parts manufactured. To address these limitations, NASA’s Langley Research Center has developed a simplified, tool-less automated tow/tape placement (ATP) system.
“New Space" is reshaping the economic landscape of the space industry and has far-reaching implications for technological innovation, business models, and market dynamics. This change, aligned with the digitalization in the world economy, has given rise to innovations in the downstream space segment. This “servitization” of the space industry, essentially, has led to the transition from selling products like satellites or spacecraft, to selling the services these products provide. This also connects to applications of various technologies, like cloud computing, artificial intelligence, and virtualization. Redefining Space Commerce: The Move Toward Servitization discusses the advantages of this shift (e.g., cost reduction, increased access to space for smaller organizations and countries), as well as the challenges, such as maintaining safety and security, establishing standardization and regulation, and managing risks. The implications of this may be far-reaching, affecting not only
Khan, Samir
Innovators at the NASA Kennedy Space Center have developed a new optical sensor for measuring concentration in a liquid solution. The sensor was designed for measuring the pretreat solution concentration within the Universal Waste Management System (UWMS), a specialized toilet designed for the International Space Station (ISS) and other future missions. The sensor was developed to replace the current pretreat concentration sensor within the UWMS that uses electrical conductivity instead of light-based methods.
For both space tourism and space exploration, there is an interest in generating artificial gravity in space for entertainment, recreational, and scientific purposes, as well as to counter the health concerns of extended exposure to a microgravity environment. NASA Ames Research Center has developed a novel technology — a system and approach for creating artificial gravity using a non-rotating spacecraft with connected moving modules, which can be used for habitation and other purposes.
Items per page:
1 – 50 of 5190