Browse Topic: Satellites
Moog Inc. East Aurora, NY kgibas@moog.com
The European Space Agency (ESA) has added a micro-vibration test instrument, developed by the National Physical Laboratory (NPL), to its satellite testing facilities. NPL is the United Kingdom’s National Measurement Institute, developing and maintaining the national primary measurement standards. The instrument measures vibrations generated by satellite subsystems, to quantify their effects on images and measurements made from space. This facility is the result of five years of collaboration between NPL and ESA.
In contemporary society, where Global Navigation Satellite Systems (GNSS) are utilised extensively, their inherent fragility gives rise to potential hazards with respect to the safety of ship navigation. In order to address this issue, the present study focuses on an ASM signal delay measurement system based on software defined radio peripherals. The system comprises two distinct components: a transmitting end and a receiving end. At the transmitting end, a signal generator, a first time-frequency synchronisation device, and a VHF transmitting antenna are employed to transmit ASM signals comprising dual Barker 13 code training sequences. At the receiving end, signals are received via software-defined radio equipment, a second time-frequency synchronisation device, a computing host, and a VHF receiving antenna. Utilising sliding correlation algorithms enables accurate time delay estimation. The present study leverages the high performance and low cost advantages of the universal
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
NASA has developed an innovative combination of a Magnetometer, low-powered ElectroMagnets, and Resonant Inductive Coupling (MEMRIC) to create and control relative positioning of nano satellites within a cluster. This is a game-changing approach to enable distributed nanosatellite (nanosat) clusters. The focus is on low-cost propulsion, navigation, and power sharing. Each of these functions can share the same basic technology.
The success of off-road missions for ground vehicles depends heavily on terrain traversability, which in turn requires a thorough understanding of soil characteristics a key component being soil moisture content. When large areas need to be analyzed, satellite imagery is often used, although this approach typically reduces the spatial resolution. This decrease of spatial resolution creates what are known as mixed pixels, when two or more classes or features are in a single pixel’s area, which can lead to noisier data and lower accuracy models. This paper investigates using linear spectral unmixing as a way to help clean / mitigate noisy data to yield better predictive models. Hyperspectral remote sensing from the Hyperion satellite platform and ground truth from the International Soil Moisture Network (ISMN) are used for the dataset. This study found that soil moisture content prediction, comparing the mixed multilayer perceptron (MLP) model with an unmixing approach revealed a 10–30
After 3D printing a habitat designed for Mars and working with NASA on print material made from synthetic Moon dust, AI SpaceFactory Inc. has commercialized two separate 3D printers. The Secaucus, NJ-based company’s latest offering, Starforge, is a large-capacity 3D printer that uses innovative print material inspired by SpaceFactory’s work with NASA’s Kennedy Space Center in Florida under an Announcement of Collaboration Opportunity agreement.
Solar cells account for approximately six percent of the electricity used on Earth; however, in space, they play a significantly larger role, with nearly all satellites relying on advanced solar cells for their power. That’s why Georgia Tech researchers will soon be sending 18 photovoltaic cells to the International Space Station (ISS) for a study of how space conditions affect the devices’ operation over time.
SuperSharp University of Cambridge, United Kingdom
In a groundbreaking achievement, the 101st Combat Aviation Brigade, 101st Airborne Division (Air Assault) earlier this year became the first unit to successfully use the Mobile User Objective System (MUOS) function of the Army/Navy Portable Radio Communications (AN/PRC) 158 and 162 radios for conventional rotary wing operations. The trailblazing accomplishment occurred as the brigade continued its mission of providing support to ground forces, April 9, 2025. The MUOS function, of the AN/PRC-158 and 162 radios, operates by transmitting ultra-high frequency radio waves through a constellation of satellites to create a steady communications network. MUOS is a component of a bigger Integrated Tactical Network (ITN).
Despite all the technological evolution in navigation, waters just off coastal shores around the globe have remained a black box. That is, until researchers from The University of Texas at Austin and Oregon State University developed a new technology that uses satellites in space to map out these tricky areas.
Advanced motion control technologies are essential to modern aerospace design, supporting a wide range of safety-critical and comfort-driven applications. In aerospace, motion control components such as gas springs, actuators, and dampers are integral to nearly every commercial aircraft, rocket, satellite, and space vehicle. These critical elements support flight safety and transport functions, from the dependable deployment of landing gear and cargo doors to the smooth, ergonomic operation of seating for pilots and passengers.
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apollo-era hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor.
As NASA’s Artemis missions build out infrastructure on and around the Moon in the coming years, CubeSats and other small satellites will likely play an important role in a communications network that will enable not only conversation with mission control but also navigation, direct scientific observations, and more, all enabled by an internet-like “LunaNet.” These little satellites are cheap to launch and can form constellations for relaying signals reliably. But their small size makes it hard for them to carry antennas large enough to communicate across vast distances.
As part of NASA’s Artemis campaign, the Commercial Lunar Payload Services (CLPS) initiative, managed out of the agency’s Johnson Space Center in Houston, is paving the way for conducting lunar science for the benefit of humanity.
Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
More than half a century after the Apollo missions first brought astronauts to the Moon, NASA’s Artemis program is returning humanity to the lunar surface — this time aiming for the Moon’s uncharted south pole and a sustained presence beyond Earth. Artemis is not only a milestone mission, but also a foundational effort to expand the boundaries of human exploration, and it marks the transition from low-Earth orbit to deep space exploration, applying decades of lessons learned to develop sustainable systems for long-duration missions.
If the title grabs your attention, you are going to have to wait for the explanation. I promise you there is one, but you need to let me tell a story first.
Artemis III will mark humanity’s first return to the lunar surface since 1972. Astronauts returning to the Moon as part of the Artemis III mission, currently planned for 2027, will wear a next-generation spacesuit that will allow astronauts to walk on the Moon for the first time in over 50 years.
The global satellite communications (SATCOM) sector is undergoing profound transformation. Fueled by the rapid growth of low Earth-orbit (LEO) constellations, increased government investment, and heightened demand for secure, high-throughput connectivity, the market is projected to expand from $66.75 billion in 2025 to $103.78 billion by 20291, 2. This momentum reflects a broader realignment of priorities across commercial and defense markets: a shift from reliance on legacy geostationary systems toward agile, resilient networks capable of supporting next-generation missions and applications.
With 2D cameras and space robotics algorithms, astronautics engineers at Stanford have created a navigation system able to manage multiple satellites using visual data only. They recently tested it in space for the first time. Stanford University, Stanford, CA Someday, instead of large, expensive individual space satellites, teams of smaller satellites - known by scientists as a “swarm” - will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University's Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network. “It's a milestone paper and the culmination of 11 years of effort by my lab, which was founded with this goal of surpassing the current state of the art and practice in distributed autonomy in space,” said Simone D'Amico
Someday, instead of large, expensive individual space satellites, teams of smaller satellites – known by scientists as a “swarm” – will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University’s Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network.
Airbus Defense London, UK aeron.a.haworth@airbus.com
Physicists at the Naval Research Laboratory are collaborating with several universities throughout the U.S. to develop a small satellite that will detect the emission of short gamma-ray bursts. U.S. Naval Research Laboratory, Washington D.C. The U.S. Naval Research Laboratory (NRL), in partnership with NASA's Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA's StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers. NRL transferred the instrument to NASA on March 4 for the next phase, environmental testing. From there, the instrument will be integrated onto the spacecraft bus, followed by launch into Low Earth Orbit in 2027. StarBurst will be installed as a secondary payload via the Evolved Expendable Launch Vehicle Secondary Payload Adapter Grande interface with a
The Department of Defense (DoD) is developing technology for satellites to communicate via lasers. Laser communications could transmit data faster and more securely than traditional radio frequency communications. DoD has made progress in developing this technology, but it has also faced delays and other issues-and hasn't fully demonstrated that it works in space. Despite these challenges, DoD plans to continue to develop and launch hundreds of satellites worth billions of dollars that require the use of laser communications.
NearSpace Launch Inc. (NSL), a privately held and fully U.S.-owned aerospace company, is actively redefining the boundaries of responsive spaceflight through its development and deployment of the Train Rapid on Orbit Payload (TROOP) and ThinSat platforms. Over the past decade, NSL has launched more than 100 small satellites and over 900 flight systems and subsystems into orbit. NSL's satellites have been part of launches operated by Astra, Atlas, Delta, Firefly Aerospace, Northrop Grumman, Virgin Galactic and SpaceX among others. Headquartered in Upland, Indiana, NSL is currently the largest small satellite manufacturer in the midwestern region of the U.S., uniquely positioned to address urgent national needs for rapid space access and technology testing.
In October 2024, Kongsberg NanoAvionics discovered damage to their MP42 satellite, and used the discovery as an opportunity to raise awareness on the need to reduce space debris generated by satellites. Kongsberg NanoAvionics, Vilnius, Lithuania Our MP42 satellite, which launched into low Earth orbit (LEO) two and a half years ago aboard the SpaceX Transporter-4 mission, recently took an unexpected hit from a small piece of space debris or micrometeoroid. The impact created a 6 mm hole, roughly the size of a chickpea, in one of its solar panels. Despite this damage, the satellite continued performing its mission without interruption, and we only discovered the impact thanks to an image taken by its onboard selfie camera in October of 2024. It is challenging to pinpoint exactly when the impact occurred because MP42's last selfie was taken a year and a half ago, in April of 2023.
Our MP42 satellite, which launched into low Earth orbit (LEO) two and a half years ago aboard the SpaceX Transporter-4 mission, recently took an unexpected hit from a small piece of space debris or micrometeoroid. The impact created a 6 mm hole, roughly the size of a chickpea, in one of its solar panels.
The U.S. Naval Research Laboratory (NRL), in partnership with NASA’s Marshall Space Flight Center (MSFC), has developed StarBurst, a small satellite (SmallSat) instrument for NASA’s StarBurst Multimessenger Pioneer mission, which will detect the emission of short gamma-ray bursts (GRBs), a key electromagnetic (EM) signature that will contribute to the understanding of neutron star (NS) mergers.
When NASA started investing in fuel cell technology in the 1960s, the rest of the world was still content to be powered by fossil fuels. The simple imperative that drove NASA to explore new ways to generate and store energy was the crushing cost of launching mass into space: somewhere on the order of $10,000 per pound.
Golden packages on the Moon? Not exactly. This is no extraterrestrial gift depot, but a cutting-edge project in the LUNA hall. Here, the German Aerospace Center (Deutsches Zentrum für Luftund Raumfahrt; DLR) has been researching how payload boxes, sensors, rovers and astronauts can connect to form an integrated network. These participants, or nodes within the network, exchange signals that facilitate both communication and navigation.
Silicon Sensing Systems Ltd Plymouth, United Kingdom
Much like groceries, satellites have a shelf life.
As infrastructure ages, it becomes more susceptible to failure, which can cause safety and mobility concerns for drivers and pedestrians, and economic woes for taxpayers. A recent study published in “Transportation Research Record” shows that high-resolution synthetic aperture radar (SAR) satellite data can detect infrastructure issues early on, which can help prevent further damage to roads in the same way that annual checkups can help prevent more complex health issues in humans.
Need a moment of levity? Try watching videos of astronauts falling on the Moon. NASA’s outtakes of Apollo astronauts tripping and stumbling as they bounce in slow motion are delightfully relatable. For MIT engineers, the lunar bloopers also highlight an opportunity to innovate.
Honda has long been at the cutting edge of mobility and tech, with everything from the Asimo robot of 20 years ago to plans for reusable rockets to launch lightweight satellites into orbit. During a Tech Day event in early October in Tochigi, Japan, the Japanese automaker announced further details of its upcoming Honda 0 architecture (Honda calls it “Honda Zero” but writes it with the number), its first in-house electric platform designed from the ground up. Honda also discussed some of the advanced manufacturing techniques it's pioneering to reach its core design and technology tenants.
The aerospace and defense industries demand the highest levels of reliability, durability, and performance from their electronic systems. Central to achieving these standards are laminate materials, which form the backbone of printed circuit boards (PCBs) and flexible circuits used in a multitude of applications, from avionics to missile guidance systems. Building these systems, which are typically implemented in environments that experience both temperature extremes and wide variations of temperature over time, requires robust materials that can stand up to punishing environmental conditions. Laminates and films for circuit boards and flexible circuits are a vital component of this protective material profile.
Researchers have taken the first steps toward finding liquid solvents that may someday help extract critical building materials from lunar and Martian rock dust, an important piece in making long-term space travel possible.
Intelsat McLean, VA melissa.longo@intelsat.com
The first CubeSat was launched in 1999; since then, more than 1,000 have been launched. The small size and relatively low cost have made CubeSats popular choices for commercial launches in recent years. The rapid development and application of nanosatellite technology has vastly accelerated mission complexity — sparking interest in robust, low-power, and high-specific-impulse micropropulsion systems.
Imagine the Moon as a hub of manufacturing, construction, and even human life. It’s no longer a far-fetched idea baked in science fiction lore — increased interest and investment in space exploration are pushing efforts to develop the technologies needed to make the moon a viable home for humans.
Items per page:
50
1 – 50 of 1245