Browse Topic: Automated vehicles

Items (710)
In commercial vehicles, conventional engine-driven hydraulic steering systems result in continuous energy consumption, contributing to parasitic losses and reduced overall powertrain efficiency. This study introduces an Electric Powered Hydraulic Steering (EPHS) system that decouples steering actuation from the engine and operates only on demand, thereby optimizing energy usage. Field trials conducted under loaded conditions demonstrated a 3–6% improvement in fuel economy, confirming the system’s effectiveness in real-world applications. A MATLAB-based simulation model was developed to replicate dynamic steering loads and vehicle operating conditions, with results closely aligning with field data, thereby validating the model’s predictive accuracy. The reduction in fuel consumption directly translates to lower CO₂ emissions, supporting regulatory compliance and sustainability goals, particularly in the context of tightening emission norms for commercial fleets. These findings position
T, Aravind Muthu SuthanMani, KishoreAyyappan, RakshnaD, Senthil KumarS, Mathankumar
The modern vehicle is no longer a mechanical appliance—it has transformed into a software-defined cyber-physical system, integrating OTA updates, cloud-connected diagnostics, V2X services, and telematics-driven personalization. While this evolution promises unprecedented value in consumer experience and fleet operations, it also surfaces a dramatically expanded and evolving attack perimeter, especially across safety-critical ECUs and communication buses. Cyber vulnerabilities have shifted from isolated IT threats to real-time, embedded exploits. Controller area network (CAN), the backbone of vehicle bus systems, remains intrinsically insecure due to its lack of authentication and encryption, making it highly susceptible to message injection and denial-of-service by low-cost tools. Similarly, OEM implementations of BLE-based passive entry systems have proven vulnerable to replay and spoofing attacks with minimal hardware. In the Indian context, the transition to connected mobility is
Shah, RavindraAwasthi, Vibhu VaibhavKarle, Ujjwala
The automotive industry is rapidly extending the capabilities of automated systems by incorporating connectivity and cooperation features that enable real-time information exchange between vehicles and road infrastructure. Within the Connected, Cooperative, and Automated Mobility (CCAM) framework, Vehicle-to-Vehicle (V2V) communication is expected to play a key role in improving road safety, traffic efficiency, and driving comfort. This work addresses a practical implementation of the standardized Manoeuvre Coordination Messages (MCMs), as defined in the ongoing ETSI standard (ETSI TS 103 561). The proposed approach is demonstrated through a cooperative cut-in use case in which two vehicles negotiate a lane change manoeuvre. In the considered scenario, the ego vehicle, driven by a Highway Pilot (HWP) system, receives the intention to cut-in from a neighbouring cooperative vehicle through an MCM. In response, the ego vehicle adapts its behaviour by decelerating to generate a safe
Leiva Ricart, GiselaDomingo Mateu, Bernat
Artificial Intelligence (AI) is radically transforming the automotive industry, particularly in the domain of passenger vehicles where personalization, safety, diagnostics, and efficiency. This paper presents an exploration of AI/ML applications through quadrant of the key pillars: Customer Experience (CX), Vehicle Diagnostics, Lifecycle Management, and Connected Technologies. Through detailed use cases, including AI-powered active suspension systems, intelligent fault code prioritization, and eco-routing strategies, we demonstrate how AI models such as machine learning, deep learning, and computer vision are reshaping both the user experience and engineering workflow of modern electric vehicles (EVs). This paper combines simulations, pseudo-algorithms and data-centric examples of the combined depth of functionality and deployment readiness of these technologies. In addition to technical effectiveness, the paper also discusses the challenges at field level in adopting AI at scale i.e
Hazra, SandipTangadpalliwar, SonaliKhan, Arkadip
Edge Artificial Intelligence (AI) is poised to usher in a new era of innovations in automotive and mobility. In concert with the transition towards software-defined vehicle (SDV) architectures, the application of in-vehicle edge AI has the potential to extend well beyond ADAS and AV. Applications such as adaptive energy management, real-time powertrain calibration, predictive diagnostics, and tailored user experiences. By moving AI model execution right into edge, i.e. the vehicle, automakers can significantly reduce data transmission and processing costs, ensure privacy of user data, and ensure timely decision-making, even when connectivity is limited. However, achieving such use of edge AI will require essential cloud and in-vehicle infrastructure, such as automotive-specific MLOps toolchains, along with the proper SDV infrastructure. Elements such as flexible compute environments, deterministic and high-speed networks, seamless access to vehicle-wide data and control functions. This
Khatri, SanjaySah, Mohamadali
The rapid introduction of new Automated Driving Systems (ADS) in the last years has led to an urge for robust methodologies for the type approval of vehicles equipped with such technologies. As a result, different Regulations addressing this field have been adopted. These Regulations are mainly based in the New Assessment and Testing Methodology (NATM) developed within the World Forum for the Harmonisation of Vehicle Regulations (WP29). However, the complexity of the regulatory ecosystem extends beyond type approval. This complexity requires a thorough analysis in order to avoid any possible gap which may jeopardise the feasibility of Automated Driving Vehicles deployment. This paper analyses the possible mismatches among the different regulations currently in place or under development and proposes a holistic approach, where the concept of the Operational Design Domain (ODD) takes a relevant role.
Lujan Tutusaus, CarlosHidalgo, JustinFlix, Oriol
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
Duraikannu, DineshDumpala, Gangi Reddi
This paper presents a comprehensive survey and data collection study on the adaptability of Camera Monitoring Systems (CMS) for passenger vehicles. With the growing demand for enhanced safety, automation, and driver assistance technologies, Camera Monitoring Systems (CMS) has emerged as a key component in modern automotive design. This study aims to explore the current state of camera-based monitoring in passenger vehicles, focusing on their adaptability through survey data collection of various driving population and analysis. This paper evaluates the acceptance of CMS configurations in replacement to conventional rear-view mirrors through Position of Monitor, Clarity, CMS Adaptiveness to eyes, Comfort while turning, Merging into moving traffic, Monitoring Rear Traffic, while Getting Out of Car, while Overtaking, Coverage Area and Overall Acceptance. The findings offer valuable insights for manufacturers, engineers, and researchers working toward the evolution of intelligent vehicle
Sinha, AnkitTambolkar, Sonali AmeyaBelavadi Venkataramaiah, ShamsundaraKauffmann, Maximilian
The past decade has seen a systemic shift in the automotive landscape and the constituent parts of a vehicle. The automotive industry has shifted from a primarily hardware components industry to a software heavy industry, with software controlling majority of the vehicle functions. Coupled with the ability to fully update or evolve a vehicle’s capabilities or functionalities, post point of sale through software updates, the technical, commercial and service landscape of the automotive industry is rapidly changing. This has brought increasing focus to the concept of Software Defined Vehicle, where the vehicle is not only constantly evolving, but is also becoming more personalised by leveraging data collected through the life of the vehicle. This requires a rethink of the current development and deployment approaches for vehicles, which are software-intensive. In this paper, we introduce a novel four-step system engineering framework for the safe development and deployment of Software
El Badaoui, HalimaJame-Elizebeth, MariatKhastgir, SiddarthaJennings, Paul
This article presents a system to incorporate crash risk into navigation routing algorithms, enabling safety-aware path optimization for autonomous and human-driven vehicles alike. Current navigation systems optimize travel time or distance, while our approach adds crash probability as a routing criterion, allowing users to balance efficiency with safety. We transform disparate data sources, including traffic counts, crash reports, and road network data, into standardized risk metrics. Because traffic volume data only exist for a small subset of road segments, we develop a solution to project average daily traffic estimates to an entire road inventory using machine learning, achieving sufficient coverage for practical implementation. The framework computes exposure-normalized crash rates weighted by severity and integrates these metrics into routing cost functions compatible with existing navigation algorithms. The key strength of our solution is its scalability. In addition to the
Skaug, LarsNojoumian, Mehrdad
Although autonomous driving system is being used more frequently, its widespread adoption is still in its infancy. As a result, drivers may perceive the autonomous driving system as unreliable, which hinders the spread of automated driving. The goal of this study is to investigate the major variables influencing drivers’ trust in autonomous driving system. Significant positive correlations between the variables were found using the questionnaire survey, reliability validity test, and factor analysis of the questionnaire data. In order to measure the impact of system performance, user comprehension, system feedback mechanism, individual characteristics, and environmental factors on trust perception, a structural equation modeling (SEM) as an analytical tool. A total of 274 valid data were retained. By modeling and analyzing the recovered data, it showed that the fit are all in the acceptable range, the model construction is reasonable, and therefore the subsequent path analysis can be
Wang, CaiyongHe, XingmiaoTang, YuChen, RongLi, Chuzhao
Infrared and visible driving image fusion represents a pivotal technology in multi-source perception for automated driving. The objective of this technology is to generate fused images that exhibit significant targets and comprehensive road information in complex traffic scenes. However, the existing image fusion algorithms demonstrate inconsistent capacity to complement information in diverse environments. Additionally, there are limitations in their ability to extract features, such as the detailed texture of traffic targets under complex lighting conditions, including low-light scenes and multi-exposure scenes. To overcome these limitations, we propose a novel gradient-preserving and locally guided fusion method (GP-LGFusion). Our primary contribution is a Multi-scale Gradient Residual Block (MGRRB), an encoder module specifically designed to capture and retain both strong and weak texture features across different scales, a capability lacking in conventional approaches. Second, we
Meng, ZhangjieShi, YicuiChen, YuhanZhou, XiaojiLi, JieLi, Guofa
Developing robust optimization and learning methods is necessary for intelligent vehicles since an increasing number of critical control functions will be handled by artificial intelligence. This paper proposes an adversary swarm learning (ASL) system and an optima selection strategy for robust energy management of plug-in hybrid electric vehicles (PHEVs). The proposed ASL system comprises an attacking swarm and a defending swarm, which compete against each other iteratively to derive the most robust equivalent consumption minimization strategy (ECMS) for PHEV energy management. During the attacking rounds, the ECMS settings are fixed by the defender. Meanwhile, the attacker generates worst-case driving conditions by training a model in order to Maximize the equivalent energy consumption. During the defending rounds, the ECMS settings are optimized by the defender based on the driving scenarios generated by the attacker. The settings of robust ECMS are derived by introducing the
Zhong, DanyangYu, ZhuopingXiong, LuZhou, Quan
Vehicle stability is fundamental to the safe operation of intelligent vehicles, and real-time, high-accuracy calculation of the stability domain is crucial for maintaining control across the full range of driving conditions. Because the real stability domain is difficult to parameterize accurately and is shaped by multiple driving factors including vehicle-dynamics parameters and environmental conditions, existing approaches fail to capture the multidimensional couplings between time-varying driving inputs and the resulting stability boundaries. Moreover, these methods remain overly conservative owing to algorithmic limitations and cautious design assumptions, thereby restricting dynamic performance in complex scenarios. To address these limitations, this paper introduces a multidimensional vehicle dynamic stability region calculation framework under time-varying driving conditions and apply it into path tracking controller of intelligent vehicle. Sum-of-squares programming (SOSP) is
Wang, ChengyeZhang, YuHu, XuepengQin, HaipengWang, GuoliQin, Yechen
For driver-automation collaborative driving, accurately monitoring driver state in smart cockpits is crucial for enhancing safety, comfort, and human-computer interactions. However, existing research lacks clarity regarding the relationships among driver states, and there is no consensus on the optimal physiological channels to reliably capture these states. This study examined three critical psychological constructs (i.e., perceived risk, trust in the automated driving system, and driver fatigue) using a 37-participant driving simulation experiment. We manipulated multiple factors to induce distinct driver states among participants and recorded subjective scale ratings, heart rate variability, galvanic skin response, and eye movement data. Subjective scale ratings were adopted as the ground truth to examine the corresponding measurement relationships between different physiological signals and the three targeted dimensions of driver states. Our results proved that perceived risk
Wang, ZhenyuanLi, QingkunWang, WenjunLiu, WeiminSun, ZhaocongCheng, Bo
With the advancement of automated driving system levels, corner scenarios characterized by low probability and high risk have become critical for the safety validation of automated vehicles. However, due to the typical long-tail distribution of such scenarios, data-driven mining approaches face significant challenges in achieving efficient generation. To address this issue, this study proposes a feature-optimized combination-based method for generating corner scenarios in automated driving systems. Key scenario features related to functional failures are first identified using a combined approach of system theoretic process analysis (STPA) and hazard and operability analysis (HAZOP). Based on these features, an adaptive genetic algorithm is employed to optimize feature combinations and generate large numbers of corner scenario types that meet specified constraints. The proposed method is validated using cut-in and pedestrian-crossing scenarios as baseline cases. The results show that
Zhou, ShiyingZhang, DongboZhao, DeyinZhu, BingZhang, Peixing
The characteristic representation and in-depth understanding of driver personalized driving behavior are fundamental to achieving human-like autonomous driving, enhancing the rationality of autonomous driving decisions, and meeting passengers’ personalized needs. [ADDED]Personalized driving behavior refers to individual-specific patterns in vehicle operation that emerge from drivers’ unique combinations of skills, risk tolerance, and habitual responses.However, current research lacks consideration of cluster analysis in the feature representation stage and ignores the time-varying contribution degree of time series values to low-dimensional features, which inhibits further utilization and development. This study adopts deep embedding clustering method and introduces attention mechanism to investigate driver personalized high-speed lane change behavior.[ADDED] Using a comprehensive driving simulator platform, we collected 15-channel time series data from 12 drivers performing 216 lane
Dong, HaominWang, WeiWang, YueLi, LunYue, YiTian, JiaxiaoHan, Jiayi
Coyner, KelleyBittner, JasonErcisli, SafakRazdan, Rahul
Goswami, ParthaGenter, David PaulAbdul Hamid, Umar ZakirRazdan, RahulKhan, Samir
Vehicle trajectories encapsulate critical spatial-temporal information essential for traffic state estimation, congestion analysis, and operational parameter optimization. In a Vehicle-to-Infrastructure (V2I) environment, connected automated vehicles (CAVs) not only continuously transmit their own real-time trajectory data but also utilize onboard sensors to perceive and estimate the motion states of surrounding regular vehicles (RVs) within a defined communication range. These multi-source data streams, when integrated with fixed infrastructure-based detectors such as speed cameras at intersections, create a robust foundation for reconstructing full-sample vehicle trajectories, thereby addressing data sparsity issues caused by incomplete CAV penetration. Building upon classical car-following (CF) theory, this study introduces a novel trajectory reconstruction framework that fuses CAV-generated trajectories and infrastructure-based speed detection data. The proposed method specifically
Bai, WeiFu, ChengxinYao, Zhihong
In the context of the automotive industry’s rapid evolution, traffic safety has become a top priority. Automobile active safety technology has shown great potential in reducing traffic accidents. Soft targets in intelligent vehicle testing play a pivotal role in assessing active safety performance. However, these targets are designed according to standards set by European and American countries, which may not fully reflect China’s needs. The study’s objective is to design a library of pedestrian parameter models that meet Chinese standards. It began with the design of a representative pedestrian target, created using Chinese body size parameters and data. An experimental investigation was then conducted to determine the radar characteristics of pedestrian targets. A comparative analysis was performed with reference products. The study led to the creation of a model library for pedestrian targets, following the Chinese standard. It was formulated using experimental data and standards.
Tian, XinpengGuo, JuweiChen, XingyuZhang, JieZhang, XinWang, Ke
The cooperation between the longitudinal and lateral control enables the vehicle to accurately and stably follow the target trajectory, allowing the vehicle to perform basic operations such as speed adjustment, headway maintenance, lane-changing, and overtaking during the driving process. Based on the dynamics model, the lateral and longitudinal control models of the vehicle are presented in this paper. In the lateral LQR control model, the feed-forward compensation is added to reduce the steady-state error of the system. In the longitudinal PID control model, a PID control strategy based on position and speed is set. Using the CarSim and Simulink software, a co-simulation platform is established. Through the comparison of co-simulation analysis under various working conditions, it is demonstrated that the designed controller achieves satisfactory tracking control performance under different vehicle speed conditions. The results also show that the designed control model has a good
Liu, JinweiWang, YipingQi, FeiMao, JiangWang, Xudong
This study investigates how the maximum platoon size (MaxPS) of Connected and Automated Vehicles (CAVs) influences traffic safety within mixed traffic environment on freeway on-ramps. Built upon the SUMO simulation framework, a mixed traffic flow model involving CAV platoons is developed for on-ramp scenarios. This paper examines traffic conditions under varying on-ramp inflow volumes and evaluates upstream speed fluctuations in the merging area. Safety indicators such as Time Exposed Time-to-Collision (TET) and Time-Integrated time-to-Collision (TIT) are employed to assess overall traffic safety. Additionally, collision types are analyzed. Results indicate that under low on-ramp inflow conditions, a moderate MaxPS with low CAV penetration rates significantly enhances safety, whereas a larger MaxPS is preferable with high penetration rates. Under moderate on-ramp inflow, limiting the CAV MaxPS to 2 reduces conflicts. As on-ramp inflow increases further, a MaxPS of 1 or 2 leads to a
Pan, GongyuHuang, YujieXie, Junping
Takeover safety in conditional automation depends heavily on effective Takeover Requests (TORs). This study investigated the implication of the temporal distribution of takeover interface elements (temporal distribution: takeover cues appear first/last, spatial distribution: left/center/right) on driving trust in scenarios with different levels of urgency (low: road construction/high: traffic accidents). The results suggest that driver perceptions of the reliability of an automated driving system during control transitions may be influenced by the temporal characteristics of the distribution of human-machine interface elements. Drivers need to supervise the operation status of the autopilot system, and presenting timely information about the system at critical nodes can help improve driver trust. The central spatial distribution contributes to trust in high emergencies, while the right spatial distribution enhances driver trust more in low emergencies. This study informs takeover
Wu, JianfengLi, Zihan
Items per page:
1 – 50 of 710