Browse Topic: Military vehicles and equipment
Since the emergence of the first tanks in World War I, tracked military vehicles have driven the development of increasingly sophisticated control systems, keeping pace with the evolution of technologies and combat tactics. This study aims to develop a longitudinal speed control system for tracked military vehicles using a cascade framework. To this end, a dynamic model based on the bicycle model—commonly employed for wheeled vehicles—has been appropriately adapted to represent the dynamics of tracked vehicles. In the first stage, a Model-based Predictive Controller defines the required traction force to be produced by the track; subsequently, a PID controller determines the necessary torque on the drive pulley to achieve the desired force. Simulations performed in MATLAB, considering a straight trajectory and speeds of up to 20 km/h, demonstrate the effectiveness of the proposed control system, yielding satisfactory results in the regulation of longitudinal speed.
Moog Inc. East Aurora, NY kgibas@moog.com
Leonardo DRS Arlington, VA mmount@drs.com
This AIR provides information about the specific requirements for missile hydraulic pumps and their associated power sources.
This SAE Standard applies to all combinations of pneumatic tires, wheels, or runflat devices (only as defined in SAE J2013) for military tactical wheeled vehicles only as defined in SAE J2013. This applies to original equipment and new replacement tires, retread tires, wheels, or runflat devices. This document describes tests and test methodology, which will be used to evaluate and measure tire/wheel/runflat system and changes in vehicle performance. All of the tests included in this document are not required for each tire/wheel/runflat assembly. The Government Tire Engineering Office and Program Office for the vehicle system have the responsibility for the selection of a specific test(s) to be used. The selected test(s) should be limited to that required to evaluate the tire/wheel/runflat system and changes in vehicle performance. Selected requirements of this specification shall be used as the basis for procurement of a tire, wheel, and/or runflat device for military tactical wheeled
Hensoldt Taufkirchen, Germany nico.fritz@hensoldt.net
In an effort to cut costs and improve supply delivery efficiency, the U.S. Army assessed the Overland AI ULTRA Fully Autonomous Tactical Vehicle prototype during exercise Agile Spirit 25 at the Combat Training Center, Vaziani Training Area, Georgia, in July.
Forest fire prevention and control agencies in São Carlos, in the interior of the state of São Paulo, Brazil, will soon have help from the sky to detect fires more quickly and combat them before they grow out of control and cannot be extinguished.
When a Marine in the field launches an uncrewed aerial vehicle (UAV) to gather intelligence, it becomes more than just a drone. It's a flying data center that processes AI workloads, runs machine learning algorithms, and transmits critical information through a complex network designed to provide situational awareness across multiple commands. All of this computational power generates significant heat, and in the confined space of a UAV operating in harsh environmental conditions, thermal management becomes critical to mission success. But there's a fundamental question the U.S. defense isn't asking: how will we manage the heat? The Golden Dome, the Trump administration's vision for missile defense, builds upon the existing Joint All-Domain Command and Control (JADC2) framework for connecting sensors from all branches of the U.S. armed forces into a unified network powered by artificial intelligence. This plan faces an existential threat from thermal management challenges that have
To achieve Army modernization plans, advanced approaches for testing and evaluation of autonomous ground systems and their integration with human operators should be utilized. This paper presents a framework for developing digital twins at the subsystem level using heterogeneous modeling and simulation (M&S) to address the challenges of manned-unmanned teaming (MUM-T) in operational environments. Focusing on the interplay between robotic combat vehicles (RCVs) and human operations, the framework enables evaluation of soldiers’ cognitive loads while managing tasks such as maneuvering robotic systems, interacting with aided target detection, and engaging simulated adversaries. By employing subsystem-level digital twins, we aim to isolate and control key variables, enabling a detailed assessment of both systems’ performance and operator effectiveness. Through realistic operational scenarios and human-machine interface testing, our approach may help identify optimal solutions for soldier
This paper explores key trends shaping E/E architectures in the commercial and automotive industries, including the increasing adoption of High-Performance Computers (HPCs) and high data rate Ethernet networks. These advancements facilitate the transition from Distributed to Zonal physical architecture. Concurrently, industry shifts toward standardizing software development via Software Architecture standards, Software Factories and embracing Software Defined Vehicle (SDV) strategies are gaining momentum. Finally, we provide key insights and lessons from the automotive and commercial vehicle sectors, with implications for E/E architectures in Ground Combat Vehicles (GCVs).
The Technical Cooperation Program (TTCP) is a five-nation defense innovation network that harnesses science and technology in support of the defense and national security of the participant nations. The 2019 TTCP Scrum Event’s objective, sponsored by the Aerospace Systems group, was to enhance the military capability of current and future systems through collaborative research and innovation. The primary goal of this effort was to contribute to a shared understanding of the benefits of a MS&A-powered wargame-like event while examining future concepts. The 2019 Scrum Event was a collaborative event demonstrating a new approach of MS&A capabilities to FVEY partners fostering future TTCP scrum processes and relationships. This paper will discuss the resultant simulation environment, analysis methodology comparing constructive and virtual simulation, provide an overview of the scrum’s origins, purpose, and composition, and provide high-level results, outcomes, and lessons learned.
The increasing complexity of systems has necessitated a modernized model-centric approach to design them. Becoming fully model-centric has introduced a new set of challenges that need to be overcome in order to realize the full potential from this new approach. This paper presents a plugin for Cameo System Modeler 2022x that automates the extraction of SysML Block Definition Diagram data from an entire model or a selected diagram. The extracted data is formatted into JSON and processed via a Java-based API client, which sends it to Mistral AI for interpretation. The AI-generated textual summary provides insights into system components and relationships, streamlining model comprehension and decision-making. By integrating AI-driven interpretation into the Cameo environment, this approach enhances model-based systems engineering (MBSE) workflows, reducing the manual effort required to analyze complex architectures. The paper discusses the plugin’s implementation, its benefits in model
The Model-Based Systems Engineering and Software Engineering (MB(SE)2) capability aims to seamlessly integrate systems engineering and software (SW) development. This approach leverages advanced modeling tools, issue tracking systems, and a continuous integration/continuous delivery (CI/CD) toolchain to align SW development with system requirements and design specifications. MB(SE)2 enhances communication, efficiency, and adherence to specifications by automating model updates and integrating various tools throughout the development lifecycle. This improves the overall quality and reliability of developed systems, making it a valuable asset for organizations focused on delivering high-quality SW solutions. Additionally, MB(SE)2 facilitates better collaboration between cross-functional teams, reduces the risk of errors and inconsistencies, and accelerates the development process. By providing a unified framework for managing systems engineering and SW development activities, MB(SE)2
This paper presents the development of an alternative to the traditional multichannel Fiber Optic Rotary Joint (FORJ) using spatial division multiplexing. The proposed solution utilizes phase plates assembly in a compact housing made by a French optical communications company called Cailabs. It is distinguished from conventional multichannel technologies that rely on Dove prisms or wavelength multiplexing by using the housing of a single channel Fiber Optic Rotary Joint (FORJ) without needing strong constraint on the choice of optical transceivers. Our research focused on characterizing the specific mechanical parameters required to transfer optical modes from the rotor to the stator without deformation or misalignment of those. Three test campaigns were conducted, each with iterative improvements. The latest results demonstrate commercially viable performance for transmission of 3G-SDI video stream on up to 6 channels.
The success of off-road missions for ground vehicles depends heavily on terrain traversability, which in turn requires a thorough understanding of soil characteristics a key component being soil moisture content. When large areas need to be analyzed, satellite imagery is often used, although this approach typically reduces the spatial resolution. This decrease of spatial resolution creates what are known as mixed pixels, when two or more classes or features are in a single pixel’s area, which can lead to noisier data and lower accuracy models. This paper investigates using linear spectral unmixing as a way to help clean / mitigate noisy data to yield better predictive models. Hyperspectral remote sensing from the Hyperion satellite platform and ground truth from the International Soil Moisture Network (ISMN) are used for the dataset. This study found that soil moisture content prediction, comparing the mixed multilayer perceptron (MLP) model with an unmixing approach revealed a 10–30
This paper explores the integration of Microsoft Power BI into Model-Based Systems Engineering (MBSE) workflows, specifically within a Model-Based Product Line Engineering (MBPLE) context. Power BI provides a versatile platform for visualizing, analyzing, and manipulating data, enabling users to configure system variants outside traditional MBSE environments while maintaining integration back into the original MBSE model. This approach enhances collaboration between engineering and business disciplines, improves decision-making with real-time data analysis, and allows users to configure and evaluate multiple system variants efficiently. Additionally, the paper discusses how Power BI’s interactive dashboards facilitate better accessibility and analysis, bridging the gap between technical teams and non-technical stakeholders. Future work will focus on improving data pipeline automation and incorporating feature performance metrics to enable real-time trade study analysis, further
The DEVCOM Armaments Center is developing the Assured Armaments Reference Architecture (AARA), a Modular Open Systems Approach (MOSA) for lethality systems. AARA defines internal and external data interfaces for integrated armament systems, promoting competition, reducing development lifecycles, and increasing sustainability by decreasing the scope of regression testing through well-defined interfaces. AARA will deliver a government-owned MOSA architecture consisting of the requirements and Interface Control Documents (ICDs) necessary to implement and conform to the AARA Data Bus and AARA Components’ data structure. AARA will be interoperable with PEO GCS’ Common Infrastructure Architecture (GCIA), enabling a MOSA for lethality systems across stand-alone armament systems and ground vehicle platforms
Manufacturers of fans/propellers using hydraulically-actuated pitch control claim energy efficiency gains up to 75% over fixed-pitch solutions. Unfortunately, the added cost, weight, reliability and maintenance considerations of hydraulic solutions has limited the introduction of pitch control for small-to-medium fans and propellers leaving a large market unserved by the efficiency gains associated with changing the pitch of a blade when the blade shaft’s speed changes. Pilot Systems International and Cool Mechatronics are developing an electromagnetically controlled pitch (EMCP) fan/propeller that will produce a new pareto optimal in size, weight, power, cost and cooling (SWaP-C2). The technology will substantially improve the efficiency of military ground vehicle cooling fans which is typically the third greatest power draw (~20kW)1 in the entire vehicle and provide critical performance improvements during silent watch. It will be a key enabler for the electrification of aircraft.
This paper presents updates to a “meta-algorithm” for achieving safer AI driven systems by integrating systems theoretic process analysis, quantitative fault tree analysis, structured generation of safety metrics, and statistical hypothesis testing of metrics between simulation and reality. This paper presents updates to the meta-algorithm after its application in use cases involving commercial autonomous vehicle deployment.
This paper presents a model-based systems engineering (MBSE) and digital twin approach for a military 6T battery tester. A digital twin architecture (encompassing product, process, and equipment twins) is integrated with AI-driven analytics to enhance battery defect detection, provide predictive diagnostics, and improve testing efficiency. The 6T battery tester’s MBSE design employs comprehensive SysML models to ensure traceability and robust system integration. Initial key contributions include early identification of battery faults via impedance-based sensing and machine learning, real-time state-of-health tracking through a synchronized virtual battery model, and streamlined test automation. Results indicate the proposed MBSE/digital twin solution can detect degradation indicators (e.g. capacity fade, rising internal impedance) earlier than traditional methods, enabling proactive maintenance and improved operational readiness. This approach offers a reliable, efficient testing
The objective of this paper is two-fold. Firstly, provide guidance to best implement end to end traceability from program requirements to physical implementation, and Secondly provide techniques to review and understand large scale complex systems. Even with a Digital Engineering Environment (DEE) being an enabler towards applying Systems Engineering practices to develop large scale complex systems, many organizations are unclear on the methodology for modeling their architectures and enabling stakeholders to easily review, understand and assess those architectures. An architecture can be a conceptual, logical or physical architecture, depending on the system’s lifecycle state. For the context of this paper, the modeling environment is any System’s Modeling Language (SysML) based tool along with modeling tools for electrical, mechanical and software development and product life cycle management tool. The intended audience is any engineering organization defining end-to-end architecture
The integration of digital twins within a digital thread framework offers significant benefits for managing Army ground and surface water vehicles. This paper examines how digital twins can enhance lifecycle management, operational efficiency, and maintenance for mature and new military vehicle programs. Scalable and cost-effective implementation with layered capabilities allows organizations to start with a cost-effective foundational model and phase in additional layers of capability over time. This phased approach allows you to expand your digital twin capabilities as program budgets permit, ensuring that you can adapt to evolving requirements without overwhelming upfront investment. For established programs, digital twins enable real-time monitoring, predictive analytics, and data-driven decisions, improving resource allocation and cutting costs. For new programs, they speed up prototyping, integrate modern technologies, and enhance training capabilities. Case studies demonstrate
The objective of this effort is to create a methodology to posture and position equipped manikins in Computer-Aided Design (CAD) software for ground vehicle workstation design. A collaborative effort is taking place to evaluate the current practices used to posture and position both physical and digital human representations. The goal of the group is to determine how best to utilize posture and position data to update positioning procedures. Data from the Seated Soldier Study and follow-on studies is being utilized to develop statistical models using multivariate analysis methods. Design is the first area of focus across the broader design-develop-evaluate process. The products to address this need are parametric CAD accommodation models with imbedded Digital Human Models (DHMs). Developing updated positioning procedures for each of the manikins will provide a traceable justification for positioning manikins based on Soldier data.
The usage of additively manufactured (AM) notched components for fatigue-critical applications presents non-trivial challenges, such as the ubiquitous presence of volumetric defects in AM parts. Volumetric defects accelerate fatigue crack nucleation, impact short crack growth, and are near-impossible to fully eliminate. This study investigated the synergistic effects of volumetric defects and notch geometry on the fatigue behavior of L-PBF AlSi10Mg and 17-4 PH SS notched specimens. The criticality of the defects on fatigue behavior is investigated using a non-destructive evaluation technique. A classical linear elastic fracture mechanics (LEFM) approach was modified and used to quantify the effects of several factors including notch geometry, defects’ size, and location, on the fatigue crack initiation behavior. The modified LEFM approach utilized X-ray computed tomography data and linear elastic finite element analysis of local stresses in different notch geometries; to calculate and
Items per page:
50
1 – 50 of 2778