Browse Topic: Military vehicles and equipment
Current world conflicts have proven that drones are now indispensable tools in modern warfare. Whether for reconnaissance, loitering munitions, or asymmetric tactics that exploit vulnerabilities in conventional defenses, unmanned aerial systems (UAS) are redefining the rules of engagement.
Since the emergence of the first tanks in World War I, tracked military vehicles have driven the development of increasingly sophisticated control systems, keeping pace with the evolution of technologies and combat tactics. This study aims to develop a longitudinal speed control system for tracked military vehicles using a cascade framework. To this end, a dynamic model based on the bicycle model—commonly employed for wheeled vehicles—has been appropriately adapted to represent the dynamics of tracked vehicles. In the first stage, a Model-based Predictive Controller defines the required traction force to be produced by the track; subsequently, a PID controller determines the necessary torque on the drive pulley to achieve the desired force. Simulations performed in MATLAB, considering a straight trajectory and speeds of up to 20 km/h, demonstrate the effectiveness of the proposed control system, yielding satisfactory results in the regulation of longitudinal speed.
Augustine's Law predicts “In the year 2054, the entire defense budget of the United States will purchase just one aircraft. This aircraft will have to be shared by the Air Force and Navy three days each per week except for leap year, when it will be made available to the Marines for the extra day.” While the world is not on course for the $800 billion aircraft as Augustine predicted, the aerospace & defense industry must take steps to bring new technology to the battlefield without the $800 billion price tag. The development of robotic aircraft or drones is one way to deliver new capability faster for less cost.
Modern warfare is defined as much by data dominance as by maneuver. From satellite-based intelligence, surveillance, and reconnaissance (ISR) platforms to dismounted soldiers' handheld radios, operational success depends on the ability to move, process, and act on digital information in real time. Yet this dependence introduces a critical vulnerability: as the force becomes more data-centric, it becomes more susceptible to disconnection, jamming, and cyber denial. In disconnected, intermittent, and limited (DIL) environments - where communications are degraded by terrain, adversarial interference, or limited infrastructure - traditional network architectures falter. Centralized command nodes and linear data pipelines cannot sustain the agility or resilience required at the tactical edge. The solution is a new design paradigm - one that integrates ruggedized hardware, edge computing, artificial intelligence (AI), and hybrid tactical-cloud architectures into a distributed, adaptive
Leonardo DRS Arlington, VA mmount@drs.com
Moog Inc. East Aurora, NY kgibas@moog.com
This AIR provides information about the specific requirements for missile hydraulic pumps and their associated power sources.
This SAE Standard applies to all combinations of pneumatic tires, wheels, or runflat devices (only as defined in SAE J2013) for military tactical wheeled vehicles only as defined in SAE J2013. This applies to original equipment and new replacement tires, retread tires, wheels, or runflat devices. This document describes tests and test methodology, which will be used to evaluate and measure tire/wheel/runflat system and changes in vehicle performance. All of the tests included in this document are not required for each tire/wheel/runflat assembly. The Government Tire Engineering Office and Program Office for the vehicle system have the responsibility for the selection of a specific test(s) to be used. The selected test(s) should be limited to that required to evaluate the tire/wheel/runflat system and changes in vehicle performance. Selected requirements of this specification shall be used as the basis for procurement of a tire, wheel, and/or runflat device for military tactical wheeled
U.S. Army soldiers recently evaluated the off-road delivery capabilities of Overland AI's “ULTRA” autonomous vehicle during a demonstration exercise in Vaziani, Georgia. U.S. Army, Vaziani, Georgia In an effort to cut costs and improve supply delivery efficiency, the U.S. Army assessed the Overland AI ULTRA Fully Autonomous Tactical Vehicle prototype during exercise Agile Spirit 25 at the Combat Training Center, Vaziani Training Area, Georgia, in July. “Agile Spirit 25 is the 12th iteration of a biennial multinational exercise designed to enhance readiness, interoperability and combined operational capabilities, which promotes our countries' shared goal of security and stability in the Black Sea Region,” said Col. Will Cox, Co-exercise Director for Agile Spirit 25.
Forest fire prevention and control agencies in São Carlos, in the interior of the state of São Paulo, Brazil, will soon have help from the sky to detect fires more quickly and combat them before they grow out of control and cannot be extinguished.
Hensoldt Taufkirchen, Germany nico.fritz@hensoldt.net
In an effort to cut costs and improve supply delivery efficiency, the U.S. Army assessed the Overland AI ULTRA Fully Autonomous Tactical Vehicle prototype during exercise Agile Spirit 25 at the Combat Training Center, Vaziani Training Area, Georgia, in July.
When a Marine in the field launches an uncrewed aerial vehicle (UAV) to gather intelligence, it becomes more than just a drone. It's a flying data center that processes AI workloads, runs machine learning algorithms, and transmits critical information through a complex network designed to provide situational awareness across multiple commands. All of this computational power generates significant heat, and in the confined space of a UAV operating in harsh environmental conditions, thermal management becomes critical to mission success. But there's a fundamental question the U.S. defense isn't asking: how will we manage the heat? The Golden Dome, the Trump administration's vision for missile defense, builds upon the existing Joint All-Domain Command and Control (JADC2) framework for connecting sensors from all branches of the U.S. armed forces into a unified network powered by artificial intelligence. This plan faces an existential threat from thermal management challenges that have
The Vision for Off-road Autonomy (VORA) project used passive, vision-only sensors to generate a dense, robust world model for use in off-road navigation. The research resulted in vision-based algorithms applicable to defense and surveillance autonomy, intelligent agricultural applications, and planetary exploration. Passive perception for world modeling enables stealth operation (since lidars can alert observers) and does not require more expensive or specialized sensors (e.g., radar or lidar). Over the course of this three-phase program, SwRI built components of a vision-only navigation pipeline and tested the result on a vehicle platform in an off-road environment.
As unmanned vehicular networks become more prevalent in civilian and defense applications, the need for robust security solutions grows in parallel. While ROS 2 offers a flexible platform for robotic operations, its security model lacks the adaptability required for dynamic trust management and proactive threat mitigation. To address these shortcomings, we propose a novel framework that integrates containerized ROS 2 nodes with Kubernetes-based orchestration, a dynamic trust management subsystem, and integrability with simulators for real-time and protocol-flexible network simulation. By embedding trust management directly within each ROS 2 container and leveraging Kubernetes, we overcome ROS 2’s security limitations by enabling real-time monitoring and machine learning-driven anomaly detection (via an autoencoder trained on custom data), facilitating the isolation or removal of suspicious nodes. Additionally, Kubernetes policies allow seamless scaling and enforcement of trust-based
The Ground Vehicle Systems Center (GVSC) has an ongoing effort to use Industrial Design to explore the toughest problems faced by the Army modernization community. That effort takes several steps from the Design thinking discipline and seeks to understand Soldier perspectives, define problems and propose conceptual solutions. This paper summarizes the employment of Industrial Design at GVSC as well as outputs from two key Design projects. It concludes by presenting the combined learned outcomes from several Design efforts at GVSC and proposes ways in which Industrial Design and Design Thinking can better drive Army modernization, by understanding user’s needs, and committing to Innovation.
Considering the rapid pace of technological innovation, and understanding that most of this innovation is realized through software, it’s imperative that MOSA aligned standards for software development and verification also support compliance with safety and security best practices. The Future Airborne Capability Environment® (FACE) Technical Standard is one of the foremost MOSA aligned standards designed to promote portability and create software product lines across the military aviation domain. This paper will present several ways the FACE Technical Standard and Approach, together with complementary software safety/software security standards and best practices, support the development of reusable safe and secure software.
Magnetotactic bacteria (MTB) are capable of biomineralizing crystalline single domain magnetic oxides and sulfides. MTB perform this synthesis inside of well-defined chambers attached to their cell wall called magnetosomes. Magnetosomes are phospholipid vesicles which assemble in chains inside MTB and allow the magnetic oxides to align into a self-assembled bar magnet inside the bacteria. These nano-scale bar magnets allow MTB to align with the earth’s magnetic field allowing the bacteria to thrive in natural aqueous environments as they live in a microaerophilic environment called the oxic/anoxic zone. This presentation will focus on progress regarding using these bio-synthesized magnetic particles for Department of Defense applications.
Object detection has many different uses in Command and Control (C2) systems such as autonomous control, target tracking, threat detection, and general surveillance. Graphics Processing Units (GPUs) are the de-facto standard hardware for these types of workloads in datacenter environments. Still, when deploying to an edge environment many considerations are required to ensure an optimized deployment. This paper provides a general overview of how to utilize GPUs for AI inference for object detection at the edge using NVIDIA® HoloScan as well as an overview of the many considerations to account for when selecting the most optimal GPU for any specific ground vehicle solution.
The use of modeling and simulation (M&S) to enable aggressive training, testing, analysis, and experimentation of capabilities has risen in recent years. An increase in M&S demand to enable Force Readiness necessitates the use of modular and reusable simulation software. To meet this need, the U.S. Army Combat Capabilities Development Command Ground Vehicle Systems Center (DEVCOM GVSC) has developed a modular simulation software framework called Project Great Lakes (ProjectGL). The software supports complex simulation requirements for multiple vehicles, terrains, sensors and other technologies, while using a common, internal framework to support extensive configuration. The paper presents the framework’s core design philosophy, architecture and common use cases. The paper concludes with a discussion on possible areas of framework expansion and development guidelines for partners interested in extending the framework.
The development of cyber-physical systems necessarily involves the expertise of an interdisciplinary team – not all of whom have deep embedded software knowledge. Graphical software development environments alleviate many of these challenges but in turn create concerns for their appropriateness in a rigorous software initiative. Their tool suites further enable the creation of physics models which can be coupled in the loop with the corresponding software component’s control law in an integrated test environment. Such a methodology addresses many of the challenges that arise in trying to create suitable test cases for physics-based problems. If the test developer ensures that test development in such a methodology observes software engineering’s design-for-change paradigm, the test harness can be reused from a virtualized environment to one using a hardware-in-the-loop simulator and/or production machinery. Concerns over the lack of model-based software engineering’s rigor can be
While the Department of Defense’s transition to model-based deliverables promises numerous benefits, it presents a formidable challenge for acquisition program offices struggling to acquire the requisite skill sets. A critical deficiency in experience with Systems Modeling Languages (e.g., SysML) and essential modeling tools (e.g., Cameo Systems Modeler) has resulted in a preference for traditional document-based deliverables. This paper explores how Model-Based Systems Engineers can address this gap by leveraging data-driven insights to support design reviews and enhance stakeholder communication. To overcome the challenge of limited Model-Based Systems Engineering expertise, we introduce a model-based design review tool that simplifies complex vendor system architecture models, making the information readily usable for Subject Matter Experts. The tool’s ”indirect commenting method” and heuristics facilitate effective model evaluation and increase confidence in vendor designs beyond
Thermal or infrared signature management simulations of hybrid electric ground vehicles require modeling complex heat sources not present in traditional vehicles. Fast-running multi-physics simulations are necessary for efficiently and accurately capturing the contribution of these electrical drivetrain components to vehicle thermal signature. The infrared signature and heat transfer simulation tool, “Multi-Service Electro-optic Signature” (MuSES), is being updated to address these challenges by expanding its thermal-electrical simulation capabilities, provide a coupling interface to system zero- and one-dimensional modeling tools, and model three-dimensional air flow and its convection effects. These simulation capabilities are used to compare the infrared signatures of a tactical ground vehicle with a traditional powertrain to a hybrid electric version of the same vehicle and demonstrate a reduction in contrast while operating under electrically powered conditions of silent watch and
Items per page:
50
1 – 50 of 2781