Browse Topic: Military vehicles and equipment
As the United States Army explores electrified tactical vehicles, wireless power transfer (WPT) has emerged as a promising recharging method. WPT allows multiple vehicles to recharge while in proximity of a charging station based on a mobile platform. This study examines the requirements of WPT by analyzing geo-location data from over 400 tactical vehicles at the National Training Center. The data was extracted, cleaned, and analyzed to identify periods when vehicles were close enough for effective WPT. The analysis quantifies the amount of time vehicles spend in proximity and their average distance apart, both while stationary and moving, to establish initial WPT requirements. These results were combined with energy consumption rates to estimate the power throughput of a WPT system. Vehicles were found to be stationary and close to other vehicles for most of the day, making WPT a practical solution in those situations. Although the analysis found that WPT is feasible during convoys
The Defense Advanced Research Projects Agency (DARPA) pioneered satellites, the internet, drones, and human-computer interfaces. Now that work is enabling the next round of revolutionary technologies, including artificial intelligence (AI), edge and cloud computing, and the Internet of Military Things (IoMT) for a wide variety of Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. Laptops and tablets are beneficiaries of yesterday's DARPA breakthroughs as well as enablers of today's and tomorrow's innovations. For example, ruggedized mobile PCs provide powerful new tools for asymmetric warfare by giving soldiers anytime, anywhere access to biometric information such as fingerprints and facial recognition. That information enables them to quickly determine whether a person in street clothes at a checkpoint is a civilian or combatant. This application also highlights the fundamental role of edge computing and the cloud for
In an era where technological advancements are rapid and constant, the U.S. Army will need a more agile and efficient approach to modernizing systems on succeeding generations of Army vehicles. Legacy platforms like Abrams, Stryker, and Bradley vehicles use multiple mission computers tied to individual sensors that often required the addition of “boxes” to accommodate new capabilities, which could take years to deploy and drove sustainment costs up due to vendor lock. In addition, this antiquated approach doesn't leverage data to converge effects across the formation in a multi-domain environment. Centralized, common computing as detailed in GCIA would help solve this problem, potentially linking all major subsystems and providing higher-speed processing to assess large datasets in real time with AI and ML algorithms. By using a common, open architecture computer, the Army will be able to rapidly integrate new capabilities inside one box, versus adding multiple boxes. This pivotal
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece. In addition to the high level of complexity, the upcoming generation change from fifth- to sixth-generation fighter jets poses major challenges for component suppliers and accelerates the pace of technological competition. A military fighter jet is already an extremely demanding environment for
Affordable mass refers to the ability to rapidly produce large quantities of effective, cost-efficient munitions and systems. It's not about cutting corners but about optimizing every facet of the production process, from design to deployment. The challenge goes beyond strategic methods of design and manufacturing - and must feature industrywide acceptance of affordability as a means of adding capacity, survivability, and efficacy to a new generation of munitions. The Department of Defense (DoD) is faced with preparing for potential confrontations with peer or near-peer adversaries. Unlike conflicts of the past, where U.S. forces may have faced regional militias with limited air defense capabilities, today's enemy is armed with integrated air defense systems (IADS) capable of countering non-stealth aircraft and outdated weapons. While advanced 5th generation F-35 fighters and B-21 stealth bombers can penetrate these modern air defenses, the Air Force must also develop an inventory of
The aerospace and defense industries demand the highest levels of reliability, durability, and performance from their electronic systems. Central to achieving these standards are laminate materials, which form the backbone of printed circuit boards (PCBs) and flexible circuits used in a multitude of applications, from avionics to missile guidance systems. Building these systems, which are typically implemented in environments that experience both temperature extremes and wide variations of temperature over time, requires robust materials that can stand up to punishing environmental conditions. Laminates and films for circuit boards and flexible circuits are a vital component of this protective material profile.
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field? Radio frequency (RF) jamming of drones involves deliberate interference with the radio signals used for communication between drones and their operators.
The final frontier in digital transformation is the analog edge, where apertures and actuators meet the mission. Buried behind layers of firmware and analog mitigation, open architecture has a new frontier to conquer, and the opportunity starts at the component level, where digital transformation and the miniaturization enabled by Moore's Law is having its biggest impact. Miniature, modular, and intelligent gateways can be embedded into analog components to replace and re-imagine old firmware and analog mitigation circuitry. These new, embedded gateways promise to bring open architecture deeper into the tactical edge and realize a new level of agility throughout the lifecycle of a system, from design through sustainment of hybrid digital and analog systems.
As “point of need” additive manufacturing emerges as a priority for the Department of Defense (DoD), Australian 3D printing provider SPEE3D is one of several companies demonstrating that its machines can rapidly produce castings, brackets, valves, mountings and other common replacement parts and devices that warfighters often need in an on-demand schedule when deployed near or directly within combat zones. DoD officials describe point of need manufacturing as a concept of operations where infantry and squadron have the equipment, machines, tools and processes to rapidly 3D print parts and devices that are being used in combat. Based in Melbourne, Australia, SPEE3D provides cold spray additive manufacturing (CSAM) machines that use a combination of robotics and high-speed kinetic energy to assemble and quickly bind metal together into 3D-printed parts without the need for specific environmental conditions or post-assembly cooling or temperature requirements. Over the last two years, the
Researchers and engineers at the U.S. Army Combat Capabilities Development Command Chemical Biological Center have developed a prototype system for decontaminating military combat vehicles. U.S. Army Combat Capabilities Development Command, Aberdeen Proving Ground, MD The U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) is paving the way and helping the Army transform into a multi-domain force through its modernization and priority research efforts that are linked to the National Defense Strategy and nation's goals. CBC continues to lead in the development of innovative defense technology, including autonomous chem-bio defense solutions designed to enhance accuracy and safety to the warfighter.
Northrop Grumman San Diego, CA jacqueline.rainey@ngc.com
The U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) is paving the way and helping the Army transform into a multi-domain force through its modernization and priority research efforts that are linked to the National Defense Strategy and nation’s goals. CBC continues to lead in the development of innovative defense technology, including autonomous chem-bio defense solutions designed to enhance accuracy and safety to the warfighter.
Anduril Industries Orange County, CA Contact@anduril.com
As the U.S. military embraces vehicle electrification, high-reliability components are rising to the occasion to support their advanced electrical power systems. In recent years, electronic device designers have started using wide band-gap (WBG) materials like silicon carbide (SiC) and gallium nitride (GaN) to develop the semiconductors required for military device power supplies. These materials can operate at much higher voltages, perform switching at higher frequencies, and feature better thermal characteristics. Compared to silicon, SiC-based semiconductors provide superior performance. The growing availability of these materials, in terms of access and cost, continues to encourage electrification. With the ever-present pressure of size, weight, and power (SWaP) optimization in military applications, and a desire to keep up with the pace of innovation, there's a need for capacitors that can deliver higher power efficiency, switching frequency, and temperature resistance under harsh
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases. Capable of downing dangerous drone swarms with instant effect, at only 10p per shot, the RFDEW is a highly capable and cost-effective alternative to traditional missile-based air defense systems. It will be able to effect targets up to 1 km away, with further development in extending the range ongoing. Its high level of automation also means the system can be operated by a single person.
Every time a soldier pulls the trigger on a 7.62 rifle or pulls the wire of a 155 Howitzer, a complex chain reaction ensues over the next millisecond that we refer to as the ignition event. The ignition event involves a highly dynamic interaction with heat and mass transfer between multiple reacting chemicals across a varied spatial domain to achieve rapid and uniform burning of the entire granular propellant bed. After the ignition event, standard interior ballistics apply: Propellant is burnt, pressure increases and the projectile accelerates down the barrel until leaving the muzzle. To date, the details and controlling mechanisms of the ignition event and propagation into granular propellant beds have not been well understood or characterized. Weapon designers often simplify the ignition and combustion process by assuming it behaves in a quasi-static manner, and therefore the thermodynamic state across the entire combustion chamber at any point in time is modeled by single, uniform
American drivers have long been accustomed to quickly filling up at a gas station with plenty of fuel available, and electric vehicle drivers want their pit stops to mimic this experience. Driver uncertainty about access to charging during long trips remains a barrier to broader EV adoption, even as the U.S. strives to combat climate change by converting more drivers.
Military performance requirements for adhesives have been traditionally derived to fulfill niche defense needs in harsh operational environments with little consideration for dual-use commercial potential. U.S. Army Research Laboratory, Aberdeen, MD The term “military-grade” can have a variety of meanings that are perspective dependent. In 2014, Ford Motor Company emphasized the term heavily in advertising campaigns to garner consumer acceptance for the transition from steel to aluminum in the body of their flagship F150 model. As cited by Ford, “Engineers selected these high-strength, military-grade aluminum alloys because of the metals' unique ability to withstand tough customer demands.” From this point-of-view, military-grade implies superior performance. However, the bureaucratic and logistical barriers required for certification to military-grade acceptance levels per DoD performance requirements can also be perceived as impediments to innovation and the transition of fundamental
The Internet of Military Things (IoMT), sometimes referred to as the Internet of Battlefield Things (IoBT), is gaining momentum for applications that improve defensive and battlefield capabilities. Like its civilian counterpart, the IoMT are networks of sensors, wearables, and imaging devices using edge and cloud computing to improve military operations and safety. However, battery failure in an IoMT device can have serious consequences in applications such as unmanned aerial drones that are used to patrol border areas or secure military bases. Battery life requirements are also high for the sensors and surveillance cameras that can be used to send real-time intelligence back to the command center for strategic decisions. Likewise, predictable battery life for IoMT devices used for vehicle management, battlefield supply chains, and weapon control are critical for efficient operations. Therefore, optimizing the device design and software to reduce power consumption and increase battery
Defense Equipment & Support (DE&S) Bristol, UK 0117-913-0893
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Kodiak Robotics launched its first autonomous military prototype vehicle in December 2023 - a Ford F-150 upfitted with the Kodiak Driver autonomous system. Developed for the Department of Defense (DoD), the vehicle runs the same software as Kodiak's autonomous long-haul trucks but with more robust DefensePod enclosures for the sensors. Now the company is collaborating with Textron Systems to develop a purpose-built uncrewed military vehicle designed without space for a driver and intended for advanced terrain environments. The companies plan to demonstrate driverless operations later in 2024. “The initial integration work is largely being done at a Textron Systems facility in Maine, with testing planned at Kodiak facilities,” Kodiak's chief technology officer Andreas Wendel told Truck & Off-Highway Engineering. He shared his thoughts on the “immense” potential for autonomous technology in tactical vehicles.
Lockheed Martin Orlando, FL 407-284-9248
The transportation sector has an enormous demand for resources and energy, is a major contributor of emissions (i.e., greenhouse gases in particular), and is defined largely by the kind of energy it uses—be it electric cars, biofuel trucks, or hydrogen aircraft. Given the size of this sector, it has a crucial role in combating climate change and securing sustainability in its three forms: environmental, societal, and economic. In this context, there are many questions concerning energy options on the path toward a more sustainable transportation sector. Is hydrogen the fuel of the future? Is there enough electricity to power a fully electric transportation sector? What happens when millions of electric vehicle batteries need to be decommissioned? Which regulatory measures are effective and appropriate for moving the sector in the right direction? What is the “right” direction? This chapter does not aim to answer all those questions. It does, however, highlight and discuss the most
In 2023, Parry Labs was awarded two tasks under the Aviation and Missile Technology Consortium's (AMTC) Other Transactions Agreement to lead a multi-vendor team to collaboratively define the Army's Modular Open Systems Approach (MOSA) requirements for computing and software operating environments for all future Army Aviation procurements. This relatively new approach for the Army and industry drove collaboration and allowed U.S. Government (USG) to make key modularity and openness decisions relative to Aviation Mission Computing Environment (AMCE). This unique opportunity provided a platform for industry to openly inform requirements at a much more granular level than previously possible, providing assurances that such detailed requirements wouldn't be an overreach or constrain innovation and disrupt industry business models. Solicited to the entire AMTC, which represents the vast majority of the aviation industrial base, the AMTC and USG team selected the most qualified vendors to
The development of hypersonic missiles represents the most significant advancement of defense weaponry since the 1960s. However, they also pose unique challenges for both design and technology. The term “hypersonic” refers to any speed faster than five times the speed of sound, or above Mach 5. Modern hypersonic missile systems require extensive communications interconnects within a highly confined space. This space requirement creates a demand for solutions combining small form factor with reduced weight and rugged construction to withstand high vibration and impact conditions from deployment to target. Currently there are two types of hypersonic weapons. Hypersonic glide vehicles (HGVs), also known as boost-glide vehicles, typically launch from ballistic missiles and are released at a specific altitude, speed, and with the flight path tailored to a target without being powered. Hypersonic cruise missiles (HCMs) are powered all the way to their targets, flying at lower altitudes than
L3Harris Technologies Melbourne, FL 585-465-3592
Vehicle navigation in off-road environments is challenging due to terrain uncertainty. Various approaches that account for factors such as terrain trafficability, vehicle dynamics, and energy utilization have been investigated. However, these are not sufficient to ensure safe navigation of optionally manned ground vehicles that are prone to detection using thermal infrared (IR) seekers in combat missions. This work is directed towards the development of a vehicle IR signature aware navigation stack comprised of global and local planner modules to realize safe navigation for optionally manned ground vehicles. The global planner used A* search heuristics designed to find the optimal path that minimizes the vehicle thermal signature metric on the map of terrain’s apparent temperature. The local planner used a model-predictive control (MPC) algorithm to achieve integrated motion planning and control of the vehicle to follow the path waypoints provided by the global planner. Vehicle
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army. The aim is to identify novel applications achievable through electrification or hybridization, encompassing functions such as establishing command posts, prolonged
Items per page:
50
1 – 50 of 2684