Browse Topic: Military vehicles and equipment

Items (2,690)
Anduril Industries Orange County, CA Contact@anduril.com
Northrop Grumman San Diego, CA jacqueline.rainey@ngc.com
The final frontier in digital transformation is the analog edge, where apertures and actuators meet the mission. Buried behind layers of firmware and analog mitigation, open architecture has a new frontier to conquer, and the opportunity starts at the component level, where digital transformation and the miniaturization enabled by Moore's Law is having its biggest impact. Miniature, modular, and intelligent gateways can be embedded into analog components to replace and re-imagine old firmware and analog mitigation circuitry. These new, embedded gateways promise to bring open architecture deeper into the tactical edge and realize a new level of agility throughout the lifecycle of a system, from design through sustainment of hybrid digital and analog systems
Researchers and engineers at the U.S. Army Combat Capabilities Development Command Chemical Biological Center have developed a prototype system for decontaminating military combat vehicles. U.S. Army Combat Capabilities Development Command, Aberdeen Proving Ground, MD The U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) is paving the way and helping the Army transform into a multi-domain force through its modernization and priority research efforts that are linked to the National Defense Strategy and nation's goals. CBC continues to lead in the development of innovative defense technology, including autonomous chem-bio defense solutions designed to enhance accuracy and safety to the warfighter
As “point of need” additive manufacturing emerges as a priority for the Department of Defense (DoD), Australian 3D printing provider SPEE3D is one of several companies demonstrating that its machines can rapidly produce castings, brackets, valves, mountings and other common replacement parts and devices that warfighters often need in an on-demand schedule when deployed near or directly within combat zones. DoD officials describe point of need manufacturing as a concept of operations where infantry and squadron have the equipment, machines, tools and processes to rapidly 3D print parts and devices that are being used in combat. Based in Melbourne, Australia, SPEE3D provides cold spray additive manufacturing (CSAM) machines that use a combination of robotics and high-speed kinetic energy to assemble and quickly bind metal together into 3D-printed parts without the need for specific environmental conditions or post-assembly cooling or temperature requirements. Over the last two years, the
The aerospace and defense industries demand the highest levels of reliability, durability, and performance from their electronic systems. Central to achieving these standards are laminate materials, which form the backbone of printed circuit boards (PCBs) and flexible circuits used in a multitude of applications, from avionics to missile guidance systems. Building these systems, which are typically implemented in environments that experience both temperature extremes and wide variations of temperature over time, requires robust materials that can stand up to punishing environmental conditions. Laminates and films for circuit boards and flexible circuits are a vital component of this protective material profile
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field? Radio frequency (RF) jamming of drones involves deliberate interference with the radio signals used for communication between drones and their operators
ABSTRACT The U.S. military has made substantial progress in developing and fielding C4ISR systems that can collect and gather overwhelming amounts of valuable raw sensor data. A new challenge that has emerged with the deployment of numerous state-of-the-art ISR collection systems is the effective and timely use of the collected surveillance and reconnaissance information, or simply stated an architecture that pushes the timeliness and accessibility of this situational awareness data to the tactical edge – “the right data at the right time to the soldier.” Delivery of real time key information to include situational awareness to a decision maker is what makes the difference between loss and victory on the battlefront. This paper is an extension of a GVSETS paper that was presented in the 2010 symposium. This paper discusses in more detail the integration of command and control (C2), video management, and collaboration capabilities, such as chat and telestration, with the sensor
Woody, AlanLindsey, Ken
ABSTRACT Cylinder Pressure Monitoring (CYPRESS™). This technology provides closed-loop feedback to enable a real-time calculation of the apparent heat release rate (AHRR). This makes it possible to adapt to the fuel ignition quality (cetane number) by adjusting the pilot injection quantity and the placement of the pilot and main injection events. This enables the engine control system to detect fuel quality and adapt the ignition sequence accordingly. This technology is also used to infer the total fuel energy injected by analyzing the AHRR, making it possible to vary the injected fuel volume quantity to achieve consistent (+/- 2%) full load power as the fuel energy density varies. Analysis of the position of AHRR with respect to the crank angle (CA) is dependent on the start of injection and subsequent fuel shots. The ability to control the position of the AHRR maintains thermal efficiency as fuel properties vary which are implemented by controlling the fuel injection pulse widths and
Jeal, GeoffHunter, Gary L.Kruit, Stephan L.
ABSTRACT Unmanned ground vehicles (UGVs) are being fielded with increasing frequency for military applications. However, there is a lack of agreed upon standards, definitions, performance metrics, and evaluation procedures for UGVs. UGV design, development, and deployability have suffered from the lack of accepted standards and metrics. Developing these standards is exceptionally difficult, because any performance metric must not only be evaluated through controlled experiments, but the metric itself must also be checked for relevance. Several committees and workgroups have taken up the challenge of providing standardized performance metrics, and an overview of the current state of performance evaluation for UGVs is presented. The ability to evaluate a potential metric through simulations would greatly enable these work efforts. To that end, an overview of the Virtual Autonomous Navigation Environment (VANE) computational test bed (CTB) and its potential use in the rapid development of
Durst, Phillip J
ABSTRACT The Joint Light Tactical Vehicle (JLTV) Family of Vehicles (FoV) is the central component of the Army’s long-term Tactical Wheeled Vehicle (TWV) strategy. The program’s objective is to balance critical weight and transportability restrictions within performance, protection, and payload requirements of the United States Army and Marine Corps. One of the challenges faced by the JLTV program is the need to balance the “Iron Triangle” of performance, protection, and payload while managing the disparate requirements of the domestic services and international partners. The JLTV team developed processes to manage the cost, performance, and schedule risks associated with each of the three contractors participating in the Technology Development phase. This paper will describe the risk management processes and tools developed on the JLTV program to manage and mitigate these contractor risks and extract those that could impact the entire program
Wood, Kenneth L.Vinarcik, Michael J.
ABSTRACT Military vehicle electrical power systems require quickly responding fault protection to prevent mission failure, vehicle damage, or personnel injury. The electromechanical contactors commonly used for HEV protection have slow response and limited cycle life, factors which could result in fuse activation and disabling of the vehicle, presenting a dangerous situation for the soldier. A protection technology not often considered is Solid State Circuit Breakers (SSCB), which have fast response and good reliability. Challenges of extremely high currents and voltages, high temperatures, and harsh conditions have prevented SSCBs from being effective in high power military vehicle electrical systems. Development of an SSCB for military vehicle power systems would increase electrical power system capacity and expand mission capability. The development of a 1.2 kV/200A Silicon-Carbide MOSFET based SSCB for combat HEVs is presented. The key innovation is packaging that minimizes losses
Pilvelait, BruceGold, CalmanMarcel, Mike
ABSTRACT A data-centric capability focused on meeting the strategic need for the rapid configuration of interoperability among and between different end-points such as applications, military vehicle onboard systems, modules and sensors represents a glaring capability gap facing the Army. This agile network layer is required for the standardization and interpretation of data into actionable intelligence. A capability that is essential for the Army to successfully facilitate complex “systems-of-systems” (SoS) engineering requirements for process improvement, superior products, and reduced cost
Cameron, George A.Mendenhall, GeorgeFutch, DonCunningham, Jeffery C.
ABSTRACT Defensible and Effective Model Based Engineering (MBE) requires capable tools for optimization and simulation to verify that the current system design can meet mission performance, availability and affordability requirements. Legacy Army tools have failed to meet those needs and a new generation of capabilities are now available to allow program managers to continuously update input variables and assess the system’s Operational Availability (Ao) Key Performance Parameter (KPP) and Lifecycle O&S cost Key System Attribute (KSA
Woulfe, JustinAlpert, Samantha
ABSTRACT The latest military vehicles have been developed with on-board high voltage (600Vdc) power generation systems. The generator controller is an essential part of such a power generation system. It interfaces and converts generator 3-phase ac voltages into vehicle dc bus voltage and is the primary component responsible for vehicle bus stability. Compliance of the controller’s output dc voltage with MIL-PRF-GCS600A(ARMY) is a prerequisite for stability. This paper presents the design, and test results of a 75kW continuous operation power converter achieving a volumetric power density above 7kW/liter at an 85°C coolant temperature. Details regarding power quality and thermal management are discussed. Performance results will be provided, including assessment of the voltage regulation requirements as part of MIL-PRF-GCS600A, efficiency (97%), and temperature results
Beem, EarnieNedic, Velimir
ABSTRACT Developing preventive and corrective maintenance strategies for military ground vehicles based on asset readiness and lifecycle cost is a challenge due to the complexity associated with the collection and storage of maintenance and failure data in the operational environment. Many of the past reliability centered maintenance efforts have encountered significant challenges in collecting, identifying, accessing, cleaning, enhancing, fusing, and analyzing the data. Another challenge is creating and maintaining complex simulation models that require significant effort and time to produce business value. The work described in this paper is the result of a collaborative effort among multiple US Army organizations to simplify the approach in order to gain valuable insight from the existing data. It is shown how the resulting process can be used to develop simplified models to optimize corrective and preventive maintenance programs. Details are provided on how to work with the
Gugaratshan, GugaSrinivasan, SyamalaHarrison, DeanCastanier, Matthew P.Wade, Jody D.Jones, J. Isaac “Ike”
ABSTRACT Determining the required power for the tractive elements of off-road vehicles has always been a critical aspect of the design process for military vehicles. In recent years, military vehicles have been equipped with hybrid, diesel-electric drives to improve stealth capabilities. The electric motors that power the wheel or tracks require an accurate estimation of the power and duty cycle for a vehicle during certain operating conditions. To meet this demand, a GPS-based mobility power model was developed to predict the duty cycle and energy requirements of off-road vehicles. The dynamic vehicle parameters needed to estimate the forces developed during locomotion are determined from the GPS data, and these forces include the following: the gravitational, acceleration, motion resistance, aerodynamic drag, and drawbar forces. Initial application of the mobility power concept began when three U.S. military’s Stryker vehicles were equipped with GPS receivers while conducting a
Ayers, PaulBozdech, George
ABSTRACT When the components of a military vehicle are designed, consideration is given to long term durability under repeated mission applications. In reality, surface and subsurface defects have always existed in weldments, forgings, and castings. These defects came from the manufacturing process or nucleated during the life of the vehicle. These defects may grow under repeated operations, resulting in ultimate failure of parts well before the design life is achieved. In such situations, a design based on crack initiation alone will not suffice, and a fracture mechanics based fatigue should also be included to predict the design life of a part accurately. In this paper a methodology is given on how to predict the available design life given the presence of defects in different parts of a military vehicle. An example will be provided with the process to demonstrate each step of the process
Porter, William De
ABSTRACT This work investigates non-traditional operating modes of a diesel engine that allow the tailoring of acoustic, smoke and thermal signatures for unique unmanned ground vehicle (UGV) military applications. A production, air-cooled single-cylinder diesel engine having a mechanical fuel injection system has been retrofit with a flexible common-rail injection and electronic control system. The experimental domain explores the effects of the injection timing and pressure on the engine’s acoustic, smoke and heat signatures through analysis of the in-cylinder combustion processes. Surface maps of loudness, exhaust temperature and exhaust smoke density over the range of fuel injection strategies are presented, illustrating the degree to which each signature may be controlled. Trade-offs between the signature modes are presented and discussed. The results demonstrate the possibility of providing military UGVs the capability to tailor their acoustic, infrared and smoke signatures
Jansons, MarcisKhaira, SukhbirBryzik, Walter
ABSTRACT Rechargeable batteries needed for military applications face critical challenges including performance at extreme temperatures, compatibility with military logistical processes, phasing out of legacy battery technologies, and poor compatibility of COTS lithium-ion batteries with specialized military operational requirements and legacy platforms. To meet these challenges, CAMX Power has developed and is commercializing a lithium-ion battery technology, trademarked CELX-RC®, with high power and rapid charging capability, long life, exceptional performance and charge acceptance capability at extreme low temperatures (e.g., -60 ºC), excellent safety, capability for discharge and storage at 0V, and ability to be implemented in batteries without management systems. This paper describes CELX-RC technology and its implementation in prototype batteries. Citation: D. Ofer, J. Bernier, E. Siegal, M. Rutberg, S. Dalton-Castor, “Robust, Versatile and Safe Lithium-Ion Batteries for Military
Ofer, DavidBernier, JoeSiegal, EdwardRutberg, MichaelDalton-Castor, Sharon
ABSTRACT An examination of the current state-of-the-art in additive manufacturing (AM) of metallic armor products for ground vehicles was conducted. Primary barriers to the implementation of AM on ground systems are related to elevated cost compared to traditional fabrication techniques, a lack of public engineering data, and lack of specifications. Initial ballistic testing against 0.30-cal. armor-piercing (AP)M2 and 0.30-cal. fragment-simulating projectile (FSP) threats was conducted on a range of test coupons made from Inconel 718 and Ti-6Al-4V (Grade 23) extra-low-interstitial (ELI) materials made by direct metal laser melting (DMLM), wire-laser directed-energy deposition (WL-DED), and wire arc additive manufacturing (WAAM). Initial attempts at evaluating lot-to-lot variation, machine-to-machine variation, process-to-process variation, and the effect of asprinted surface roughness on ballistic protection were made to direct future research and development. Given the elevated cost
Slocumb, William JamesHolm, BrandonKelsey, Vic
ABSTRACT Adequate heat dissipation and temperature control for power electronics are critical requirements for vehicle electrification systems, to enable greater power density, reduce size and weight, and improve system performance and reliability. Substantial improvements in heat removal with an advanced thermal management system can impact power semiconductor device operation, module and system power density, and system reliability. This presentation describes development, testing, and implementation of an innovative two-phase, mechanically-pumped fluid cooling system for power electronic systems which uses a common fluid available in military logistics chains. Attributes of this Vaporizable Dielectric Fluid (VDF) cooling system concept are listed, in comparison to traditional air- and water-glycol cooling systems, with major advantages for overall performance improvement of the power electronic systems for hybrid drivetrains. This system concept has been developed and recently
Saums, David L.
ABSTRACT A large number of current commercial off-the-shelf (COTS) diesel engines available to the U.S. Military employ High Pressure Common Rail (HPCR) fuel injection systems. Overall performance and endurance of these HPCR systems has the potential to vary with use of military or alternative fuels. Testing was conducted using the Ford 6.7L diesel engine to determine the impact on engine and HPCR fuel system performance with the following test fuels: diesel (ULSD), JP-8, 50%:50% volumetric blend of JP-8/Synthetic Paraffinic Kerosene (SPK), and 100% SPK. The U.S. Army 210-hr Tactical Wheeled Vehicle Cycle (TWVC) engine endurance test was used to determine engine and HPCR system performance. Engine performance over the test duration, pre- and post-test powercurves and post-test fuel injection component inspections were used to determine each fuels performance
Brandt, Adam C.Muzzell, Patsy A.Sattler, Eric R.Likos, William
ABSTRACT A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned ground vehicles (UGVs) has yet to be established. Current models for measuring a UGV’s autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission and operational environment. A more elegant technique for quantifying UGV autonomy using component level testing of the UGV platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UGV architectures, such a model for determining a UGV’s level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UGV architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non-autonomous to fully autonomous, in the form of a single numeric parameter describing the UGV’s performance capabilities
Durst, Phillip JGray, WendellTrentini, Michael
ABSTRACT This paper describes work to develop a hands-free, heads-up control system for Unmanned Ground Vehicles (UGVs) under an SBIR Phase I contract. Industry is building upon pioneering work that it has done in creating a speech recognition system that works well in noisy environments, by developing a robust key word spotting algorithm enabling UGV Operators to give speech commands to the UGV completely hands-free. Industry will also research and develop two sub-vocal control modes: whisper speech and teeth clicks. Industry is also developing a system that will enable the Operator to drive a UGV, with a high level of fidelity, to a location selected by the Operator using hands-free commands in conjunction with image segmentation and video overlays. This Phase I effort will culminate in a proof-of-concept demonstration of a hands-free, heads-up system, implemented on a small UGV, that will enable the Operator have a high level of fidelity for control of the system
Brown, JonathanGray, Jeremy P.Blanco, ChrisJuneja, AmitAlberts, JoelReinerman, Lauren
ABSTRACT The Advanced Explosive Ordnance Disposal Robotic System (AEODRS) is a Navy-sponsored acquisition program developing a new generation of open, modular EOD robotic systems. In a previous paper, we described a common architecture for the AEODRS family of systems. The foundation of that architecture is the careful partitioning of an EOD robotic system into Capability Modules, and the definition of inter-module interfaces based on recognized and accepted open standards. In this paper, we describe an implementation approach selected to demonstrate the architecture’s contribution to subsystem and payload interoperability. We further describe an approach to incremental integration of independently developed subsystems and payloads into a mixed simulation System Testbed, allowing independent assessment of each integrand’s compliance with the defined interfaces of the architecture. We also illustrate how this incremental approach enables the integration process to proceed with reduced
Hinton, Mark A.Johannes, Matthew S.Zeher, Michael J.Kozlowski, Matthew V.
ABSTRACT 3D printing is a rapidly evolving technique for alternative piston manufacturing that offers the ability to realize complex combustion bowl geometry, robust structure and advanced cooling channel geometries while delivering precise tolerance and mass control. IAV has designed, analyzed, optimized and produced 3D printed pistons for heavy-duty diesel engines. The key features include an innovative form of combustion bowl, 300 bar peak cylinder pressure capability and advanced cooling channels in a mass neutral to less capable design. During 2018, these pistons will undergo fired engine testing
Dolan, RobertBudde, RogerSchramm, ChristianRezaei, Reza
ABSTRACT Army Regulation (AR) 750-59 requires the Corrosion Prevention and Control (CPC) program manager to conduct a survey of Army Materiel for corrosion on a 4-year basis. With Army ground assets estimated to number at over 500,000, statistical sampling of equipment and installations was determined to be the most effective means to meet this requirement. Starting in FY2015, the Integrated Logistics Support Center (ILSC) at the Tank-Automotive and Armaments Command (TACOM), working with Tank Automotive Research, Development, and Engineering Center (TARDEC), contracted Elzly Technology Corporation (Elzly) to develop a methodology to perform these surveys and catalog the assessment data. From January 2015 through May 2018, Elzly and ILSC personnel have visited 22 installations, inspected over 8,200 assets, recorded corrosion or coating damage on over 121,000 parts, and have cataloged over 180,000 photos of parts with corrosion and coating damage (surveys continue today). As part of the
Ault, J. PeterScott Porter, Thomas SandersRepp, JohnPike, Timothy
ABSTRACT Due to shortcomings in vehicle mobility prediction in the NATO Reference Mobility Model (NRMM), recommendations and requirements for the Next-Generation NATO Reference Mobility Model (NG-NRMM) are under development. The limiting nature of empirically based terramechanics and the recent decades of significant improvements to 3D physics based Modeling and Simulation (M&S) capability call for a process to quantify physics based M&S in meeting the proposed goals of NG-NRMM. A verification and validation (V&V) process is demonstrated to quantify the vehicle mobility prediction capability of current state of the art physics based M&S tools. The evaluation is based upon an M&S maturity scale adopted and modified from corporate simulation governance to fit the specifics of vehicle mobility. The V&V process is demonstrated through a set of benchmarks, one for a tracked and another for a wheeled vehicle. The NG-NRMM benchmark efforts have demonstrated an analytical process for
Balling, OleMcCullough, MichaelHodges, HenryPulley, ReidJayakumar, Paramsothy
ABSTRACT Survivability of a welded vehicle hull is directly tied to the performance of the grade of steel armor used. Selecting the highest performing grade of armor that can be welded into a specific location on a vehicle will improve survivability. While rolled homogeneous armor is the simplest to weld, challenges in welding high hard, and especially ultra high hard, are well known. Preventative measures to avoid weld cracking in vehicle structures can lead to increased costs during fabrication. Cracking of welds, both seen and unseen, in deployed vehicles directly impacts the survivability of the vehicle. Weld cracking during deployment further magnifies repair costs and leads to non-mission capable status. This analysis examines the weldability, ballistic/blast performance, and underlying metallurgy of Flash® Processed steels that have been tested by Army, Academia, and Industry. Citation: G. Cola, “Flash® 600 Ultra High Hard: Room-Temp ER120S-1 Weldability Tekken, H-Plate
Cola, Gary M
ABSTRACT This paper presents two techniques for autonomous convoy operations, one based on the Ranger localization system and the other a path planning technique within the Robotic Technology Kernel called Vaquerito. The first solution, Ranger, is a high-precision localization system developed by Southwest Research Institute® (SwRI®) that uses an inexpensive downward-facing camera and a simple lighting and electronics package. It is easily integrated onto vehicle platforms of almost any size, making it ideal for heterogeneous convoys. The second solution, Vaquerito, is a human-centered path planning technique that takes a hand-drawn map of a route and matches it to the perceived environment in real time to follow a route known to the operator, but not to the vehicle. Citation: N. Alton, M. Bries, J. Hernandez, “Autonomous Convoy Operations in the Robotic Technology Kernel (RTK)”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI
Alton, NicholasBries, MatthewHernandez, Joseph
ABSTRACT: Ground vehicle survivability and protection systems and subsystems are increasingly employing sensors to augment and enhance overall platform survivability. These systems sense and measure select attributes of the operational environment and pass this measured “data” to a computational controller which then produces a survivability or protective system response based on that computed data. The data collected is usually narrowly defined for that select system’s purpose and is seldom shared or used by adjacent survivability and protection subsystems. The Army approach toward centralized protection system processing (MAPS Modular APS Controller) provides promise that sensor data will be more judiciously shared between platform protection subsystems in the future. However, this system in its current form, falls short of the full protective potential that could be realized from the cumulative sum of sensor data. Platform protection and survivability can be dramatically enhanced if
ABSTRACT Although autonomy has the potential to help military drivers travel safely while performing other tasks, many drivers refuse to rely on the technology. Military drivers sometimes fail to leverage a vehicle’s autonomy because of a lack of trust. To address this issue, the current study examines whether augmenting the driver’s situational awareness will promote their trust in the autonomy. Results of this study are expected to provide new insights into promoting trust and acceptance of autonomy in military settings
Petersen, LukeTilbury, DawnRobert, LionelYang, Xi Jessie
ABSTRACT In this paper, we present CLICS, a program that optimizes convoy vehicle tracks by intelligently combining sensor updates of all vehicles in the convoy in a distributed, cooperative localization system. Currently, follower vehicles in the convoy rely either on GPS breadcrumbs from the lead vehicle, or rely on sensing the location of its predecessor and following its path. However, GPS availability and accuracy oftentimes cause the former solution to fail, and accumulated errors in tracking and control in long convoys can cause the latter solution to fail. Robotic Research’s CLICS system attempts to overcome these problems by (1) integrating multiple heterogeneous sensor outputs from multiple vehicles (2) developing a distributed, real-time non-linear estimation of inter-vehicle pose using spring network providing coordinated localization for members of a vehicle convoy, and (3) real-time robust synchronization of information amongst the convoy, and local convoy and mission
Wilhelm, RayBalas, CristianSchneider, AnneKlarquist, WilliamLacaze, AlbertoMurphy, Karl
ABSTRACT Can convolutional neural networks (CNNs) recognize gestures from a camera for robotic control? We examine this question using a small set of vehicle control gestures (move forward, grab control, no gesture, release control, stop, turn left, and turn right). Deep learning methods typically require large amounts of training data. For image recognition, the ImageNet data set is a widely used data set that consists of millions of labeled images. We do not expect to be able to collect a similar volume of training data for vehicle control gestures. Our method applies transfer learning to initialize the weights of the convolutional layers of the CNN to values obtained through training on the ImageNet data set. The fully connected layers of our network are then trained on a smaller set of gesture data that we collected and labeled. Our data set consists of about 50,000 images recorded at ten frames per second, collected and labeled in less than 15 man-hours. Images contain multiple
Kawatsu, ChrisKoss, FrankGillies, AndyZhao, AaronCrossman, JacobPurman, BenStone, DaveDahn, Dawn
ABSTRACT This paper describes validation testing of a comprehensive vehicle corrosion simulation and modeling tool under development by US Army TARDEC called “ACES” (Accelerated Corrosion Expert Simulator). ACES is used to predict the initiation and growth of corrosion on Wheeled Vehicles, Aircraft, Ships and other Assets. It is able to simulate coating & corrosion performance under various operating scenarios and to forecast & display deterioration of vehicle systems over time. ACES has a high degree of correlation to Accelerated Corrosion Deterioration Road Test (ACDRT) data and the original prediction algorithms were correlated using ACDRT data from the Army Family of Medium Tactical Vehicles (FMTV) truck. This paper describes validation testing of the predictions conducted by a third-party stakeholder using a different vehicle, namely the Marine Corps’ Medium Tactical Vehicle Replacement (MTVR
Savell, C ThomasWoodson, ScottPorter, ScottRepp, JohnAult, PeteThiel, AlexHathaway, Bob
ABSTRACT Fiber reinforced thermoset composites are well known for delivering 50% or more weight savings when compared with steel components while also providing strength, stiffness, and toughness. Nanoparticle additives have been shown to significantly increase the mechanical properties of thermoplastic and thermoset polymer matrices over the base matrix values. Extensive testing and characterization of composites containing graphene nanoplatelets (GnP) has been conducted and reported by XG Sciences’ (XGS) collaborators at the Michigan State University (MSU) Composite Materials and Structures Center. In a recent program with U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), MSU investigated lightweight composites for blast and impact protection. High strain rate test facilities as well as high speed photography and non-destructive interferometry-based evaluation techniques were used to evaluate blast performance. The experimental results are presented
Privette, R.Fukushima, H.Drzal, L.T.Robinson, M.
ABSTRACT In this paper, we present Pegasus Transforming UAV/UGV Hybrid Vehicle, a unique, transformable UAS/UGV that is particularly well-suited for missions. The combination of flight and ground modalities allows Pegasus to fly to location, automatically transform into a ground vehicle, reposition, and quietly approach a target; or, Pegasus can land and “perch” for long durations, allowing for the maintenance of the custody trail and long ISR missions or emplace sensors particular for a specific mission. The sequential use of aerial and ground capabilities in this platform provides the reach usually lacking in these missions. The Pegasus platform was developed with DTRA/ARDEC funding in support of specialized missions where these functionalities are needed. Robotic Research, LLC has developed the system from the ground up, including: mechanical, electrical, and software designs (without using foreign-made parts). The current system is shown in Figure 2. The system already has obstacle
Lacaze, Alberto
ABSTRACT This paper discusses inherent advantages and additional design changes that can be made to a single crankshaft opposed piston engine (SCOPE) in order to satisfy military engine heat rejection-to-power requirements of 0.45. The paper starts off with a discussion of the currently demonstrated heat rejection to power levels being obtained with the commercial version of the SCOPE configuration. Here, it is seen that heat rejection-to-power ratios are approximately 0.69. Tests are ongoing and this value is considered preliminary in nature. Analytical results are then presented that decompose where the heat is being generated - for the intake air system, the coolant system, and also the oil lubrication system. The model includes consideration of heat generated from the engines turbochargers, cylinders, pistons, and gear train. The model is anchored to measurements made with a commercial version of the SCOPE engine. Engine heat rejection results for this baseline configuration
Kacynski, KenJohnson, S. ArnieHuo, MingYancone, J.Katech, Chris Meszaros
ABSTRACT This paper presents the comparative analysis of virtual and experimental proving ground for the performance capabilities of front suspensions in the Family of Medium Tactical Vehicles (FMTV) cargo truck. The front suspension of the current baseline FMTV is a solid axle with leaf springs and shock absorbers. Two other types of suspensions including passive and semi-active suspensions are evaluated in solid and fully independent axle configurations. Virtual proving ground for on- and off-road tests are simulated in the Trucksim environment to include constant radius circular steer, double lane change, sinusoidal steer, washboard road surfaces, and half-round curb strike. Physical proving ground tests are conducted to provide some experimental correlation and validation of the baseline vehicle simulation results. The comprehensive experiments also evaluate the capabilities of various suspensions which have been considered in future FMTV design for mobility performance improvement
Liao, Y. GeneCard, BrandonWasylyk, John
ABSTRACT Tools have been developed to compare the dynamic deformation of vehicle hulls as they undergo blast-testing with numerical simulations. These tools allow quantitative comparisons and measurements over a wide area of the hull surface, rather than point comparisons as have been performed in the past. The experimental measurements are performed with the Dynamic Deformation Instrumentation System (DDIS) that was developed for TARDEC. Numerical simulations of the test article attached to Southwest Research Institute’s Landmine Test Fixture were performed with LS-DYNA using an empirical blast-loads model. The specific example highlighted in this paper is the deformation by blast testing of a hull component
Walker, James D.Grosch, Donald J.Chocron, SidneyGrimm, MattCarpenter, Alexander J.Moore, Thomas Z.Weiss, CarlBigger, Rory P.Mathis, James T.McLoud, Katie
ABSTRACT This paper provides detail of the system architecture and systems engineering process utilized by AM General to develop a new stability control system that satisfies all military and federal safety requirements for wheeled, light tactical vehicles
Tackett, WendellClark, Mark
ABSTRACT This paper focuses on the use of PKI within intra vehicle networks in compliance with the VICTORY specification. It will describe how the use of PKI within vehicle networks can leverage and integrate with the other PKI efforts across the Army to ensure a consistent and interoperable solution. It will also describe some of the challenges with implementing PKI as part of VICTORY and introduce possible solutions to address these challenges
Fedorchak, Bob
ABSTRACT This paper presents a Mobility Virtual Environment (MoVE) for testing multi-vehicle autonomy scenarios with real and simulated vehicles and pedestrians. MoVE is a network-centric framework designed to represent N real and M virtual vehicles interacting and possibly communicating with each other in the same coordinate frame with a common timestamp. The goal is to provide a spectrum of test options from simulation-only to semi-virtual, to all real vehicles and pedestrians. A multi-vehicle test fidelity metric is defined that captures scenario realism more accurately than traditional hardware-in-the-loop style terminology. MoVE’s simple built-in vehicle models are described that provide positions in both latitude and longitude and Cartesian UTM XYZ coordinates. Live GPS inputs from real people or vehicles allow both virtual and real vehicles to interact through the virtual environment. Test results are presented from three experiments with real and virtual vehicles and
Compere, MarcAdkins, KevinLegon, OttoCurrier, Patrick
ABSTRACT In this paper, we propose a new approach to developing advanced simulation environments for use in performing human-subject experiments. We call this approach the mission-based scenario. The mission-based scenario aims to: 1) Situate experiments within a realistic mission context; 2) Incorporate tasks, task loadings, and environmental interactions that are consistent with the mission’s operational context; and 3) Permit multiple sequences of actions/tasks to complete mission objectives. This approach will move us beyond more traditional, tightly-scripted experimental scenarios, and will employ concepts from interactive narrative as well as nonlinear game play approaches to video game design to enhance the richness and realism of Soldier-task-environment interactions. In this paper, we will detail the rationale for adopting such an approach and present a discussion of significant concepts that have guided a proof-of-concept test program of the mission-based scenario, which we
Lance, BrentVettel, JeanPaul, VictorOie, Kelvin S.
Items per page:
1 – 50 of 2690