Browse Topic: Two or three wheeled vehicles

Items (1,554)
Two wheeler is important and essential transportation mode in many of the countries across the globe. Designing a motorcycle with better riding comfort and minimal vibration are thus a major challenge for engineers now a day. Engine and road excitations are two source of vibration acting on motor bike or scooter both. These vibrations are transmitted to the chassis, sub chassis, aesthetic parts and then to the rider and pillion. Unwanted vibrations will create discomfort to the rider/pillion and produce noise. Hence, these need to be minimized. This study is focus on diagnosis and control of output vibration response of sub chassis/aesthetic parts due to engine unbalanced excitation force. There are numerous parameter of motor bike/scooter that governs the vibration response of sub chassis/aesthetic parts. Engine unbalanced inertia force characteristics and their transmission to rider and pillion has been studied and reported here. Environmental benefit demands for a complete noise
Khare, Saharash
Wheel Force Transducers (WFT) are precise and accurate measurement devices that seamlessly integrate into any vehicle. They can be applied in numerous vehicle applications for both on-road and in laboratory settings. The instrumentation requires replacing an original equipment manufacturer (OEM) wheel with a custom WFT system which is specific to the wheel hub design. An ideal design will minimally impact a vehicle's dynamics, but the vehicle system is inherently modified from the mass of the measurement device. Research and technical documentation have been published which provide conclusions explaining reduction in the unsprung mass reduces dynamic wheel load. However, there doesn’t appear to be clear compensation techniques for how a modified unsprung mass can be related to the original system, thus allowing the WFT signals to be more accurate to the OEM wheel forces. An experimental study was performed on a prototype motorcycle to better understand these differences. An
Frisco, JacobLarsen, WilliamRhudy, ScottOosting, NicholasLaurent, Matthew
The transfer of conditions and regulations for RDE testing from passenger cars to motorcycles is a non-trivial undertaking. Motorcycles exhibit significant differences in construction and usage compared to cars, necessitating a distinct set of requirements for equipment and methodology. Currently available PEMS are hindered by their relatively large size and weight due to the embedded measurement technology and external power supply. The weight of, at least 50kg, poses a substantial additional load, leading to a deviation and, on average, higher load collective of the engine during RDE measurement rides. Beyond these structural parameters, the actual propulsion system and subsequent exhaust system introduce another challenge when employing PEMS on motorcycles. An unfavorable combination of the ratio of engine displacement to the volume of the exhaust system and long or unequal ignition intervals leads to pulsations, which has a considerable impact on the differential pressure-based
Schurl, SebastianKeller, StefanLankau, MathiasHafenmayer, ChristianSchmidt, StephanKirchberger, Roland
With growing global concern about climate change, the challenge is to achieve carbon neutrality (CN) in motorcycles (MCs) as well, and various approaches are needed to achieve CN. For powertrains using internal combustion engines (ICEs), CN can be achieved by adopting CN fuels such as e-fuel and biofuel, but considering cost and supply, it is important to develop CO2 reduction technologies for ICEs. Compared with 4-wheel vehicles, MCs are required to be powerful, lightweight, compact and capable of travelling long distances, the CO2 reduction technologies that can be adopted tend to be a trade-off between dynamic performance and CO2 reduction, and a challenge is to achieve a high level of both requirements. We decided to focus on middle-class sports MCs, which require particularly high dynamic performance, and to develop CO2 reduction technologies. As a technology development target, CO2 emissions were set at 65 g/km in the worldwide-harmonized motorcycle test cycle (WMTC) class 3-2
Makita, NaokiTorigoshi, MasakiTakahashi, ToshihikoTakase, Hiroki
Hybrid powertrain for motorcycles has not been widely adopted to date but has recently shown significant increased interest and it is believed to have great potential for fuel economy containment in real driving conditions. Moreover, this technology is suitable for the expected new legislations, reduced emissions and enables riding in Zero Emissions Zones, so towards a more carbon neutral society while still guaranteeing “motorcycle passion” for the product [1, 2]. Several simulation tools and methods are available for the concept phase of the hybrid system design, allowing definition of the hybrid components and the basic hybrid strategies, but they are not able to properly represent the real on-road behaviour of the hybrid vehicle and its specific control system, making the fine tuning and validation work very difficult. Motorcycle riders are used to expect instant significant torque delivery on their demand, that is not properly represented in legislative cycles (e.g. WMTC); rider
Antoniutti, ChristianSweet, DavidHounsham, Sandra
The two-wheeler industry features a diverse range of transmission systems catering to varied riding preferences and market demands. Manual transmissions offer direct gear control, favored by enthusiasts for its precision and customizable performance. Automatic transmissions simplify riding, especially in urban settings, eliminating manual gear shifts and reducing rider fatigue. Understanding the dynamics of transmission systems in the two-wheeler space is crucial for manufacturers, engineers, policymakers, and riders alike. It informs product development, regulatory compliance efforts, and market positioning initiatives in an increasingly competitive and innovation-driven industry landscape. DCT (Dual Clutch Transmission) and manual transmissions represent extremes in rider engagement, automation, and cost. While DCT offers seamless gear changes and convenience at a higher price point, manual transmissions provide direct control and a tactile experience with lower initial costs. Riders
Kundu, Prantik
The rear swing arm, a crucial motorcycle component, connects the frame and wheel, absorbing the vehicle’s load and various road impacts. Over time, these forces can damage the swing arm, highlighting the need for robust design to ensure safety. Identifying potential vulnerabilities through simulation reduces the risk of failure during the design phase. This study performs a detailed fatigue analysis of the swing arm across different road conditions. Data for this research were collected from real-vehicle experiments and simulation analyses, ensuring accuracy by comparing against actual performance. Following CNS 15819-5 standards, road surfaces such as poorly maintained, bumpy, and uneven roads were tested. Using Motion View, a comprehensive multi-body dynamic model was created for thorough fatigue analysis. The results identified the most stress-prone areas on the swing arm, with maximum stress recorded at 109.6N on poorly maintained roads, 218.3N on bumpy surfaces, and 104.8N on
Chiou, Yi-HauHwang, Hsiu-YingHuang, Liang-Yu
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
Schmitt, Stefan
The exhaust mass flow measurement for motorcycles poses a unique challenge due to presence of pulsations arising from an unfavorable combination of the engine displacement-to-exhaust system volume ratio and the long or even unequal ignition intervals. This pulsation phenomenon significantly impacts the accuracy of the differential pressure-based measurement method commonly employed in on-board measurement systems for passenger cars. This paper introduces an alternative approach calculating exhaust mass flow in motorcycles, focusing on statistical modelling based on engine parameters. The problem at hand is rooted in the adverse effects of pulsations on the differential pressure-based measurement method used in the EFM. The unfavorable combination of engine characteristics specific to motorcycles necessitates a novel approach. Our proposed alternative involves utilizing readily available OBD parameters, namely engine speed and calculated engine load as there is mostly no data for intake
Schurl, SebastianSturm, StefanSchmidt, StephanKirchberger, Roland
This study presents a two-step method for estimating motorcycle tire lateral forces, which are critical to the safety of driver assistance systems. In the pre-filtering stage, a partial attitude of the motorcycle is estimated using a Kalman filter and a kinematic model. In the observation stage, the side slip angle and subsequently the tire lateral forces are provided by a sliding mode observer. It extends previous research by incorporating both out-of-plane and in-plane dynamics. The paper also proposes an approach for selecting the Kalman filter parameters. An approach to identify the stochastic sensor errors of the inertial measurement unit is presented. The identified parameters are used as a basis for the selection of the covariances. The overall study provides a practical implementation strategy and demonstrates its applicability in real-world scenarios. The experiments show the results of the lateral force estimation and its relation to the friction ellipse. The effectiveness of
Winkler, AlexanderGrabmair, GernotReger, Johann
In this study, an initial approach using deep reinforcement learning to replicate the complex behaviors of motorcycle riders was presented. Three learning examples were demonstrated: following a target velocity, maintaining stability at low speeds, and following a target trajectory. These examples serve as a starting point for further research. Additionally, the proficiency of the constructed models was examined using rider proficiency evaluation methods developed in previous studies. Initial results indicated that the models have the potential to mimic real rider behaviors; however, challenges such as differences between the model’s output and what humans can produce were also identified for future work.
Mitsuhashi, YasuhiroMomiyama, YoshitakaYabe, Noboru
The possibilities and challenges of adding a rider model to the motorcycle dynamics simulation were investigated for the future planning of a full virtual test. The human model was added to a multi-body dynamics model that reproduces the equations of motion of a motorcycle, called the 10 degrees of freedom (10-DoF) model. The human model is composed from multiple masses and joints, and the steering angle can be controlled by determining the angle of the arms and shoulder. To study the effect of this model, three distinct simulations were carried out: ‘the eigenvalue analysis’, ‘the steady-state circular test simulation’ and ‘the slalom running simulation’. In the eigenvalue analysis, the eigenvalues of the wobble mode shifted to a stable side in the root locus when both hands were fixed on the handlebars. As a result of the slalom running simulation, the response of the handlebar control through the human model produced a more convex trajectory than a direct control of the steering
Ueki, MotohitoTakayama, AkihiroYabe, Noboru
The weave mode of a motorcycle is known to be affected by the flexibility of the vehicle frame. The weave mode has been shown to be more unstable in the 10-DOF model than in the 4-DOF model. However, it is not clear why the weave mode would be unstable, given the six different frame flexibilities. In this study, the authors analyzed the stability of the weave mode in a 4-DOF model when the same was integrated with two types of frame flexibilities. In the vehicle specifications used in the analysis, the combination of the bending flexibility of the front forks and the torsional flexibility of the main frame destabilizes the weave mode. The analysis results show that the phase delay of the front tire lateral force is caused by the phase delay of the steering angle. The combined bending flexibility of the front forks and the torsional flexibility of the main frame results in a large phase lag in the steering angle.
Haraoka, ReiyaKatayama, TsuyoshiYoshino, Takahiko
To prevent global warming, reducing CO2 emissions is the most important issue, and for this reason, efforts are needed to realize a carbon neutral society. Since hydrogen can be stored and transported, and does not emit carbon dioxide when burned, it has attracted particular attention as a fuel for internal combustion engines in recent years and has been studied in various industrial fields[1]. However, many of these studies have been conducted on commercial and passenger vehicle engines, and there has not yet been sufficient validation on small motorcycle engines. Therefore, in this study, a single cylinder gasoline engine for two-wheeled vehicles was converted into a hydrogen engine with port injection, and the abnormal combustion, which is a problem of hydrogen combustion, was verified. In this report, the parameters affecting the abnormal combustion are summarized based on the experimental results, and the reason why the parameters are a factor of the abnormal combustion generation
Suzuki, HaruakiInui, TaichiOkado, TakanoriTamura, ShoheiKagawa, YutaNinomiya, Yoshinari
To achieve carbon neutrality, manufacturers need to estimate Greenhouse Gas (GHG) emissions generated throughout the life cycle of motorcycles, namely the Carbon Footprint of Product (CFP). We developed a method that allows calculation of the per-unit CFP and the total CFP of sales volume of motorcycles with a common formula, and also enables the estimation of their future values. First, we made it possible to calculate the per-unit CFP of each individual model by setting factors that we quantified the characteristics of motorcycles such as material composition and replacement parts and incorporating them into the calculation formula. Next, we enabled the calculation of the total CFP of sales volume from the present to the future by standardizing the specs of individual models and calculating the CFP by product category and multiplying the sales volume. Furthermore, we made it possible to simulate future CFP according to scenarios of expansion of environmental protection actions such
Mori, YuichiKawatsu, HirotakaYamaguchi, TakumiTanaka, KazuhikoAoki, ToshikiNiimura, Ryuta
The main drivers for powertrain electrification of two-wheelers, motorcycles and ATVs are increasingly stringent emission and noise limitations as well as the upcoming demand for carbon neutrality. Two-wheeler applications face significantly different constraints, such as packaging and mass targets, limited charging infrastructure in urban areas and demanding cost targets. Battery electric two wheelers are the optimal choice for transient city driving with limited range requirements. Hybridization provides considerable advantages and extended operation limits. Beside efficiency improvement, silent and zero emission modes with solutions allowing fully electric driving, combined boosting enhances performance and transient response. In general, there are two different two-wheeler base categories for hybrid powertrains: motorcycles featuring frame-integrated internal combustion engine (ICE) and transmission units, coupled with secondary drives via chain or belt; and scooters equipped with
Schoeffmann, W.Fuckar, G.Hubmann, C.Gruber, M.
The windscreen is one of the key elements to enhance passenger comfort of touring motorcycle. The clarity through the windscreen should not discomfort the rider. The discomfort we discuss here mainly refers to three factors: the “distortion,” the “blur,” and the “transparency.” Introduced in this paper is the technical measures to achieve sufficient clarity by the injection molding method. Firstly, with respect to the “distortion,” we determined the main cause was local unevenness of plate thickness. As the uneven thickness were related to the accuracy of the die, we clarified the tolerable zone and carried out higher precision machining of the die to satisfy the requirements. Regarding the “blur,” we analyzed the refractive power of the windscreen and found the main cause of blur is the microscopic roughness on the surface. As the microscopic roughness were attributable to the die surface, we clarified the tolerable zone and established the polishing conditions satisfactory for the
Yamada, AtsushiEndo, Sakae
There are many riders who drive motorcycles on winding mountain roads and caused single motorcycle traffic accidents on curved roads by lane departure. Driving a motorcycle requires subtle balancing and maneuvering. In this study, in order to clarify the influence of lane departure caused by inadequate driving maneuvers against road alignment, the authors analyzed the required curve initial operation and driving maneuvers in curves depending on the traveling speed using a kinematics simulation for motorcycle dynamics. In addition, it was analyzed how inadequate driving maneuvers for curved roads can easily cause lane departure. As a result, it shows that the steering maneuvers and the lean of motorcycle body during the curves are highly affected by the vehicle speed, and the required maneuvers increases rapidly with increasing speed. The inadequate maneuver in the curves, especially for the lean of motorcycle body and steering torque, even by 10%, may cause failure to follow the
Kuniyuki, HiroshiTakechi, So
With growing concern to protect the atmosphere, the stringency of vehicle emission regulations is increasing annually [1,2]. Notably, evaluations of real driving emissions (RDEs) using portable emission measurement systems (PEMS) have been mandated for light duty vehicles (LDVs) in regions, such as the EU, China, India, and Japan [3,4]. Additionally, RDEs have attracted attention in motorcycles and was investigated in the effect study of the environmental step Euro 5 [5]. However, some inherent problems remain with RDE measurements using the PEMS on motorcycles. Due to the smaller engine displacement and fewer cylinders associated with motorcycles, resulting in lower exhaust gas flow rates, the measurement accuracy of the PEMS may be lower than that of the LDVs. Furthermore, exhaust emissions can be affected by the additional weight of the PEMS when mounted on motorcycles. This study investigated the accuracy of the PEMS in measuring motorcycle emissions by simultaneously measuring
Matsuoka, MasahiroHirai, HiroshiIto, Takayuki
In commercially available electric motorcycles, there is a notable shift in the cooling method, moving from air cooling to water cooling, and in the winding method, moving from concentrated winding to distributed winding, as the output increases. This shift occurs around 8 to 10 kW. However, there is a paucity of empirical investigations examining these combinations to ascertain their optimality. In order to verify this trend, a verification model has been constructed which allows for the comparison of the capacity and weight of the motor and cooling system according to the vehicle’s required output and thermal performance. A comparison and verification of the combinations of winding methods (concentrated winding or segment conductor distribution winding) and cooling systems (water-cooled or air-cooled) was conducted using the model that had been constructed. In the motor designed for this study, when the maximum output of the vehicle was 35 kW or less (European A2 license), the total
Otaki, RyotaTsuchiya, TeruyukiSakai, YuYamauchi, TakuyaShimizu, Tsukasa
This SAE Recommended Practice provides uniform definitions and classifications for motorcycles and motorized three-wheel cycles.
Motorcycle Technical Steering Committee
Steering feeling plays a critical role in the driving experience and is one of the most significant topics during a new vehicle development process. To reach a consensus for the customers’ satisfaction in both the subjective and objective characteristics in a particular market segment, there have been several studies to investigate the correlations between subjective and objective evaluations of on-center steering feeling. However, it is still not clear how to determine the steering characteristic based on the correlations. In this paper, a series of new correlations between subjective and objective evaluations are built, which focus on steering stiffness, on-center feel, torque symmetry, torque ripple etc. Firstly, a set of objective metrics which are followed by professional test drivers or tuning experts have been extracted from 12 vehicles’ on-center handling test based on ISO 13674-1 2023, these vehicles covering different motorcycle type, various brands and diverse tuning styles
Jin, AnkangLuo, KaijieYang, JianyuanZheng, Yue
SAE J3230 provides Kinematic Performance Metrics for Powered Standing Scooters. These performance metrics include many tests which require specific conditions including flat pavement with a near zero slope, drivers of specific height and weights, and data acquisition equipment. In order to determine the efficacy of replicating SAE J3230 tests in a laboratory setting, a device called the Micromobility Device Thermo-Electric Dynamometer was used alongside outdoor tests to provide a comparison of scooter performance in these two testing applications. Based on the testing outcomes, it can be determined whether SAE J3230 and similar standards for other micromobility devices can be replicated in a lab-based setting, saving time, operator hazard, and providing more thorough data outputs.
Bartholomew, MeredithAndreatta, DaleZagorski, ScottHeydinger, Gary
The Autocycle is a style of vehicle that most often utilizes a reverse-tricycle design with two front wheels and a single rear wheel. Modern autocycles in the United States are often utilized in a recreational role. This work presents physical measurements of two modern autocycles for use in accident reconstruction and pursues a deeper understanding of the unique attributes and handling associated with these vehicles. Vehicles were used to measure physical properties and subjected to cornering tests presented herein, and the data is compared to that for a conventional automobile. Observations on tire scuff marks are made from cornering tests unique to these vehicles. Strengths and challenges with this type of vehicle design are presented for various use cases as compared to conventional automobiles. Data and knowledge from this study are published to aid accident reconstruction efforts.
Warner, WyattSwensen, GrantWarner, Mark
In order to manage the serious global environmental problems, the automobile industry is rapidly shifting to electric vehicles (EVs) which have a heavier weight and a more rearward weight distribution. To secure the handling and stability of such vehicles, understanding of the fundamental principles of vehicle dynamics is inevitable for designing their performance. Although vehicle dynamics primarily concerns planar motion, the accompanying roll motion also influences this planar motion as well as the driver's subjective evaluation. This roll motion has long been discussed through various parameter studies, and so on. However, there is very few research that treats vehicle sprung mass behavior as “vibration modes”, and this perspective has long been an unexplored area of vehicle dynamics. In this report, we propose a method to analytically extract the vibration modes of the sprung mass by applying modal analysis techniques to the governing equations of vehicle handling and stability
Kusaka, KaoruYuhara, Takahiro
The rapid adoption of electric vehicles (EVs), driven by stricter emissions norms, is transforming both urban and rural mobility. However, significant challenges remain, particularly concerning the charging infrastructure and battery technology. The limited availability of charging stations and the reliance on current high-energy-density cells restrict the overall effectiveness of the e-mobility ecosystem. These constraints lead to shorter vehicle ranges and longer charging times, contributing to range anxiety—one of the most critical barriers to widespread EV adoption. Adding to these challenges, auxiliary systems, especially air-conditioning (AC) systems, significantly impact energy consumption. Among all auxiliary systems, the AC system is the most energy-intensive, often exacerbating range anxiety by reducing the distance an EV can travel on a single charge. Hence, it is essential to focus on enhancing the efficiency of AC systems. This involves redefining and optimizing system
Sen, SomnathJadhav, YashSingh, KaramjeetSorte, SwapnilAnwar, Md Tahir
Two wheelers motorcycles are used for many purposes e.g. commuting from one place to another, long highway rides, racing and off-roading. Motorcycles which are used in off-road conditions require higher suspension strokes to absorb large oscillations due to terrain conditions. These motorcycles undergo jumps of varying heights and different vehicle orientations. In some of the dynamic situations front wheel may land on the ground before the rear and in other cases it may be vice versa. To make sure that the vehicle is durable enough to withstand loads in such operating conditions, vehicle drop test was developed in test lab where vehicle is dropped from predefined heights in both front & rear wheel landing conditions. Same test case is simulated in multibody dynamics to capture loads at important connections of the frame. This paper presents the correlation exercise carried out to validate MBD model and simulation process with test data captured during lab test. Accelerations at
Jain, Arvind KumarNirala, Deepak
The study of vibrations in the structures of vehicles are very important to ensure its quality and integrity; thus, the study of the dynamic behavior of a motorcycle chassis is highly significant for their improvement. For that study, the modal analysis allows us to obtain the dynamic properties of the structure, such as its inertia and stiffness. Likewise, the damping is also an important parameter, which could be obtained by the frequency response function (FRF) of an impact load. In a motorcycle the engine, producing a broad frequency range, is the main source of excitation. A harmonic analysis with a shaker producing a frequency sweep allows one to better understand the vibratory transfer function between the engine and all the parts of the motorcycle. The experimental modal analysis (EMA) was used to characterize the dynamic behavior of the chassis. For that, a software was developed to use in a commercial board for the acquisition and processing of the accelerometer’s signals to
Paiva, Antonio PedroVaz, MarioLopes, Hernâni
Driving speed affects road safety, impacting crash severity and the likelihood of involvement in accidents on highway bridges. However, their impacts remain unclear due to inconsistent topography and consideration of crash types. This study aimed to identify the status of accidents and factors associated with accidents occurring on bridges along the Mugling to Narayanghat highway segment in Nepal. The study area involves the selected highway segment stretching from Aptari junction (CH: 2+42) to Mugling junction (CH: 35+677). Spanning 33.25 km, the road traverses through both hilly and Terai regions. The study employs descriptive and correlation statistics to analyze crash data from 2018 to 2023, aiming to achieve its research objectives. The study reveals overspeeding as the primary cause of crashes, notably head-on and rear-end collisions. Two-wheelers frequently exceed the speed limit of 40 km/h limit (29–88 km/h), and four-wheelers do similarly (18–81 km/h), leading to overspeeding
Giri, Om PrakashShahi, Padma BahadurKunwar, Deepak Bahadur
The increasing reliance on lithium-ion batteries in manufacturing necessitates advanced monitoring techniques to ensure their longevity and reliability. Cloud technology offers a solution by enabling real-time data collection, analysis, and accessibility, facilitating thorough monitoring and predictive maintenance. Digital twin technology, creating a virtual replica of the physical battery system, provides a platform for simulating real-world conditions and predicting potential issues before they arise. By integrating sensor data and historical usage patterns, the digital twin model can accurately predict battery degradation, aiding in timely maintenance strategies. This proactive approach enhances battery operational efficiency and extends lifespan, leading to cost savings and improved safety. The paper explores using cloud-based monitoring systems to enhance the health estimation and management of lithium-ion batteries. A comprehensive feasibility study on adopting battery digital
Zeeshan, MohammadAkre, Vineet
This study presents a comprehensive structural analysis of a two-wheeler handlebar subjected to various loading conditions, aiming to evaluate its strength, durability, and safety. During operation, two-wheelers encounter multiple forces, making the handlebar a critical component for rider control and safety. The analysis begins by investigating the different types of loads experienced during typical riding scenarios, including static loads when the bike is stationary, and dynamic loads arising from rider movements, braking, and handling. The primary objective is to understand how these loads impact the handlebar's structural integrity. To achieve this, critical load cases are identified and categorized. Braking loads, which apply force primarily in the forward direction due to deceleration, are examined. Manhandling loads are analyzed to understand the multidirectional forces acting on the handlebar during transportation and parking. Additionally, vertical loads are assessed
Prajapati, AkashRathore, Avijit SinghBhaskara Rao, Lokavarapu
The usage of Electric Vehicles (EVs) and the annual production rate have increased significantly over the years. This is due to the development of rechargeable electrical energy storage system (battery pack), which is the main power source for EVs. Lithium-ion batteries (LIBs) pack is predominantly used across all major vehicle categories such as 2-wheelers, 3-wheelers and light commercial vehicle. LIB is one of the high energy-dense sources of volume. However, LIBs have a challenge to pose a risk of short circuits and battery pack explosions, when exposed to damage scenarios. In the present study, the controlled crash analysis is performed for various velocities ranging from 50 kmph to 72 kmph against an obstruction directly and at an offset from the wheel, so as to mimic the real-world crash of high-speed two-wheelers. The behavior of the battery enclosure is examined through evaluating the structural integrity of the battery enclosure used in a realistic two-wheeler after crash at
Venkatesan Sr, AiyappanNelson, N RinoHariharan Nair, Adarsh
The study investigates the performance of conventional two-wheelers versus Plug-in Hybrid Electric Vehicle (PHEV) two-wheelers in the context of light goods transportation. With growing environmental concerns and the push towards sustainable transportation solutions, the study focuses on understanding the effects of using electric or hybrid electric vehicles for small-capacity load carrying applications, in terms of parameters such as mileage, pollution, and range. A simulation model was created in MATLAB, where the various vehicle parameters can be changed and their effect on vehicle performance such as SOC, motor power, motor speed, vs input velocity can be studied. Similar tests were conducted in the real world and the results obtained were compared with simulation results. Results indicate that PHEV two-wheelers significantly reduce emissions and fuel consumption, while maintaining comparable performance in terms of speed and load capacity. However, the initial investment and
Kumar, V. SudhirR, BalamuruganPasupuleti, ThejasreeNatarajan, Manikandan
Environmental awareness is being fostered in every sector, with particular emphasis on the automotive industry. Conventional internal combustion engines are responsible for greenhouse gas emissions and health issues. Researchers are looking for alternative technologies to reduce carbon footprint and for a green environment. In this study, electric drivetrain is designed for 20% range extension and retrofitted in conventional two-wheeler. An effective control technique has been developed, thoroughly tested, and effectively implemented on the two-wheeler. The hybrid drivetrain architecture is assessed for complexities such as the required space for the battery and the location for fitting the electric motor. During low-speed conditions, the electric motor reduced the emissions and minimized fuel consumption. Consequently, the overall utilization of internal combustion engines at low-speed conditions has decreased, leading to a decrease in the vehicle's fuel consumption and exhaust gases.
Banad, Chandrashekhar BDevunuri, SureshNair, Jayashri NarayananHadagali, BalappaPrasad, Gvl
The aim of this study is to compare possible approaches that support the goal of achieving a carbon-neutral society in the mobility sector, with a specific focus on the two-wheel segment of the mobility sector. One of the key considerations in the mobility sector is the transition from a fossil fuel-based energy mix to a more renewable one. While there are numerous options available for achieving a carbon-neutral society in the four-wheel scenario, the two-wheel sector presents a different challenge due to a smaller number of available options. This study introduces a new comparison between full electric, gasoline, and ethanol-powered two-wheeled vehicles. It suggests that ethanol is a feasible solution for reducing carbon emissions in the two-wheel sector. The study includes an analysis of CO2 emissions for two-wheel vehicles using a life cycle approach, focusing on the technologies of full electric motorcycles, motorcycles with flex-fuel internal combustion engines running on
Pereira, Thaynara K. E.Lima, FlavioUema, Fabio K.Sambuichi, Eduardo M.
In highly populated countries two-wheelers are the most convenient mode of transportation. But at the same time, these vehicles consume more fuel and produces emissions in urban driving. This work is aimed at developing a hybrid two-wheeler for reducing fuel consumption and emissions by incorporating electric vehicle technology in a conventional two-wheeler. The hybrid electric scooter (HES) made consisted of an electric hub motor in the front wheel as the prime mover for the electrical system. The powertrain of the HES was built using a parallel hybrid structure. The electric system is engaged during startup, low speeds, and idling, with a simple switch facilitating the transition between electric and fuel systems. The HES was fabricated and tested through trial runs in various operating modes. Before conversion to a hybrid system, the two-wheeler achieved a mileage of 34 km/liter. After conversion, the combined power sources resulted in an overall mileage of 55 km. It was observed
Rajesh, K.Chidambaranathan, BibinRaghavan, SheejaAshok Kumar, R.Arunkumar, S.Soundararajan, GopinathMadhu, S.
Embarking on exploring the cutting-edge domain of smart bike innovations, this study focuses primarily on enhancing safety and security measures. Through meticulous development and implementation, it introduces seven pioneering features to curb accidents and thwart theft incidents. These transformative functionalities encompass a spectrum of aspects, including cautionary systems for side stand and helmet usage, advanced alcohol detection mechanisms, and robust anti-theft measures employing ID card and password protocols. Moreover, integrating speed control mechanisms and automated brake activation on encountering speed breakers further elevates the safety quotient of the smart bike. By harnessing a diverse array of sensors such as RF, REED, ultrasonic, and gas sensors, these features collectively pave the way for a paradigm shift in road safety standards. The report meticulously details the intricacies of design, execution, and cost estimation, underscoring the transformative impact of
Mallieswaran, K.Agaramudhalvan, S.Nithya, R.Shuruti, R.Radhika, S.
Object detection (OD) is one of the most important aspects in Autonomous Driving (AD) application. This depends on the strategic sensor’s selection and placement of sensors around the vehicle. The sensors should be selected based on various constraints such as range, use-case, and cost limitation. This paper introduces a systematic approach for identifying the optimal practices for selecting sensors in AD object detection, offering guidance for those looking to expand their expertise in this field and select the most suitable sensors accordingly. In general, object detection typically involves utilizing RADAR, LiDAR, and cameras. RADAR excels in accurately measuring longitudinal distances over both long and short ranges, but its accuracy in lateral distances is limited. LiDAR is known for its ability to provide accurate range data, but it struggles to identify objects in various weather conditions. On the other hand, camera-based systems offer superior recognition capabilities but lack
Maktedar, AsrarulhaqChatterjee, Mayurika
The article presents radio frequency electromagnetic emission measurement results from a Vehicle semi-anechoic chamber (VSAC) with different electric drivetrains under loading conditions. The measurements are conducted based on AIS 004 part-3 and CISPR 12 standard guidelines in which radiated broadband emissions in the frequency range of 30 MHz to 1 GHz using quasi-peak detector is measured [1, 2, 3]. Categories of vehicles such as Two-wheeler and three-wheeler drivetrains are selected for this study. Typically, the measurements are done with no road loading condition as per standard recommendation. However, in this paper, we studied the effects of loading conditions with the help of a chassis dynamometer. The study examines and discusses how various vehicle architectures behave under different conditions.
Mulay, Abhijit BM, GokulPatel, Jinay M
The introduction of unrestrained torso neck braces as a safety intervention for helmeted motorcycle riders has introduced a set of unsolved challenges. Understanding the injury prevention afforded by these devices depends on a reliable test methodology by which to critically evaluate their efficacy against the most common mechanisms of neck injury. An inverted pendulum test is proposed to evaluate compression flexion (CF), tension flexion (TF), and tension extension (TE) of the neck using a Hybrid III anthropomorphic test device (HIII ATD) neck and a motorcycle-specific ATD (MATD) neck. In addition to investigating methods to quantify the beneficial effects of a neck brace, potential adverse effects of such a device are evaluated by measuring and evaluating relevant neck response measures. To that end, measured data using a current neck brace were analyzed and applied to various injury criteria related to the ATD neck used to compare the injury risk predicted by each parameter. The
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
This SAE Standard provides test procedures, requirements, and guidelines for motorcycle turn signal lamps. It does not apply to mopeds.
Motorcycle Lighting Standards Committee
Items per page:
1 – 50 of 1554