Browse Topic: Environment
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
Fuel cell technology is gaining prominence as a clean, efficient, and scalable power solution for electric mobility, addressing key limitations of conventional battery systems such as long charging times, limited range, and declining performance in high-utilization applications. Proton Exchange Membrane Fuel Cells (PEMFCs) offer high energy density, rapid refueling, and robust operation under varying load conditions, making them particularly suitable for light electric vehicles such as two-wheelers, e-rickshaws & range extenders. Within the broader category of PEMFCs, air-cooled fuel cells present unique advantages for mobility applications. Their simplified architecture eliminates the need for complex liquid cooling systems, leading to lower system weight, reduced component count, and easier integration. This translates into a compact, lightweight, and cost-effective power unit—ideal for vehicles where space, weight, and maintenance constraints are critical. The market for air-cooled
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
The study emphasizes on development of Diesel Exhaust Fluid (DEF) dosing system specifically used in Selective Catalytic Reduction (SCR) of diesel engine for emission control, where a low pressure pumpless DEF dosing system is developed, utilizing compressed air for pressurizing the DEF tank and discharging DEF through air assisted DEF injection nozzle. SCR systems utilize Diesel Exhaust Fluid (DEF) to convert harmful NOx emissions from diesel engines into harmless nitrogen and water vapor. Factors such as improper storage, handling, or refilling practices can lead to DEF contamination which pose significant operational challenges for SCR systems. Traditional piston-type, diaphragm-type, or gear-type pumps in DEF dosing systems are prone to mechanical failures leading to frequent maintenance, repairs, and costly downtimes for vehicles. To overcome the existing challenges and to create a more reliable and simple DEF delivery mechanism the pumpless DEF Dosing system is developed. The
This paper presents the design and implementation of a Semi-Autonomous Light Commercial Vehicle (LCV) capable of following a person while performing obstacle avoidance in urban and controlled environments. The LCV leverages its onboard 360-degree view camera, RTK-GNSS, Ultrasonic sensors, and algorithms to independently navigate the environment, avoiding obstacles and maintaining a safe distance from the person it is following. The path planning algorithm described here generates a secondary lateral path originating from the primary driving path to navigate around static obstacles. A Behavior Planner is utilized to decide when to generate the path and avoid obstacles. The primary objective is to ensure safe navigation in environments where static obstacles are prevalent. The LCV's path tracking is achieved using a combination of Pure Pursuit and Proportional-Integral (PI) controllers. The Pure Pursuit controller is utilized as lateral control to follow the generated path, ensuring
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
This study develops a one-dimensional (1D) model to enhance transmission efficiency by evaluating power losses within a transmission system. The model simulates power flow and identifies losses at various stages such as gear mesh, bearing, churning, and windage losses. Using ISO/TR 14179, which provides a method for calculating the thermal transmittable power of gear drives with an analytical heat balance model, the 1D model ensures accurate thermal capacity evaluation under standard conditions. A key advantage of this 1D model is its efficiency in saving time compared to more complex 3D modelling, making it particularly useful during the conceptual stage of transmission system development. This allows engineers to quickly assess and optimize transmission efficiency before committing to more detailed and time-consuming 3D simulations. To validate the model, experimental tests were conducted at various motor speeds (RPM) and torque values, using high-precision sensors and dynamometers
This paper is to introduce a new catalyst family in gasoline aftertreatment. The very well-known three-way catalysts effectively reduce the main emission components resulting from the combustion process in the engine, namely THC, CO, and NOx. The reduction of these harmful emissions is the main goal of emission legislation such as Bharat VI to increase air quality significantly, especially in urban areas. Indeed, it has been shown that under certain operating conditions, three-way catalysts may produce toxic NH3 and the greenhouse gas N2O, which are both very unwanted emissions. In a self-committed approach, OEMs could want to minimize these noxious pollutants, especially if this can be done with no architecture change, namely without additional underfloor catalyst. In most Bharat VI gasoline aftertreatment system architectures, significant amounts of NH3 occur in two phases of vehicle driving: situations with the catalyst temperature below light-off, which appear after cold start or
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
When the flow of fluid within a high-pressure line is abruptly halted, pressure pulsations are generated. This phenomenon is known as the water hammer effect. This may lead to significant stress and, in the worst-case scenario, results in various types of failures within the highly pressurized system. Similar issues are observed in diesel high pressure fuel line where pressure is well above 1600 bar. Due to multiple injections on-off events, pressure pulsation gets created inside high pressure fuel lines (HPFL) which leads to problems such as high strain on high pressure fuel lines, mechanical damage, uneven fuel injected quantity, vibration beyond specification limits for rail pressure sensors or in worst case extreme noise. This is due to high pressure pulsation which occurs when fluid/fuel natural frequency resonates with structural HPFL natural frequency. In this work, A comparative FEA analysis is conducted to evaluate strain in two distinct high-pressure fuel lines, with pressure
Items per page:
50
1 – 50 of 42231