Browse Topic: Environment

Items (41,777)
Ethers are emerging as suitable mineral diesel replacements. A customized mechanical fuel injection system was used to investigate the dimethyl ether–fueled genset/tractor, and ~75% rated engine load was achieved over diesel. The in-cylinder pressure rise rate was about half for the dimethyl ether engine. However, the lower pressure generated in the high-pressure dimethyl ether line reduced brake thermal efficiency for the dimethyl ether engine. Dimethyl ether engines emitted lower nitrogen oxide emissions than baseline diesel except at higher loads and reduced nozzle opening pressure. Carbon monoxide emissions increased due to prolonged and incomplete combustion at higher loads with reduced nozzle opening pressure. Blowby gas leakage was lower for dimethyl ether than for baseline diesel engines. Overall, the genset/tractor engine could perform satisfactorily using a customized fuel injection system and will help achieve carbon neutrality from the various sectors using this technology.
Agarwal, Avinash KumarPal, ManojitValera, Hardikk
This study introduces an innovative intelligent tire system capable of estimating the risk of total hydroplaning based on water pressure measurements within the tread grooves. Dynamic hydroplaning represents an important safety concern influenced by water depth, tread design, and vehicle longitudinal speed. Existing intelligent tire systems primarily assess hydroplaning risk using the water wedge effect, which occurs predominantly in deep water conditions. However, in shallow water, which is far more prevalent in real-world scenarios, the water wedge effect is absent at higher longitudinal speeds, which could make existing systems unable to reliably assess the total hydroplaning risk. Groove flow represents a key factor in hydroplaning dynamics, and it is governed by two mechanisms: water interception rate and water wedge pressure. In both the shallow water and deep water cases, the groove water flow will increase as a result of increasing the longitudinal speed of the vehicle for a
Vilsan, AlexandruSandu, CorinaAnghelache, GabrielWarfford, Jeffrey
The results published in this paper emphasize on the study of three-way catalytic convertor for a 1.2 L turbocharged multi-point fuel injection gasoline engine. This paper takes us through the findings on methodology used for finalizing the brick configuration for catalytic convertor along with downstream oxygen sensor placement for emission control and methods applied for catalytic convertor selection with actual testing. The advantages of dual brick configuration over single brick with downstream sensor placed in between the bricks to enable faster dew point of sensor is explained using water splash test and design confirmation of better exhaust gas flow vortices concentration at the sensor tip for better sensing. Selection of catalytic convertor loading by testing its emission conversion capability and light-off behavior. NOx conversion capability across stoichiometric ratio (14.7:1 for petrol) on selected most operational zone was tested (±5% lambda) for the design-finalized
Arun Selvan, S. A.Paul, Arun AugustineSelvaraj, Manimaran
Due to the continuous decrease in fossil fuel resources, and drawbacks of some biofuel properties, in addition to restricted environmental concerns, it becomes a vital manner to innovate some approaches for energy saving and emission reduction. One of the promising approaches is to enhance the fuel properties via adding nanoparticles. Carbon nanotubes (CNTs) blended with biofuels get extensive investigations by researchers using conventional diesel engines at relatively limited operating regimes. The objective of this work is to extend these studies using diesel fuel, rather than biofuels, on a high-injection pressure (1400–1600 bar) common rail diesel engine at wide operating conditions and higher CNT concentrations. Experimental results show an increase in peak pressure up to 24.46% than pure diesel when using 100 ppm CNTs concentration. Also, BSFC has decreased by 33.19%, and BTE increased by 54.2% compared to pure diesel fuel at high speeds and loads. NOx and CO2 emissions raised
Moaayet, SayedNeseem, Waleed MohamedAmin, Mohamed IbrahimShahin, Motasem Abdelbaky
As the suitable substitutes for diesel in compression-ignition (CI) piston engines, hydrotreated vegetable oil (HVO), polyoxymethylene dimethyl ethers (PODEs), and bio-aviation fuel (BAF), among other oxygenated alternative fuels have been widely recognized due to higher cetane values. To explore the in-cylinder fuel spray dynamics and subsequent fuel–air entrainment of these fuels, experimental studies on near-field and full-field spray characteristics were carried out by the diffuser back-illumination imaging (DBI) method within a constant-volume chamber. The local velocity was inferred by momentum flux conservation and Gaussian radial profile assumption, and the dimensionless Jet number was introduced to qualify the strength of interaction within two-phase flow. It was found that the initial spray transitions from a “needle” to a larger spray head structure as injection pressure rises, especially with PODE3-5 exhibiting a stable “mushroom” structure due to its higher surface tension
Chen, HouchangJiang, JunxinHu, YongYu, WenbinZhao, Feiyang
A consequence of the automotive industry's shift to electrification is that a significantly higher percentage of a vehicle's lifecycle CO2 emissions occur during the production phase. As a result, vehicle manufacturers and suppliers must shift the focus of product development from the 'in-use phase only' to optimizing the complete product lifecycle. The proper design of a battery has the highest impact to all other phases following in the life cycle. It influences the selection of materials, the manufacturing, in-use and end of life, respectively the recycling and recycling yield for a circular economy. Using real-life examples, the paper will explain what the main parameters are necessary for designing a sustainable battery. What are the low hanging fruits to be considered? In addition, it will elaborate on the relation as well as the impacts to other KPIs like safety, costs and lifetime of the battery. Finally, it will round up in an outlook on how batteries will evolve in the future
Braun, AndreasRothbart, Martin
When a vehicle is driven at high speed, there exists intricate flow pattern and vortex shedding at the side window area with intense pressure fluctuation. A significant dynamic pressure difference between the vehicle's exterior and interior can render the side window sealing system vulnerable to aspiration. This susceptibility can lead to the generation of leakage noise, adversely affecting acoustic comfort in the vehicle's cabin. This paper delves into the aspiration properties of glassrun seal system under time-varying pressure difference. A nonlinear finite element model of the glassrun seal was established to simulate the quasi-static deformation of the sealing strip during installation process, which aims to obtain the deformed geometric shape and residual stress after this process. Then, the exterior flow field of the glassrun sealing area of a simplified vehicle model was calculated with CFD simulation to obtain the hydrodynamic pressure excitation acting on the outer surface of
Li, HanqiHe, YinzhiZhang, LijunZhang, YongfengYu, WuzhouJiang, ZaixiuBlumrich, ReinhardWiedemann, Jochen
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual
Rodrigues Ferraz Esteves, Ana RaquelCampos Magalhães, Eduardo MiguelBernardes de Almeida, Gilberto
Based on the objective and subjective experiment and finite element analysis, the influencing factors on the door closing sound quality of a heavy truck is analyzed and optimized. Results show that the loudness and sharpness can be reduced by increasing stiffness and damping of the door. The sound quality can be enhanced by increasing the pressure release area, which can decrease the air pressure resistance of dooring closing. By adding holes on the inner liner and changing the pressure release location, the dooring closing air pressure resistance is reduced from 289 Pa to 181 Pa. In terms of the rebound sound, the sound level is positively related to the door closing force. Increasing the protrusion height and decreasing the stiffness of the vibration absorber of the handle can improve the rebound sound quality. Optimizing the absorbers on both ends of the handle and adding damping material can decrease the loudness by 47.8%, reduce the cavity sound, reduce the rattle and improve the
Wang, JianZhang, YongshenFeng, LeiXie, ChenhaoLin, JieweiSun, Changchun
To predict the sound field produced by a vehicle horn requires a good source representation of it in the full vehicle model. This paper investigates the characterization of a physical vehicle horn by an inverse method called pellicular analysis. To implement this method, firstly an acoustic testing is performed to measure the sound pressure radiated from the horn at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual horn, the locations of each microphone and measured sound pressure data, pellicular analysis is adopted to recover a set of vibration pattern of the virtual horn. The virtual horn and the recovered vibration information are then incorporated in a full vehicle numerical model to simulate its exterior sound field. The validity of this approach is confirmed by comparing the prediction for a horn in a production vehicle to the corresponding physical test which is required to meet the Brazilian regulation CONTRAN 764/2018.
Yang, WenlongMelo, Andre
The rapid adoption of electric vehicles (EVs) necessitates updates to the automotive testing standards, particularly for noise emission. This paper examines the vehicle-level noise emission testing of a Nikola Class 8 hydrogen fuel cell electric semi-truck and the component-level noise emission testing needed to create a predictive simulation model using Wave6 software. The physical, component-level noise emission testing focused on individual cooling fans in a semi-anechoic chamber to assess their isolated noise contributions. With this data, an initial model was developed using spatial gradient statistical energy analysis, which successfully predicted pass-by noise levels based on varying fan locations and speeds. Real-world pass-by testing confirmed the model's accuracy across different cooling fan speeds. By leveraging advanced simulation techniques, engineers aim to enhance the accuracy and reliability of pass-by noise predictions through cost-effective studies of architectural
Passador, StephenWoo, SangbeomLiu, Ting-WeiDe La Vega Alonso, GerardoKim, James
A newly formulated fiber-based material was developed to offer a sustainable alternative to foam-based vehicle acoustic products. The fiber-based material was designed to be used in multiple vehicle acoustic applications, with different blends of the material available depending on the application. It performs well as an engine bay sound absorber due to its high heat tolerance and good absorption performance. A study was conducted to evaluate the sound absorption performance of this fiber-based material, specifically the engine bay blends, in comparison to that of current foam-based products. The results from this study show that the sound absorption performance of this new fiber-based material can match that of current foam-based materials while providing a sustainable and fully recyclable product, unlike the foam.
Krugh, Jack
Compressed Natural Gas (CNG) engines are emerging as a viable alternative to gasoline and diesel in heavy commercial and passenger transport worldwide. They offer reduced CO₂ emissions and support energy independence in regions rich in natural gas. In India, enhanced CNG infrastructure and strict emission regulations have driven OEMs to develop CNG vehicles across all segments. Moreover, from a noise and vibration standpoint, CNG vehicles are expected to deliver cabin refinement comparable to that of their fossil fuel counterparts. However, one of the major challenges associated with CNG vehicles is the excitation due to additional components like CNG Pressure Regulator, Injector et al. The operational metallic/pulsation noises are generally higher as compared to liquid fuels like gasoline due to dry nature of the CNG fuel. This paper describes in detail the pulsation noise phenomena encountered during one of the late-stage vehicle development projects. An experimental root cause
Chatterjee, JoydeepRavindran, Mugundaram
The unsteady wind conditions experienced by a vehicle whilst driving on the road are different to those typically experienced in the steady-flow wind tunnel development environment, due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. This paper presents an experimental approach using a large SUV-shaped vehicle to assess the effect of unsteady wind on the modulated noise performance, commonly used to evaluate unsteady wind noise characteristics. The contribution from different geometric modifications were also assessed. The approach is extended to assess the pressure distribution on the front side glass of the vehicle, caused by the aerodynamic interactions of the turbulent inflow in straight and yawed positions, to provide insight into the noise generation mechanisms and differences in behaviour between the two environments. The vehicle response to unsteady wind
Jamaluddin, Nur SyafiqahOettle, NicholasStaron, Domenic
There is no need to recall how the electrification trend of transport facilities has tightened the requirements around acoustic comfort. Within the automotive industry, these targets are more challenging for Heating, Ventilation and Air Conditioning systems for which passengers are in the frontline of noise emissions inside the car cabin. The complexity of the requirements and specifications set by car manufacturers and suppliers stems from a dual aspect. First is quantitative based on the sound pressure level, whether it's the overall level or 1/3 octave band spectra. The second is purely subjective, based on the perceived noise quality by stakeholders and final customers worldwide. During development phases, low tonal noises are frequently encountered on these systems which might induce discomfort to the passengers. The experimental investigations usually point to an aerodynamic origin, which prompted this research activity. The purpose of this work is to analyze and understand the
Bennouna, SaadAlaoui, MohamedHenner, Manuel
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Freeman, ToddEngels, BretThuesen, Ben
Items per page:
1 – 50 of 41777