Browse Topic: Environment

Items (41,978)
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
Ostberg, DavidBradford, Bill
ABSTRACT State-of-the-art Diesel engines used for on-highway operation are integrated systems containing multiple subsystems for performance and emissions enhancements. The drive to lower tailpipe emissions on on-highway engines drives system complexity which is both undesired and unnecessary for military ground vehicles. There are, however, on-highway technologies such as high pressure fuel injection systems and advanced turbocharger systems that allow improving the engines’ efficiency and therefore lowering its fuel consumption. The aforementioned technologies are currently available and present possible near term opportunities for military ground vehicles. The adaptation to allow reliable operation in military vehicles will be discussed as part of this near term view. The authors will also discuss the electronic controls architecture requirements that come along with these sophisticated technologies and discuss the advantages and opportunities that present themselves using advanced
Tatur, MarekTomazic, DeanKoehler, Erik
ABSTRACT Vehicle prognostics are used to estimate the remaining useful life of components or subsystems, based on a limited number of measured vehicle parameters. Ideally, sensors would be available for every component and failure mode of interest, such that accurate data could be measured and used in prognostic estimates. However, this is impractical in terms of the number of sensors required and the costs to install such a system and maintain its integrity. A better solution is to relate the loading on a specific component to more generic vehicle behavior. This paper reviews a methodology referred to as the “Durability Transfer Concept”, which suggests that damage, or severity of usage, at various points of interest on a vehicle can be predicted simply from measured accelerations at some nominal location – a wheel axle, for example. Measured accelerations are double integrated to get displacements. Those displacements are then filtered using the Rupp or Lalanne method. A transfer
Halfpenny, AndrewHussain, ShabbirMcDougall, ScottPompetzki, Mark
ABSTRACT The majority of commercial off the shelf (COTS) diesel engines rely on EGR to meet increasingly stringent emissions standards, but these EGR systems would be susceptible to corrosion and damage if JP-8 were used as a fuel due to its high sulfur content. Starting with a Cummins 2007 ISL 8.9L production engine, this program demonstrates the modifications necessary to remove EGR and operate on JP-8 fuel with a goal of demonstrating 48% brake thermal efficiency (BTE) at an emissions level consistent with 1998 EPA standards. The effects of injector cup flow, improved turbo match, increased compression ratio with revised piston bowl geometry, increased cylinder pressure, revised intake manifold for improved breathing, and piston, ring and liner designs to reduce friction are all investigated. Testing focused on a single operating point, full load at 1600 RPM. This engine uses a variable geometry turbo and high pressure common rail fuel system, allowing control over air fuel ratio
Lutz, TimModiyani, Rajani
ABSTRACT To support customers during product development, General Dynamics Land Systems (GDLS) utilizes a set of Operations Research/Decision Support processes and tools to facilitate all levels of decision-making aimed at achieving a balanced system design. GDLS employs a rigorous Structured Decision (SD) process that allows for large, highly complex or strategic decisions to be made at the system-of-systems, system, and/or subsystem level. Powerful, robust tools -the Advanced Collaborative System Optimization Modeler (ACSOM) and Logical Decisions for Windows (LDW) - are used to make relatively quick assessments and provide recommendations. The latest ACSOM algorithms have increased the response time for trade study analysis by over 2,000 times and future versions will incorporate logistics analysis helping to reduce vehicle Life Cycle Cost
Gerlach, JamesHartman, GregoryWilliams, DarrellParent, Jeffery
ABSTRACT Researchers at Caterpillar have been using Finite Element Analysis or Method (FEA or FEM), Mesh Free Models (MFM) and Discrete Element Models (DEM) extensively to model different earthmoving operations. Multi-body dynamics models using both flexible and rigid body have been used to model the machine dynamics. The proper soil and machine models along with the operator model can be coupled to numerically model an earthmoving operation. The soil – machine interaction phenomenon has been a challenging matter for many researchers. Different approaches, such as FEA, MFM and DEM are available nowadays to model the dynamic soil behavior; each of these approaches has its own limitations and applications. To apply FEA, MFM or DEM for analyzing earthmoving operations the model must reproduce the mechanical behavior of the granular material. In practice this macro level mechanical behavior is not achieved by modeling the exact physics of the microfabric structure but rather by
Alsaleh, Mustafa
ABSTRACT The department of defense currently uses a number of models of vehicle start batteries with the “6T” form factor. These batteries are typically found in almost every vehicle in the DOD fleet and other systems that require 28VDC power. The use of power and energy on the battlefield is significantly changing and the Warfighter now requires a “start” battery that is used for more than just starting, lighting and ignition (SLI) for the vehicle. Lithium ion battery technologies are showing great promise in addressing these challenges by providing higher power capability for extended silent watch, battery monitoring and extended cycle life. One concern, however, is their ability to operate at low temperatures. One of the most challenging aspects of battery use in military applications is their operation at extreme high and low temperatures. These wide temperature swings can potentially have a dramatic effect on cycle life and performance. One significant concern, especially for
Marcel, MikeKnakal, TonyHelm, JeffFagan, BaileyAlexander, Les
ABSTRACT TIAX is developing laminated prismatic lithium-ion (Li-ion) cell technology capable of rapid charging at low temperature (to -50 °C) to replace current lead-acid vehicle batteries. The novel cells are based on TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and novel electrolyte formulation, and target cell-level energy content greater than 90 Wh/kg and 250 Wh/l. CAM-7 cathode material promises significant boost in power and run time of Li-Ion batteries for a wide range of DoD applications, and is now being commercialized by a separate company, CAMX Power, which is scaling up production in a 50 metric ton per year plant installed in Massachusetts
Ofer, DavidDalton-Castor, SharonNation, LeahPullen, AdrianRempel, JaneBarnett, BrianSriramulu, Suresh
ABSTRACT The M109A7/M992A3 Paladin Integrated Management (PIM) is a sustainment program designed to bring the M109 Family of Vehicles (FOV) up-to-date and extend the service life of the fleet. PIM consists of the sustainment and upgrade of two military tracked vehicles; the Paladin M109A6 Self Propelled Howitzer (SPH) and the M992A2 Carrier Ammunition, Tracked (CAT). The M109A7/M992A3 program is engineered to improve readiness, avoid component obsolescence, and increase sustainability. These changes will increase the performance of the M109A7/M992A3, eliminate obsolescence issues associated with supplying new parts to the M109A6 and M992A2, and ease the logistics burden within the Artillery Brigade Combat Team (ABCT) through commonality of spares parts. The PIM project has been a multi-phase project with development expected to continue into 2015
Bailey, BruceMiller, Mark R.Brinton, GordonSwartz, EricHamilton, GeorgeUetz, PaulJochum, EricRegmont, Dennis
ABSTRACT Discrete Particles are just as they sound, individual particles that represent Air, Soil and HE (High Explosives). They are not based upon a continuum theory and should not be confused with SPH (Smooth Particle Hydrodynamics) which is a full Lagrangian continuum theory. The modeling of Air, Soil and HE (High Explosives) with discrete particles requires millions of particles to accurately model the blast event. The innovation in software coupled with the advent of GPU Technology provides an efficient and robust solution to perform the analyses. Consider that the latest GPU processor, the Tesla K40, based upon NVIDIA Kepler™ Architecture, has 12 GB of GDDR5 memory and 2880 CUDA Cores. A standard workstation with an NVIDIA Tesla GPU is all that is required to perform the calculations and the benefits are a high degree of accuracy and simplified model setup. To demonstrate the use of Discrete Particles to model the blast event and show the effectiveness of GPU computing, the
Mindle, Wayne L.Gasbarro, Michelle D.Olovsson, Lars
ABSTRACT An approach for a perception system for autonomous vehicle navigation is presented. The approach relies on low-cost electro-optical (EO) sensors for terrain classification, 3D environment modeling, and object/obstacle recognition. Stereo vision is used to generate real-time range maps which are populated into a hybrid probabilistic environment model. Textural and spectral cues are utilized for terrain classification and spatial contextual knowledge is proposed to augment object recognition performance
Flannigan, William C.Rigney, Michael P.Alley, Kevin J.
ABSTRACT Today’s battlefield requires access to information in a multitude of environments with varying terrains (both urban and rural) in either passive or active engagements. Ground vehicles need sensors that can be rapidly deployed to different locations and networked into the family of vehicles in order to effectively share information. Masted sensor systems, in particular, are a potential valuable resource with their ability to perform long-range surveillance over obstructions while minimizing vehicle exposure. To maximize effectiveness these systems must withstand harsh battlefield conditions without undue maintenance. The need for variable mast heights, on-the-move (OTM) sensor performance, the ability to support a wide variety of long-range sensors, internal cabling to better resist battlefield damage, resistance to armored vehicle vibration and shock environments, and rapid mast deployment and stowage have driven Lockheed Martin to a robust mast solution that meets this
Neely, DavidFosen, KeithPoteat, DanielCarmichael, D. Brian
ABSTRACT This paper will focus on understanding the value proposition associated with utilizing advanced lithium-ion 6T solutions versus legacy Pb-acid 6Ts for military ground vehicles. The value proposition will include an analysis of the benefits associated with lithium-ion 6T batteries and reduction in life cycle cost (LCC). The analysis of benefits will include comparative discharge curves at various rates and temperatures, discuss enhancements features such as an integrated battery management system that provides real-time battery diagnostics via CANBus J1939 protocol, increased power/energy density, reduced charge time and increased cycle life. The LCC analysis will investigate acquisition cost comparison, replacement rates, and reduced installation & transportation costs. The LCC analysis concludes with a detailed review of how the lithium-ion 6T solution can drastically reduce the operation and maintenance (O&M) cost of the Joint Light Tactical Vehicle (JLTV) over its 20 year
Helm, JeffMarcel, Mike
Items per page:
1 – 50 of 41978