Browse Topic: Emissions

Items (24,333)
This SAE Aerospace Recommended Practice (ARP) provides a procedure for obtaining filter patch test samples from the following types of aerospace non-rotating hydraulic equipment: Mechanical/Hydraulic Units Electro/Hydraulic Units Pneumatic/Hydraulic Units
A-6C1 Fluids and Contamination Control Committee
Air pollution is profligate becoming a serious worldwide problem with the increasing population and its subsequent demands. Diesel, Gasoline, Natural Gas, Propane, etc., are some of the traditional fuels used in the power generation sectors. Diesel fuel, popularly utilized for backup power in critical operations, is valued for its swift activation time. This makes diesel generators a preferred choice for commercial properties and hospitals requiring reliable emergency power. Moreover, natural gas, distributed through local utility grids, provides a convenient and readily available fuel source for generators, eliminating the need for on-site fuel storage. On the other hand, CPCB has instructed to modify the emission regulations for genset engines for decarbonization and development clean fuel. The change from CPCB II to CPCB IV+ standard shows the commitment of the Indian government towards environmental sustainability and COP26. Pondering to the stringent emission norms, researchers
Bandyopadhyay, DebjyotiSutar, Prasanna SDhar, Rit PrasadSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SSingh, SauhardMishra, Sumit KumarBera, TapanBadhe, RajeshTule, ShubhamAghav, YogeshLakshminarasimhan, Krishna
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
With introduction of Corporate Average Fuel Efficiency norms (hereafter referred as CAFÉ norms) in India, the manufacturers of all M1 Category vehicles (not exceeding 3,500kg GVW) must ensure that they comply with Annual Corporate average CO2 target as defined in regulation. Moreover, this target will become stricter at various stages in the coming years. Hence CO2 emissions are becoming one of the major focus parameters during vehicle development. There are several factors that can impact CO2 emissions during measurement in laboratory-based test cycles such as MIDC or WLTC. One such major factor is driving variations. Although speed and time tolerances are provided during the test (as part of AIS 137/AIS 175) to limit the variation, even within these tolerances, drive-related effects make significant contribution to test results variability. Monitoring and control of such variations is important to understand the true fuel economy potential of the vehicle. Drive Trace indices are
ER, ShivramRawat, VijaypalKhandelwal, VineetKumar, ArunMalhotra, Jitendra
The automotive industry is a crucial sector that plays a significant role globally. Government policies have a profound impact on this automotive industry in defining the regulatory standards and emission controls. Such regulations incentivized automakers to invest in research and development complying those standards towards reduction of vehicle emission which intern result in higher torsional vibrations and excitations amplitudes. To address the rising NVH related concerns in driveline system. Drive shafts (CV shafts) is an important component in power-train system in vehicle. Drive shaft’s main purpose to transfer torque from engines to wheels at multiple speeds with different articulation angles. The roughness generated by the engine follows a transfer path from engine to transaxle and transaxle to half shafts in monocoque vehicles which generates discomfort to the drivers whenever the vehicle is driven. The roughness can also be addressed by proper design of CV Shaft stiffness and
M A, Abdul AzarrudinJayachandran, Suresh kumarKumar, ShivaniBhardwaj, KinshukM, DevamanalanKanagaraj, PothirajAhire, Manoj
The study emphasizes on development of Diesel Exhaust Fluid (DEF) dosing system specifically used in Selective Catalytic Reduction (SCR) of diesel engine for emission control, where a low pressure pumpless DEF dosing system is developed, utilizing compressed air for pressurizing the DEF tank and discharging DEF through air assisted DEF injection nozzle. SCR systems utilize Diesel Exhaust Fluid (DEF) to convert harmful NOx emissions from diesel engines into harmless nitrogen and water vapor. Factors such as improper storage, handling, or refilling practices can lead to DEF contamination which pose significant operational challenges for SCR systems. Traditional piston-type, diaphragm-type, or gear-type pumps in DEF dosing systems are prone to mechanical failures leading to frequent maintenance, repairs, and costly downtimes for vehicles. To overcome the existing challenges and to create a more reliable and simple DEF delivery mechanism the pumpless DEF Dosing system is developed. The
M, HareniGiridharan, JyothivelA.l, SureshV, YuvarajRajan, Bharath
Elastomeric materials are essential in advanced automotive engineering for mobility, isolation, damping, fluid transfer (cooling, steering, fuel, and brake), and sealing because of their unique physio mechanical properties. Elastomers are commonly used in both static and dynamic components, such as hoses, mounts, bushes, and tires. Engine emission standards and weight optimization have caused higher temperature exposure conditions for automotive components. The steering system uses special purpose elastomers like Chlorinated Polyethylene that can deteriorate under abnormal conditions during vehicle operation or manufacturing process due to the high temperature exposure. Therefore, it is crucial to understand the causes and consequences of thermal degradation of elastomers. Thermal degradation is a significant phenomenon that changes the physiochemical properties of elastomers, which results in a product not meeting functional requirements. This study investigates the thermal
Thiruppathi, AnandhiMishra, NitishKrishnamoorthy, Kunju
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
Addressing climate issues is a key aspect of good global governance today. A key aspect of managing the threats caused to the environment around is to ensure a sustainable transportation system so that humans exist in peace with nature. According to sources, in 2020 alone, cars accounted for approximately 23% of global CO2 emissions. In addition, they also emit dangerous pollutants thus damaging the ecosystem. To keep pollutants in check there are emission level testing strategies in place in each country. However, we can do better for a sustainable future. On one hand, the huge volume of vehicles around the world makes it an excellent choice and source for a vast emission level dataset comprising of input features as well as the target variable representing the emission band of the vehicle. In addition to the big data available as mentioned above, major advancements in the machine learning algorithms are done today. The advent of algorithms such as Artificial Neural Networks (ANN) has
Sridhar, SriramAswani, Shelendra
Polymer compounds used in the manufacturing of automotive interiors are traditionally consist of polymer virgin material, elastomers, additives, pigments, fillers. These compounded polymers are prone to the emission of low molecular weight chemicals over a period of usage and exposure to the environment called volatile organic compounds (VOCs) and carbonyl compounds. These released VOCs and carbonyl compounds consist of chemicals like benzene, toluene, xylene, styrene, acetaldehyde, formaldehyde, acrolein etc. Short term or long-term exposure of these chemicals have adverse health effects like nausea, headache, vomiting, cancer, even death of personnel if found beyond the permissible limits. It has been observed that the majority of passenger have the above symptoms whenever travelled using passenger cars within few minutes of boarding and exchange the car cabin air. The study was planned to understand the reasons for the concerns and further resolution. This paper is focused on the
Shukla, Sandeep KumarBalaji, K VVaratharajan, Senthilkumaran
Road transport contributes 12% of India’s energy-related Carbon Dioxide (CO2) emissions. It is one of the major source of air pollution in urban area. These vehicle related emissions has increased more than three times since 2000 which is mainly driven by rapid urbanization and the growing demand for private vehicles. If there is no shift away from fossil to renewables, climate change intensity and air quality challenges will increase. Among sustainable alternatives, electric vehicles (EVs) have emerged as a promising solution. However, a comprehensive understanding of their environmental performance, particularly in the Indian context, is essential for informed decision-making. This study employs a Life Cycle Assessment (LCA) method to evaluate the environmental consequences of typical passenger vehicle with an gasoline/diesel powered vehicle compared to its EV powertrain covering Cradle-to-Grave life cycle phases. Key life cycle stages—manufacturing, transportation, distribution
Sonawane, NayanSathaye, AsmitaGode, AbhishekDeshpande, AshishShinde, HarshavardhanKothe, Anjali
Meeting the stringent emissions norms of CEV stage V for medium BMEP engines, CI engines present significant challenges. These stringent norms call for a highly efficient DPF. With the increasing demands for high-performance DPFs, the issue of soot accumulation and cleaning presents significant hurdles for DPF longevity. This paper explores the potential of passive DPF regeneration, which leverages naturally occurring exhaust gas conditions to oxidize accumulated soot, offering a promising approach to minimize fuel penalty and system complexity compared to active regeneration methods. The study investigates engine calibration techniques aimed at enhancing passive regeneration performance, emphasizing the optimization of thermal management strategies to sustain DPF temperatures within the passive regeneration range. Furthermore, the paper aims to expand the applicability of passive regeneration across diverse engine loads common in off-highway applications with effective passive
Saxena, HarshitGandhi, NareshLokare, PrasadShinde, PrashantPatil, AjitRaut, Ashish
The Indian automobile industry is experiencing a significant shift, propelled by environmental necessities and national climate obligations set at the CoP26 summit, aiming for a 45% decrease in CO₂ emissions by 2030 and reaching carbon neutrality by 2070 [1]. Transportation continues to be a significant source of air pollution; consequently, India is enhancing its regulatory frameworks with BS VI Stage 2 regulations, CAFE Phase III norms set for 2027, and CAFE Phase IV by 2032 [2]. Furthermore, the transition from MIDC to WLTP driving cycle is meant to increase the accuracy of the efficiency and emissions assessments [2]. To comply to these upcoming regulations, the automotive industry is moving toward producing high efficiency engines in India. A naturally aspirated (NA) 1.5L, 4-cylinder inline gasoline engine was selected from Indian market for this study. Maximum Brake Thermal Efficiency (BTE) of this engine is around 37%. Assessment of new technologies were performed by
Garg, ShivamFischer, MarcusEmran, AshrafJagodzinski, BartoschFranzke, Bjoern
On the way to net zero emissions and to cut the oil import bills, NITI Aayog, Government of India and Ministry of Petroleum & Natural Gas (MoP&NG) has rolled out roadmap for ethanol blending in India during 2020-2025. Also, National Policy on Biofuels – 2018, provides an indicative target of 20% ethanol blending under the Ethanol Blended Petrol (EBP) Programme by 2030. Considering these Government’s initiatives current studies were performed on BSVI compliant gasoline direct injection vehicle on RDE compliant route (Route formulated by Indian Oil R&D Centre) with different ethanol blended gasoline fuel formulations i.e., E0 (Neat Gasoline), E10 (10% Ethanol in gasoline) & E20 (20% Ethanol in gasoline). The study aims to determine the compliance of Conformity Factor (C.F.) for ethanol blended gasoline fuel on Direct Injection gasoline engine. The conformity factors were calculated in each case for CO, NOx & PN using moving window average evaluation method. For reference CO2
Kant, ChanderArora, AjaySaroj, ShyamsherKumar, PrashantSithananthan, MChakradhar, Dr MayaKalita, Mrinmoy
Emission norms are getting stringent day by day, posing new challenges such as stricter emission limits and compliance to Real Driving Emissions (RDE). Consequently, there is a pressing need to minimize emissions during cold start, transient phases, and high exhaust flow regions. Achieving this objective requires enhancing the efficiency of after-treatment system and optimization of engine calibration. This paper discusses the approach to improve the efficiency of after-treatment system by enhancing the substrate design features such as cell density, wall thickness, and cell shape etc. The assessment was conducted to determine the emission performance advantages of substrates with higher cell densities of up to 900 cells per square inch (cpsi) and thinner web thicknesses down to 2.5 mil. This evaluation included both square and hexagonal cell shapes, comparing them to traditional substrates featuring 600 cpsi and 4.3 mil thickness. The evaluation has also included an assessment of
Singh, HarmeetKumar, AmitMahra, DeeptiKhanna, Vikram
This paper is to introduce a new catalyst family in gasoline aftertreatment. The very well-known three-way catalysts effectively reduce the main emission components resulting from the combustion process in the engine, namely THC, CO, and NOx. The reduction of these harmful emissions is the main goal of emission legislation such as Bharat VI to increase air quality significantly, especially in urban areas. Indeed, it has been shown that under certain operating conditions, three-way catalysts may produce toxic NH3 and the greenhouse gas N2O, which are both very unwanted emissions. In a self-committed approach, OEMs could want to minimize these noxious pollutants, especially if this can be done with no architecture change, namely without additional underfloor catalyst. In most Bharat VI gasoline aftertreatment system architectures, significant amounts of NH3 occur in two phases of vehicle driving: situations with the catalyst temperature below light-off, which appear after cold start or
Kuhn, SebastianMagar, AvinashKogel, JuliusLahousse, Christophe
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
Deshpande, SanjanaBorgaonkar, Subodh
The regulatory mechanisms to measure emissions from automobiles have evolved drastically over the years. Certification of CO2 emissions is one of them. It is not only critical for environmental protection but can also invite heavy fines to OEMs, if not complied with. In homologation test of a Hybrid Vehicle, it is necessary to correct the measured CO2 to account for deviations in measurement from failed Start-Stop phase and difference between start and end State of Charge (SOC) of battery. The correction methodology is also applicable for vehicle simulation in Software-in-Loop environment and for analyzing vehicle test data for CO2 emissions with programmed digital tools. The focus of this paper is on the correction of CO2 derived from SOC delta in the WLTP homologation drive cycle. The battery energy delta due to difference in SOC between start and end of drive cycle should be converted to corresponding CO2 expended from Internal Combustion Engine. The resulting correction factor is
Gopinath, Shravanthi PoorigaliKhatod, Krishna
With introduction of Diesel Particulate Filter to achieve CEV/TREM V Emission Limits for off-highway segment, there is a requirement of DPF regeneration at defined intervals depending on time of operation and soot loading in DPF. This can be achieved by two methods. First is the frequent regeneration or Active regeneration, wherein fuel is injected before DOC (Diesel Oxidation Catalyst) at specific temperature to burn the soot in the DPF. The second method is the continuous or Passive regeneration, where soot is burnt based on NO2. DPF frequent regeneration (Active Regeneration) requires soot load estimation in DPF over entire engine operation range as well as vehicle operation in different climatic conditions. Frequent regeneration leads to oil dilution and penalty in the fuel consumption. More frequent regeneration promotes the chemical aging of DOC, leading to the poor performance of DOC which results in deteriorating performance of SCR(Selective Catalytic Reduction) situated
Sharma, RakshitGarg, VarunDhiman, NitishGrauenfels, Attila
In densely populated urban environments, fuel retail outlets represent sources of Volatile Organic Compounds (VOCs), particularly benzene, toluene, and xylene. These emissions occur during various operations including storage tank filling, underground storage, and vehicle refuelling at retail outlets. The contribution of VOC by fuel distribution infrastructure to urban VOC pollution has been adequately addressed by oil marketing companies (OMCs) by the installation of vapor recovery system which is deployed for the comprehensive capture of fugitive emissions. This study employed a novel approach at an OMC Retail Outlet in Delhi, to evaluate benzene concentrations with different operational case studies. The methodology integrated continuous ambient air monitoring system equipped with VOC analyser of Gas Chromatography – Photo Ionization Detector (GC-PID) technology alongside targeted forecourt measurements with handheld PID instrument. Benzene emissions during peak and off-peak hours
Mayeen, HafizAhuja, MuskanKalita, MrinmoyKumar, PrashantSithananthan, MArora, Ajay
Affordable, efficient and durable catalytic converters for the two and three-wheeler industry in developing countries are required to reduce vehicle emissions and to maintain them at a low level; and therefore, to participate in a cleaner and healthier environment. Especially, metallic catalyst substrates developed by Emitec Technologies GmbH with structured foils like the Longitudinal Structure (LS), or LS-Design® are fully compatible to this effort with more than 70% share of produced 2/3 Wheelers metallic catalyst substrates for the Indian market in 2024. One decade after the market introduction of this LS structure, Emitec Technologies GmbH will introduce now a new generation of foil structure: the Crossversal Structure (CS) or CS-Design®, that improves further the affordability, the efficiency of metallic catalytic converters, keeping the durability at same level as previous substrate generation. The paper will briefly review the development of metallic substrates for 2/3 wheelers
Jayat, FrancoisSeifert, SvenBhalla, AshishGanapathy, Narayana Prakash
Environmental pollution is one of the growing concerns of our society. As vehicle emissions are a major contributor to air pollution, emission control is a primary goal of the Automotive industry. Vehicle emissions are higher due to improper combustion, which leads to toxic gases being generated from the exhaust system. Unburnt fuel is one of the leading causes of toxic pollutants such as Carbon Monoxide, Nitric Oxides (NOx) and Hydrocarbons. The catalytic converter converts these gases into less toxic substances such as Carbon Dioxide, Nitrogen, and water vapor. The catalytic converter performs efficiently after reaching its “Light Off” temperature, after which the catalyst becomes active. Hence, elevated temperature of the exhaust gases aids in efficient conversion. Presently, the gases from the exhaust system are approximately at a temperature of 300°C-600°C. This paper outlines the concept of a Peltier (Thermoelectric) Module - based system, which helps maintain the high
Venkateshwaran, AishwaryaSoodlu, ShashikiranM, Mathaiyan
Air pollution from vehicle exhaust emissions is a growing issue in major cities around the world. Hydrogen is a clean and carbon-free fuel that presents a promising alternative to the fossil fuels. However, despite its environmental advantages, hydrogen internal combustion engines still produce some nitrogen oxides as a by-product due to high combustion temperatures. This study investigates the effectiveness of current exhaust after-treatment technologies designed to reduce NOx emissions in hydrogen-powered engines. A comparative analysis is conducted between the conventional urea-based selective catalytic reduction used in diesel engines and emerging hydrogen-based selective catalytic reduction technologies for hydrogen engines. The analysis is performed using CFD simulation in ANSYS Fluent, focusing on NOx reduction efficiency and other operational parameters. The results provide valuable insights into the feasibility and effectiveness of hydrogen SCR in achieving reduced NOx
Kashyap, KeshavKhandagale, AnupPetale, Mahendra
In India, fuel economy is one of the most critical factors influencing a customer's decision to own a passenger car. Beyond consumer preference, fuel consumption also plays a significant role in the nation's energy security. In line with this, the government promotes fuel-efficient vehicles and technologies through various regulations, policies, and mandates. Vehicle manufacturers, in response, focus on designing vehicles that align with both customer expectations and regulatory requirements. Fuel economy certification is typically based on standardized laboratory tests that simulate controlled environmental conditions, driving cycle (MIDC), vehicle load, and operation of electrical and electronic systems. However, actual on-road driving conditions by end user vary significantly due to factors such as traffic conditions, ambient temperature, air conditioning use, driving behavior and variable loading of the vehicle. With implementation of Bharat Stage VI, Real Driving Emission (RDE
Singh, Abhay PratapBathina, Revanth KumarTijare, Shantanu
To address the imperative for decarbonizing the heavy-duty transport sector and advancing sustainable energy solutions, this paper presents a novel lean-boosted Direct Injection (DI) Hydrogen Internal Combustion Engine (H2 ICE) combustion system. This system is developed to retrofit existing flat-deck Diesel engines, offering a viable pathway towards drastically reduced emissions. Building on consolidated expertise from prior production-oriented Port Fuel Injection H2 engine development (DUMAREY 6.6ℓ V8), this research focuses on leveraging the distinct advantages of DI for hydrogen. An experimental assessment, supported by 1D and 3D-CFD analyses, demonstrates the system's capability to achieve highly efficient operation in Spark Ignition (SI) mode under ultra-lean and EGR-diluted conditions. The study confirms the elimination of combustion anomalies such as backfiring, pre-ignition, and knock, while achieving ultra-low engine-out NOx emissions and near-zero CO2, HC, CO, and PM. The
Gessaroli, DavideGolisano, RobertoPesce, FrancescoBoretto, GianmarcoAccurso, Francesco
After the implementation of BS-VI emission standards, effective exhaust after-treatment has become critical in minimizing harmful emissions from diesel engines. One significant challenge is the accumulation of hydrocarbons (HC) in the Diesel Oxidation Catalyst (DOC). Certain hydrocarbons may adsorb onto the catalyst surface yet remain unreactive, leading to potential operational inefficiencies. This phenomenon necessitates the desorption of unreactive hydrocarbons to allow space for more reactive species, thereby enhancing oxidation efficiency and overall catalyst performance. The process of desorption (DeSorb) is vital to maintaining the balance of reactive hydrocarbons within the DOC. When a vehicle is idling, unburnt fuel produces hydrocarbons that accumulate in the DOC. Upon acceleration, these hydrocarbons can lead to an uncontrolled rise in temperature, resulting in DOC push-out, catalyst damage, and downstream impacts on the Diesel Particulate Filter (DPF). To mitigate these
K, SabareeswaranK K, Uthira Ramya BalaRaju, ManikandanK J, RamkumarYS, Ananthkumar
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
Vihan, Nikhil
In recent times, the governments are pushing for stringent emission regulations. These regulations call for reduction of pollutants as well as monitoring of engine components which are critical for emission control. Monitoring these emission critical engine components are to be done in real world driving conditions. The In-Use Performance Ratio Monitoring (IUPRm) framework quantifies how often onboard diagnostic systems check these components within defined boundaries for each vehicle. IUPRm is divided into several monitoring groups like catalyst monitoring, oxygen sensor monitoring, exhaust gas recirculation (EGR) monitoring, gasoline particulate filter monitoring and others. These groups are differentiated based on fuel type, engine technologies and exhaust treatment system configurations. For an Automotive manufacturer analyzing these parameters across large vehicle fleets is a complex and data intensive task. To address this, a user-friendly application was developed in-house
Ghadge, Ganesh NarayanJadhav, MarishaHosur, Viswanatha
Transportation industry is facing a growing challenge to reduce its carbon footprint and utilize the carbon neutral, more environmentally sustainable fuels to comply with the goal of carbon neutrality. Implementation of carbon free fuels such as Hydrogen, Ammonia and low carbon fuels such as Methanol, Ethanol can significantly reduce the greenhouse gas emissions, but these fuels are suitable for SI engine architecture due to their high-octane ratings. Hydrotreated Vegetable Oil (HVO) is one of the few fuel solutions available today with a high Cetane rating (70-80), that can be used as a drop-in fuel in the existing CI engines, with minimal modifications. The main constituent of HVO is pure alkane and it can be produced from feedstocks such as vegetable oils, animal fats, various wastes and by-products. A closed cycle 3-D CFD combustion simulation using a detailed chemistry-based solver has been conducted with the HVO, on a three cylinder, naturally aspirated water-cooled CI engine at
Tripathi, AyushMukherjee, NaliniNene, Devendra
In CPCB-IV+ Emissions regulations NOx & PM are reduced by 90% from CPCB-II limits in the power band 56 < kW ≤ 560. Obvious technology approach adopted by industry to meet this requirement is the introduction of CRDI fuel injection system & DOC+SCR+ASC aftertreatment technology, leading to substantial modifications at both engine & genset level. This result into huge development expenditure, high incremental product cost, timelines and increased total cost of ownership. This paper describes the frugal technology approach to keep development cost, product cost, development time to the minimum using electronically governed, high pressure mechanical fuel injection equipment, with DOC+SCR+ASC without any external thermal management strategy while comfortably achieving target CPCB-IV+ emission levels. This integrated approach also helped in completing the entire development in < 12 months. 1D-thermodynamic & 3D-combustion simulation approach was adopted to predict the engine out emissions
Arde, VasundharaJuttu, SimachalamKadam, AtitGothekar, SanjeevKarthick, KVandana, SuryanarayanaThipse, SKendre, Mahadev
Rising environmental concerns and stringent emissions norms are pushing automakers to adopt more sustainable technologies. There is no single perfect solution for any market and there are solutions ranging from biofuels, green hydrogen to electric vehicles. For Indian market, especially in the passenger car segment, hybrid vehicles are favoured when it comes to manufacturers as well as with consumer because of multiple reasons such as reliability, performance, fuel efficiency and lower long-term cost of ownership. For automakers planning to upgrade their fleets in the context of upcoming CAFE III (91.7 g CO2 / km) & CAFE IV (70 g CO2/km) norms, hybridization emerges as the next natural step for passenger cars. Lately, various state governments have also promoted hybrid vehicle sales by offering certain targeted tax breaks which were previously reserved for EVs exclusively. Current study focuses on various parallel hybrid topologies for an Indian compact SUV, which is the highest
Warkhede, PawanKeizer, RubenSandhu, RoubleEmran, Ashraf
In alignment with its carbon reduction commitments, India is transitioning towards higher ethanol-blended fuels, with E20 set for nationwide implementation by 2025. Ethanol is a renewable, domestically produced biofuel produced through fermentation of biomass such as sugarcane, corn. It possesses a higher octane rating and oxygen content compared to conventional gasoline, making it a favorable additive for improving engine performance and reducing emissions. This study investigates the impact of E20 fuel on performance parameters of a 694 cc MPFI , water-cooled, twin-cylinder gasoline engine. For deriving maximum benefits of increased Octane rating of E20, compression ratio was increased to 12.5:1. Experimental analysis was conducted to assess the changes in combustion behavior, brake specific fuel consumption (BSFC), torque output, engine out emissions and thermal efficiency when operating on E20 compared to baseline gasoline (E10). Base results indicate that E20 promotes more
Kulkarni, DeepakMalekar, Hemant AThonge, RavindraKanchan, Shubham
A significant contributor to particle mass (PM) emissions originating from road transport are particles emitted from brakes, which in Europe are considered in the upcoming Euro 7 emission legislation. UN-GTR (United Nations Global Technical Regulation) no. 24 describes the methodology for measuring brake particle emissions in a test cell setting with a dynamometer, both in terms of PM and PN (particle number). A regulation-compliant test fulfills various quality criteria for different control parameters, which can often be met by applying different control strategies. In this study, we evaluate the effects of implementing different control strategies for torque applied to the brake by the dynamometer, as well as for sampling flow. Additionally, we discuss the cost-saving potential of increasing the automation degree of testing, as well as modifying existing testbeds to accommodate brake emission testing. The torque control strategies applied in this study did not influence PN or PM
Martikainen, SampsaWeidinger, ChristophHuber, Michael Peter
This study presents a comprehensive methodology for benchmarking hydrogen and diesel internal combustion Engines, with emphasis on virtual Real-Drive Emission (RDE) test procedures for diesel and hydrogen application. Emission profiles for legal cycles and RDE scenarios are accurately predicted through integration and development of Artificial Neural Networks (ANN) based on Long Short-Term Memory (LSTM) models. Virtual evaluations of Selective Catalytic Reduction (SCR) system performance, Diesel Exhaust Fluid (DEF) dosing accuracy, and exhaust temperature dynamics enabled by integrated data pipelines and physics-based modeling are also explored for holistic prediction of output. Across models, validation demonstrates good prediction accuracy including temperature (R2 > 0.94, RMS error < 25°C), air flow (92% accuracy, RMSE = 28 kg/h), upstream NOx (93% accuracy, RMSE < 10 mg/s), and SCR (TP NOx accuracy = 91.82%, dosing accuracy = 87.73%). This approach has the potential to offer
Shah, Jash VipinS, Manoj KumarRatnaparkhi, AdityaH, Shivaprakash
Public transport electrification is going to play a massive role in India’s COP26 pledge to achieve net zero emissions by 2070. India plans to electrify 800,000 buses in a push towards 30% EV penetration by 2030. Further encouraged by government incentives under National Electric Bus Program (NEBP), e-Bus market is expected to grow at a CAGR of ~86% annually over the next 5 years. With most OEMs going for fleet electrification for reducing CO2 emissions and to cater to growing demand in Indian cities for cleaner public transport, improving powertrain efficiency and performance of state-of-the-art e-Buses is a natural progression of e-mobility sector development in India. The first step in designing powertrain for an electric city bus is to determine the motor(s) size and transmission specifications (number of gears, gear ratios etc.). Complications arise due to a wider and non-linear operation range of eBus. This study focuses on powertrain optimization for a medium duty electric city
Sandhu, RoubleChen, BichengEmran, AshrafXia, FeihongLin, XiaoBerry, Sushil
The Bharat TREM V regulations in the off-highway segment mandates the use of Diesel Oxidation Catalyst (DOC) to reduce gaseous emissions and Diesel Particulate Filters (DPF) to trap solid particulates from engine exhaust. DPFs undergo regeneration, where trapped soot is burned, converting it into CO2 with ash as main byproduct. Regeneration can be active, using late post fuel injections to raise temperatures above 550°C, or passive, relying on NO2 formation at 300-400°C. Passive regeneration is preferred as a safer mode for both DPF health and longevity as well as reduction in fuel penalty and oil dilution. This paper highlights the selection and optimization of combustion hardware and Exhaust Aftertreatment System to achieve the desired NO2 formation which is suitable for passive regeneration. Key considerations in engine hardware selection include the design of piston bowl, injector hole configuration to increase heat release rate and combustion temperature resulting in higher NOx
Gautam, AmanRawat, SaurabhDogra, DaljitSinghSingh, SachleenRanjan, Piyush
This study discusses the generalized workflow and design techniques for detecting radiated emissions from vehicle electronic systems to ensure an electromagnetic compatible (EMC) vehicle specified by radiated emission standards such as CISPR-12 and CISPR-25. In this work, CST studio suite software is used to examine the vertical polarization in an E vehicle. The results of the radiated emission are plotted as dBμV/m vs Hz to understand the radiation effects generated by different electronic devices across different frequencies. The discussed method serves as a guide for forming a virtual electromagnetic environment where a real vehicle is simulated to study the interference effects and design a suitable filter to reduce the effect of EMI.
Manuelraj, MasilamaniPrasad, SuryanarayanaNarayanan, Siva Suriya
The legislation of CEV Stage V emission norms has necessitated advanced Diesel Particulate Filter calibration strategies to ensure optimal performance across diverse construction equipment applications in the Indian market. Considering the various duty cycles of cranes, backhoe loaders, forklifts, compactors, graders, and other equipment, different load conditions and operational environments require a comprehensive strategy to enhance DPF efficiency, minimize regeneration frequency, and maintain compliance with emission standards. The DPF, as an after-treatment system in the exhaust layout, is essential for meeting emission standards, as it effectively traps particulate matter. Regeneration occurs periodically to burn the soot particles trapped inside the DPF through ECU management. Therefore, understanding soot loading and in-brick DPF temperature behavior across various applications is key. This paper explores the challenges in DPF calibration for CEV Stage V and provides a
Mohanty, SubhamChaudhari, KuldeepakPatil, LalitMahajan, AtishMadhukar, Prahlad
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
The transportation and mobility sector are undergoing a profound transformation, with a growing emphasis on sustainability and minimizing the environmental impact of transportation. Among the most significant trends is the transition to electric vehicles (EVs) in the form of Battery and Fuel cell, which produce zero emissions without any harmful gases release in nature. This review highlights several infrastructure-related issues and critical factors that could drive India's transportation sector toward adopting electric vehicles. It also delves into the fundamental understanding of e-mobility, shedding light on the daily challenges and barriers it faces. Furthermore, the study explores research aspects, including the strategies, methods, and tools used for electric vehicles to complete the research on Battery electric vehicles (BEV) and also comparative analysis with Fuel cell vehicles (FCVs). The shift BEVs has been driven by decreasing battery costs and advancements in charging
Kumar, Dr. Vijay Bhooshan
Identifying the type of drive cycle is crucial for analyzing customer usage, optimizing vehicle performance and emission control. Methods that rely on geographical location for drive cycle identification are limited by varying driving conditions at the same location (e.g. heavy traffic during peak hours vs. free-flowing traffic at night). This paper proposes a methodology to identify the type of drive cycle (city, interurban, highway or hybrid) using drive characteristics derived from vehicle data rather than geographical location. Real-world vehicle data from testing trucks is taken, whose drive profiles are already known. Initially, multiple characteristic features of the drive cycle are identified from literature surveys and domain experience. These features, which can be extracted from basic signal data, include gear shifts, time spent in different driving modes (acceleration, cruise, standstill), velocity distributions, and an 'aggressiveness factor' representing overall driving
Reddy, Mallangi PrashanthGorain, RajuGanguly, Gourav
In a developing country like India, the growing energy demand across all sectors underscores the urgent need for clean, sustainable, and efficient energy alternatives. Hydrogen stands out as a promising fuel, offering virtually zero emissions and helping to reduce greenhouse gas (GHG) emissions, which directly contributes to mitigating global warming, ensuring a cleaner environment, and lowering dependency on fossil fuels. In line with Sustainable Development Goal 7 (SDG 7), which seeks to guarantee that everyone has access to modern, cheap, and sustainable energy, hydrogen is well-positioned to be a major player in India's energy transformation. However, hydrogen has unique properties such as its wide flammability range, high reactivity, and high energy content present significant challenges in terms of safety, particularly in its storage, transportation, and usage. Improper handling or inadequate safety measures can lead to hazardous incidents, making robust testing, certification
Pawar, YuvrajDekate, Ajay DinkarThipse, SBelavadi Venkataramaiah, Shamsundara
Ammonia has emerged as a promising alternative fuel for transportation because of its high energy density (NH3 has more hydrogen than propane in a similar size tank), simple and carbon-free combustion, and potential to produce sustainably. This paper investigates the feasibility of using ammonia as fuel for internal combustion engines (ICE) and fuel cells in automotive applications. In many ways, ammonia captures these benefits by being produced from renewable energies and having the potential to reduce reliance on fossil fuels. There are significant drawbacks of ammonia however, such as its decreased energy content per unit volume, NOx emissions potential, and necessary engine adaptations. This paper discusses the combustion characteristics of ammonia and how it functions in typical ICE's as well as new fuel cell technology, and the necessary infrastructure to produce, store, and distribute ammonia for automotive applications. The study compares operations to conventional fuels
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
Items per page:
1 – 50 of 24333