Browse Topic: Pressure
This study introduces an innovative intelligent tire system capable of estimating the risk of total hydroplaning based on water pressure measurements within the tread grooves. Dynamic hydroplaning represents an important safety concern influenced by water depth, tread design, and vehicle longitudinal speed. Existing intelligent tire systems primarily assess hydroplaning risk using the water wedge effect, which occurs predominantly in deep water conditions. However, in shallow water, which is far more prevalent in real-world scenarios, the water wedge effect is absent at higher longitudinal speeds, which could make existing systems unable to reliably assess the total hydroplaning risk. Groove flow represents a key factor in hydroplaning dynamics, and it is governed by two mechanisms: water interception rate and water wedge pressure. In both the shallow water and deep water cases, the groove water flow will increase as a result of increasing the longitudinal speed of the vehicle for a
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
This document establishes the temperature types and pressure classes that are commonly used in aerospace fluid systems. The temperature types and pressure classes are equivalent, but not identical, to the SI units defined in MA2001 (ISO 6771). For exact conversion use NAS 10000.
Medical equipment designers rely on rupture disk devices for pressure relief and pressure release of gases and liquids for essential diagnostic, life safety, and analytical instrumentation. However, the challenge of time faces medical device OEM product designers; how do we get a custom solution in an acceptable timeframe?
The vehicle wake region is of high importance when analyzing the aerodynamic performance of a vehicle. It is characterized by turbulent separated flow and large low-pressure regions that contribute significantly to drag. In some cases, the wake region can oscillate between different modes which can pose an engineering challenge during vehicle development. Vehicles that exhibit bimodal wake behavior need to have their drag values recorded over a sufficient time period to take into account the low frequency shift in drag signal, therefore, simulating such vehicle configurations in CFD could consume substantial CPU hours resulting in an expensive and inefficient vehicle design iterations process. As an alternative approach to running simulations for long periods of time, the impact of adding artificial turbulence to the inlet on wake behavior and its potential impact on reduced runtime for design process is investigated in this study. By adding turbulence to the upstream flow, the wake
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft. This standard is applicable to the following types of portable oxygen equipment: a Continuous flow 1 Pre-set 2 Adjustable 3 Automatic b Demand flow 1 Straight-demand 2 Diluter-demand 3 Pressure-demand c Combination continuous flow and demand flow.
Robotics researchers have already made great strides in developing sensors that can perceive changes in position, pressure, and temperature — all of which are important for technologies like wearable devices and human-robot interfaces. But a hallmark of human perception is the ability to sense multiple stimuli at once, and this is something that robotics has struggled to achieve.
NASA's Cryogenic Flux Capacitor (CFC) capitalizes on the energy storage capacity of liquefied gases. By exploiting a unique attribute of nano-porous materials, aerogel in this case, fluid commodities such as oxygen, hydrogen, methane, etc. can be stored in a molecular surface-adsorbed state. This cryogenic fluid can be stored at low to moderate pressure densities, on par with liquid, and then quickly converted to a gas, when the need arises. This solution reduces both safety-related logistics issues and the limitations of complex storage systems.
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid.
Hamdi Torun Arda Deniz Yalcinkaya Gunhan Dundar Ozgue Kaya Northumbria University, Newcastle Upon Tyne, UK
Researchers have been testing ways to continuously and more comfortably detect these tiny fluctuations in pressure. A prototype smart contact lens measures eye pressure accurately, regardless of temperature. The contact lens wirelessly transmits real-time signals about eye pressure across a wide range of temperatures.
Items per page:
50
1 – 50 of 9165