Browse Topic: Sun and solar
ABSTRACT Autonomous driving is emerging as the future of transportation recently. For autonomous driving to be safe and reliable the perception sensors need sufficient vision in sometimes challenging operating conditions including dust, dirt, and moisture or during inclement weather. LiDAR perception sensors used in certain autonomous driving solutions require both a clean and dry sensor screen to effectively operate in a safe manner. In this paper, UV durable Hydrophobic (UVH) coatings were developed to improve LiDAR sensing performance. A lab testbed was successfully constructed to evaluate UVH coatings and uncoated control samples for LiDAR sensor under the simulated weathering conditions, including fog, rain, mud, and bug. In addition, a mobile testbed was developed in partnership with North Dakota State University (NDSU) to evaluate the UVH coatings in an autonomous moving vehicle under different weathering conditions. These UV-durable easy-to-clean coatings with high optical
It’s common knowledge that a major challenge for solar energy is how to store excess energy produced when conditions are right, like noon-time sun, so that it can be used later. The usual answer is batteries. But renewable energy resources are causing problems for the electricity grid in other ways as well. In a warm, sunny location like California, mid-afternoon had been a time of peak demand for the electric utility, but with solar it’s now a time of peak output
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
Solar panels are an increasingly popular way to generate electricity from the sun’s energy. Although humans are still figuring out how to reliably turn that energy into fuel, plants have been doing it for eons through photosynthesis. Now, a team reporting in ACS Engineering Au has mimicked the process to produce methane, an energy-dense fuel, from carbon dioxide, water and sunlight. Their prototype system could help pave the way toward replacing nonrenewable fossil fuels
Bringing a construction project from planning on the page to execution in the real world is replete with challenges. Whether a company is building a sprawling solar farm or laying lines on the road, precision is paramount. Misfires of just a few inches can have massive implications, and that often leads to a plodding layout process. But, in partnership with Point One, Civ Robotics is ensuring that precise construction layouts won’t be at odds with efficiency
Riding aboard NASA’s Psyche spacecraft, the agency’s Deep Space Optical Communications technology demonstration continues to break records. While the asteroid-bound spacecraft doesn’t rely on optical communications to send data, the new technology has proven that it’s up to the task. After interfacing with the Psyche’s radio frequency transmitter, the laser communications demo sent a copy of engineering data from over 140 million miles (226 million kilometers) away, 1½ times the distance between Earth and the Sun
Rooftop solar panels will soon power about 90% of PFG's Gilroy, California, operations, the starting point for cold food deliveries. The vehicles getting the various edibles and food-related products from the warehouse to restaurants, schools, hotels and other customers include new battery-electric Class 8 trucks that mate to trailers fitted with zero-emission transport refrigeration units (TRUs). “Our Gilroy, California, location is the pilot for how we intend to develop sustainable distribution centers,” said Jeff Williamson, senior vice president of operations for Richmond, Virginia-headquartered Performance Food Group (PFG). Williamson and others were recently interviewed by Truck & Off-Highway Engineering following an Earth Day open house at the Gilroy site
Robotics, prostheses that react to touch, and health monitoring are three fields in which scientists are working to develop electronic skin. Researchers have developed a sensor that, similar to human skin, can sense temperature variation that originates from the touch of a warm object as well as the heat from solar radiation. The sensor combines pyroelectric and thermoelectric effects with a nano-optical phenomenon
Perovskite solar cells should be subjected to a combination of stress tests simultaneously to best predict how they will function outdoors, according to researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL
The efficiency of a solar panel depends on the amount of solar radiation it receives and its surface temperature. However, during the conversion process, some of the solar radiation is converted into heat, which can increase the temperature of the solar panel’s junction, reducing its performance. This decrease in efficiency can be attributed to the decrease in output efficiency that occurs when the surface temperature of the solar panel increases. Therefore, maintaining a suitable temperature range is crucial to improving the efficiency of the photovoltaic (PV) panel. Various cooling methods, including the use of phase change materials (PCM), have been developed to control the temperature of the PV module. To test the effectiveness of PCM in cooling the solar PV module, we conducted an experiment that involved setting up a heat exchanger system and analyzing its performance. Our analysis revealed a significant improvement of 1.01 % decrement in the temperature of solar cell and the
Storing energy is one of the key challenges for implementing sustainable but intermittent electricity sources like solar and wind. Engineers at Sandia National Laboratories are collaborating with New Mexico-based CSolPower LLC to develop a very affordable method of accomplishing that storage
An international team of scientists reports a novel technique for a high-brightness coherent and few-cycle duration source spanning seven optical octaves from the UV to the THz
NASA’s Artemis program consists of a series of missions designed to land humans on the Moon and establish a sustainable, continuing presence. A long-term foothold on the Moon’s surface enables invaluable research and testing opportunities that will set the stage for future groundbreaking missions, including the first human mission to Mars
Recent experiments by a team from the West Virginia University focused on how a weightless microgravity environment affects 3D printing using titania foam, a material with potential applications ranging from UV blocking to water purification. ACS Applied Materials and Interfaces published their findings
Imagine being able to snap a picture of extremely fast events on the order of a picosecond. Compressed ultrafast photography (CUP) captures the entire process in real time and unparalleled resolution with just one click. The spatial and temporal information is first compressed into an image and then, using a reconstruction algorithm, it is converted into a video
Most space satellites are powered by photovoltaic cells that convert sunlight to electricity. Exposure to certain orbit radiation can damage the devices, degrading their performance and limiting their lifetime. University of Cambridge scientists have proposed a radiation-tolerant photovoltaic cell design that features an ultrathin layer of light-absorbing material
Photosynthesis has evolved in plants for millions of years to turn water, carbon dioxide, and the energy from sunlight into plant biomass and the foods we eat. This process, however, is very inefficient, with only about 1 percent of the energy found in sunlight ending up in the plant. Scientists at UC Riverside and the University of Delaware have found a way to bypass the need for biological photosynthesis altogether and create food independent of sunlight by using artificial photosynthesis
The process of bringing new materials to solar panels can be full of repetitive tasks, evaluations, and risk. It requires a researcher to prepare a sample and then go through multiple steps to test each sample using different instruments — a process that is both time consuming and requires a lot of electricity. Researchers at North Carolina State University have created RoboMapper, a robot capable of conducting experiments more efficiently and sustainably to develop a range of new semiconductor materials with desirable attributes
Due to the relatively high cost to produce solar cells, solar power still accounts for a little less than 3 percent of electricity generated in the U.S. One way to lower the cost of production would be to develop solar cells that use less-expensive materials than today’s silicon-based models. To achieve that, some engineers have zeroed in on halide perovskite, a type of human-made material with repeating crystals shaped like cubes
Research into the synthesis of new materials could lead to more sustainable and environmentally friendly items such as solar panels and light emitting diodes (LEDs). Researchers from Ames National Laboratory and Iowa State University have developed a colloidal synthesis method for alkaline earth chalcogenides. This method allows them to control the size of the nanocrystals in the material. They were also able to study the surface chemistry of the nanocrystals and assess the purity and optical properties of the materials involved
Rice University engineers are turning sunlight into hydrogen with record-breaking efficiency thanks to a device that combines next-generation halide perovskite semiconductors with electrocatalysts in a single, durable, cost-effective, and scalable device
Space Dynamics Laboratory Utah State University North Logan, UT 435-713-3400
Researchers have developed a thermoelectric generator (TEG) that can continuously generate electricity using heat from the sun and a radiative element that releases heat into the air. Because it works during the day or night and in cloudy conditions, the self-powered TEG could provide a reliable power source for small electronic devices such as wearables
As NASA builds a blueprint for exploration throughout the solar system, the agency is doing it with staying power in mind
Many of today’s high-performance technologies — nuclear reactors, spacecraft, concentrated solar plants, and hydrogen cells — require advanced materials. Advanced means they are made of metals and ceramics that can withstand extreme conditions or meet exacting specifications
Forty-five years ago, the Voyager 2 spacecraft launched on a mission to visit the outer planets. One vital component of the craft that still works is the key to getting data as it leaves the solar system. But this piece of the now-interstellar spacecraft, the traveling-wave tube (TWT), has also become a necessary component for utilizing microwaves in several applications back on Earth. For example, satellite radio spacecraft use the amplification power of TWTs, and thanks to NASA’s help listeners have coverage over all of North America and receive better-sounding audio
Thermal control coatings, i.e. coatings with different visible versus infrared emission, have been used by NASA on the Orbiter and Hubble Telescope to reflect sunlight, while allowing heat rejection via infrared emission. However, these coatings absorb at least 6 percent of the Sun’s irradiant power, limiting the minimum temperature that can be reached to about 200 K. NASA needs better solar reflectors to keep cryogenic fuel and oxidizers cold enough to be maintained passively in deep space for future missions
When astronauts begin to build a permanent base on the Moon, as NASA plans to do in the coming years, they’ll need help. Robots could potentially do the heavy lifting by laying cables, deploying solar panels, erecting communications towers, and building habitats. But if each robot is designed for a specific action or task, a Moon base could become overrun by a zoo of machines, each with its own unique parts and protocols
Researchers have been exploring how to turbocharge a passive cooling technique — known as radiative or sky cooling — with sun-blocking nanomaterials that emit heat away from building rooftops. While progress has been made, this eco-friendly technology isn’t commonplace because researchers have struggled to maximize the materials’ cooling capabilities
As NASA expands its quest to discover exoplanets — planets beyond our solar system — it also grows its toolbox. Last summer, a new tool called NEID (pronounced NOO-id) delivered its first batch of data on the nearest and best-studied star, our Sun
Due to the relatively high cost to produce solar cells, solar power still accounts for a little less than 3 percent of electricity generated in the U.S. One way to lower the cost of production would be to develop solar cells that use less-expensive materials than today’s silicon-based models. To achieve that, some engineers have zeroed in on halide perovskite, a type of human-made material with repeating crystals shaped like cubes
Ionospheric variability is a critical consideration for communication systems, GNSS, and space asset management. At high magnetic latitudes, the convergent magnetic field acts as a lens, focusing electromagnetic power originating from solar wind-magnetosphere interactions into a limited latitudinal range. The geometry and ensuing complex coupling processes result in extreme multi-scale time-dependent variations in the structure and composition of the ionized gases in Earth’s outer atmosphere. Understanding the mechanisms and technological consequences of these interactions benefits from distributed heterogeneous time-dependent measurements of the ionosphere-thermosphere-magnetosphere system, and their application as constraints on predictive space weather models
Items per page:
50
1 – 50 of 1286