Browse Topic: Sustainable development
The goal of this research is to better understand the methodologies for manufacturing biodiesel worldwide and the main raw materials used in its production. We aim to compare the solutions established by relevant countries with those used in Brazil, identifying their advantages and disadvantages. Our primary areas of interest include the United States, Indonesia, and Europe, where we will analyze the solutions and, whenever possible, understand the commercial and political interests involved. We will highlight aspects related to sustainability in the production, transportation, and use of biodiesel. The methodology is based on research from recent publications and news, organized into graphs to facilitate analysis and comparison. Next, we will also examine the consequences of the solutions adopted in Brazil, envisioning future scenarios and recommended paths. In the short term, biodiesel is expected to be replaced by renewable diesel (also known as green diesel in some regions
Heavy-duty vehicles, particularly those towing higher weights, require a continuous/secondary braking system. While conventional vehicles employ Retarder or Engine brake systems, electric vehicles utilize recuperation for continuous braking. In a state where HV Battery is at 100% of SOC, recuperated energy from vehicle operation is passed on to HPR and it converts electrical energy into waste heat energy. This study focuses on identification of routes which are critical for High Power Brake Resistors (HPRs), by analyzing the elevation data of existing charging stations, the route’s slope distribution, and the vehicle’s battery SOC. This research ultimately suggests a method to identify HPR critical vehicle operational routes which can be useful for energy efficient route planning algorithms, leading to significant cost savings for customers and contributing to environmental sustainability
Imagine the Moon as a hub of manufacturing, construction, and even human life. It’s no longer a far-fetched idea baked in science fiction lore — increased interest and investment in space exploration are pushing efforts to develop the technologies needed to make the moon a viable home for humans
Defying engineering challenges in record time, researchers at the University of Maryland developed a machine learning model that eliminates hassles in materials design to yield green technologies used in wearable heaters
Anne-Marie Vincent Dow Silicones Belgium SRL Seneffe, Belgium
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
The automotive industry faces unprecedented regulatory and societal pressure to adopt sustainable manufacturing practices. A recent survey by Accenture shows that more than 34 percent of today’s largest manufacturers have committed to zero-emission goals, yet 93 percent of them will miss their targets unless they double their emission reduction rates by 2030
The ongoing transition from fossil fuels to renewable energy sources has never been more important as climate change and sustainability awareness continue to rise
Sustainability remains a dominant trend in packaging and processing, continuing to attract the attention of the life sciences industry and inspire its new initiatives. Although pharmaceutical and medical device manufacturers must prioritize patient safety and product protection, concerns about climate change, greenhouse gas (GHG) emissions, plastic waste, and pressure to move toward a circular economy are prompting a greater focus on improving the sustainability of their products and packaging
In today’s landscape, sustainability has taken center stage. Technological advancements have made our world more connected than ever and companies everywhere, including those in the medical equipment industry, are focusing on how they can reduce their environmental impact
Hexagon Agility announced a collaboration with Norwegian EV transmission supplier Brudeli Green Mobility at the 2024 ACT Expo in Las Vegas. The partnership's goal is the integration of Hexagon Agility's CNG/RNG (compressed/renewable natural gas) systems with Brudeli's plug-in PowerHybrid system. This technology will reportedly offer fleets the capability to maintain diesel ICE duty cycles while providing fuel cost savings and help OEMs achieve global decarbonization goals. “The Brudeli PowerHybrid enables fleet owners to retain the power, performance and fuel cost savings offered by natural gas engines, while simultaneously harnessing the efficiencies of electric,” said Eric Bippus, EVP sales & systems development, Hexagon Agility. “We believe hybrids could play a role in commercial trucking in the future, and we are excited to take an active role bringing that to the market
“Everything old is new again and that is precisely why we’ve been investigating rammed earth construction,” said Sumi Siddiqua, Civil Engineering Professor and Lead Researcher with The University of British Columbia’s Advanced Geomaterials Testing Lab. Siddiqua is part of a research group at UBC Okanagan that’s revisiting old building practices — the use of byproducts and cast-offs — as a way to improve building materials and sustainability of the trade
Items per page:
50
1 – 50 of 750