Browse Topic: Sustainable development
The thermoelectric generator system is regarded as an advanced technology for recovering waste heat from automotive exhaust. To address the issue of uneven temperature distribution within the heat exchanger that limits the output performance of the system, this study designs a novel thermoelectric generation system integrated with turbulence enhancers. This configuration aims to enhance convective heat transfer at the rear end of the heat exchanger and improve overall temperature uniformity. A multiphysics coupled model is established to evaluate the impact of the turbulence enhancers on the system's temperature distribution and electrical output, comparing its performance with that of traditional systems. The findings indicate that the integration of turbulence enhancers significantly increases the heat transfer rate and temperature uniformity at the rear end of the heat exchanger. However, it also leads to an increase in exhaust back pressure, which negatively affects system
Nowadays, the energy transition is at the most critical moment. In order to achieve the emission reduction target of ships, a form of boosting piston inside methanol fuel injector has been carried out. The physical property fluctuations and phase change of methanol under high pressure have been considered in the design phase. 1D-3D coupling method is used to comprehensively evaluate the performace of the injector. To this end, an Amesim simulation model is established to systematically study and analyze the injection characteristics. The injection performance of the injector under four typical loads are calculated, which is evaluated from the perspectives of injection quantity, injection duration, valve response, and leakage of boost components. In the nozzle block, the cavitation intensity of methanol is stronger than that of diesel. To reduce the possibility of cavitation erosion, as a consequence, a CFD model is established to optimize the structure of nozzle components. By adding
In order to give full play to the economic and environmental advantages of liquid organic hydrogen carrier(LOHC) technology in hydrogen storage and transportation as well as its technological advantages as a hydrogen source for hydrogen refueling station(HRS) supply, it promotes the change of hydrogen supply method in HRSs and facilitates its technological landing in the terminal of HRSs. In this paper, combining the current commercialization status of organic liquid technology and the current construction status of HRS in China, we establish a traditional long-tube trailer HRS model through Matlab Simulink, carry out modification on the existing process, maximize the use of the original equipment, and introduce the hydrogen production end of the station with organic liquid as an auxiliary hydrogen source. Research and design of the two hydrogen sources of gas extraction strategy and the station control strategy and the formation of Stateflow language model, to realize the verification
In recent trends, renewable energy has gained significance in worldwide applications due to avail from nature, low cost, and pollution-free. Based on the world population, a large volume of municipal and sewage water waste affects the environmental water sources, resulting in pollution. To save the earth and maintain a green environment, the present investigation aims to produce bio-hydrogen from municipal and sewage waste through a gasification process with a pyrolysis reactor. The temperature and time of the gasification process were varied by 600-900°C and 60 min. The impact of gasification temperature (600-900°C) and 60 min on molar fraction, gas yield, and gasification efficiency behaviour has to be investigated, and higher temperature (900°) with 60 min gasification process showed the superior molar fraction with 18.4 mol/kg hydrogen yield and improved gasification efficiency of 72%. The gained bio-hydrogen suggested energy storage applications.
Letter from the Guest Editors
The goal of this research is to better understand the methodologies for manufacturing biodiesel worldwide and the main raw materials used in its production. We aim to compare the solutions established by relevant countries with those used in Brazil, identifying their advantages and disadvantages. Our primary areas of interest include the United States, Indonesia, and Europe, where we will analyze the solutions and, whenever possible, understand the commercial and political interests involved. We will highlight aspects related to sustainability in the production, transportation, and use of biodiesel. The methodology is based on research from recent publications and news, organized into graphs to facilitate analysis and comparison. Next, we will also examine the consequences of the solutions adopted in Brazil, envisioning future scenarios and recommended paths. In the short term, biodiesel is expected to be replaced by renewable diesel (also known as green diesel in some regions
Items per page:
50
1 – 50 of 776