Browse Topic: Sustainable development

Items (949)
The aim of this study is to develop a methodology to significantly reduce emissions in bus fleet renewal scenarios by investigating both technical and economic aspects. This work presents a case study based on Elba Island, Italy, which investigates optimal solutions for replacing existing Diesel buses through a total cost of ownership analysis. The investigation is carried out for four different potential scenarios: renewing the fleet with Diesel buses, renewing the fleet with electric buses, adopting fuel cell buses, and implementing a hybrid solution. The latter represents a synergistic solution that integrates fuel cell buses with the development of a hydrogen refueling station driven by a proton exchange membrane electrolyzer, unlocking the techno-economic potential of self-producing green hydrogen for bus refueling. The novelty of this study is its integrated methodology that combines a total cost of ownership analysis with a tailored design of a green hydrogen production network
Bove, GiovanniSorrentino, MarcoBaldinelli, AriannaDesideri, Umberto
The growing global adoption of electric vehicles (EVs) has resulted in a spike in the number of EV charging stations. As EVs have become more and more popular worldwide, a large number of EV charging stations are opening up to accommodate their demands. During grid failures, an EV charging station can also serve as a flexible load connected to the grid to balance out voltage fluctuations. An EV charging station when powered using a separate source, such as solar or wind, can function as a powerhouse, bringing electricity to the grid when it's needed. Therefore, instead of installing more equipment to sustain voltage, the current EV charging station can be efficiently used to meet the grid's needs during failures. These stations have the potential to be dynamic, grid-connected assets for sustainable cities and communities in addition to their core function of vehicle charging (SDG 11). Because of their dual purpose, they can serve as adaptable loads that reduce voltage variations during
R, UthraRangarajan, RaviD, SuchitraD, Anitha
The transportation system is one major catalyst to urban ecological imbalance. In developing countries, two-wheelers are considered a major mode of urban personal transportation because of their compactness, easy maneuver in heavy traffic and good fuel efficiency. In India, middle and lower middle-class people prefer to choose two wheelers, and these vehicles are dominantly fuelled by gasoline. Although, the energy consumption by a two-wheeler is comparatively less than that of a four-wheeler, they use about 60% of the nation’s petroleum for on-road vehicles and the impact on urban air quality and climatic change is significantly high. This high proportion of gasoline utilization and emission contribution by two wheelers in cities demand greater attention to improve urban air quality and near-term energy sustainability. Electrification of two-wheelers through the application of a plug-in hybrid idea is a promising solution. A plug-in hybrid motorbike was developed by putting forth a
Kannan, PrashanthShaik, AmjadTalluri, Srinivasa Rao
This study focuses on the vibration analysis of hybrid composite laminated plates fabricated from E-glass Fiber and areca Fiber reinforced with epoxy resin. The hybrid laminates were prepared using the Vacuum Assisted Resin Transfer Moulding (VARTM) process with different stacking sequences and Fiber ratios, where brake lining powder was also incorporated as a filler in selected configurations to enhance mechanical and damping properties. The fabricated plates (280 × 280 mm) were subjected to experimental modal analysis using an impact hammer and accelerometer setup, with data acquisition carried out through DEWESoft software. Natural frequencies and damping ratios were determined under three boundary conditions (C- C-C-C, C-F-C-F, and C-F-F-F). The results revealed that Plate 1, with E-glass outer layers, areca reinforcement, and filler addition, exhibited the best vibration performance, achieving a maximum natural frequency of 332.8 Hz under C-C-C-C condition, while Plate 2 showed a
D R, RajkumarO, Vivin LeninR, SaktheevelR G, Ajay KrishnaNg, Bhavan
Systems for solar desalination provide a practical and environmentally friendly way to turn salty or polluted water into drinkable water. Three configurations are experimentally investigated in this study: a traditional solar desalination system, a system integrated with a thermal energy storage unit (TESU) based on phase change material (PCM), Multi wall Carbon nano Tube were mixed with PCM at 2% of total volume of the PCM and a system that incorporates powdered natural dolomite/MWCNT at 1% each into the PCM-based TESU. Each of the four configurations was created, tested simultaneously, and thoroughly examined. In comparison to the Standard Still (SS), the experimental findings showed that the adoption of PCM-based TESUs increased daily cumulative water output (collection efficiency) by 24%, 26% with addition of MWCNT and the addition of dolomite powder/MWCNT further increased productivity by 27%. The average exergy efficiencies for for SS, SS with PCM, SS with nano enriched PCM, and
R L, KrupakaranPetla, RatnakamalaAnchupogu, PraveenP, UmamaheswarraoSatya Meher, RDunna, Vijay
Electric vehicle (EV) battery life cycle assessment (LCA) is emerging as a strategic necessity amid booming demand and tightening environmental regulations. This report consolidates key findings and recommendations for EBRR (Electric Battery Reuse & Recycling) to implement a comprehensive LCA program covering EV lithium-ion batteries from cradle-to-grave and cradle-to-cradle perspectives. The study confirms that global Li-ion battery demand is skyrocketing – projected to increase 14-fold by 2030[1] – amplifying the urgency for sustainable battery management (see Figure 1). It outlines the full life cycle stages of EV batteries (raw material extraction, manufacturing, use, and end-of-life) and compares linear vs. circular approaches. Using the ISO 14040/44 framework[18, 19] and industry-standard LCA tools, the report evaluates environmental impacts and identifies hotspots. Key findings show that mining and manufacturing dominate the battery’s carbon footprint, but end-of-life strategies
Asokan, GayathriRaju cEng, RajkumarDhananjaya, ChandanSattigeri cEng, Sudhir V
Conventional tractor transmission systems feature separate Brake and Bull Cage housings, with brakes often being proprietary components and Bull Cage designed by the Original Equipment manufacturer (OE). To optimize design and performance, an innovative integrated system was developed, combining an in-house braking system with a unitized Bull Cage assembly. This robust design reduces part count, eliminates proprietary dependency (except for friction liners), and enhances performance. Virtual simulations performed under RWUP conditions demonstrated enhanced strength and stiffness in the integrated design. In this Integrated Brake & Bull Cage assembly (IBCA), the braking layout was reconfigured from a 4+1 friction design to a 3+2 configuration which improved balancing, enhancing customer braking experience and increasing contact area by 11%. This adjustment extends friction liner life and boosts mechanical advantage by 7.9%, significantly improving tractor stability and performance
Dumpa, Mahendra ReddyDhanale, SwapnilPerumal, SolairajGomes, MaxsonRedkar, DineshSavant, KedarnathV, Saravanan
Emission norms have become much more stringent to reduce emissions from vehicles. Diesel engines in particular are the predominant contributors to higher emissions. Diesel Oxidation Catalyst (DOC) in diesel engine catalytic converter systems is the crucial component in reducing harmful emissions such as Carbon Monoxide (CO) and unburnt Hydrocarbons (HC). DOCs often rely on expensive noble metals like platinum, palladium, and rhodium as catalyst materials. This significantly raises the cost of emission control units. The proposed idea is to explore MnO2-CeO₂ (Manganese Oxide, Cerium Oxide) as an alternative catalyst to traditional DOC materials. The goal is to deliver effective oxidation performance while reducing overall system cost. MnO2-CeO₂ catalysts are promising because of their good low-temperature activity, oxygen storage capacity, and redox behavior. These features are helpful for diesel engines that operate under various conditions. They improve the oxidation of CO and HC
C, JegadheesanT, KarthiRajendran, PawanMuruganantham, KowshiikS, Vaitheeshwaran
The global shift to electric vehicles (EVs) is vital for reducing greenhouse gas emissions, but their sustainability hinges on effective battery lifecycle management. This review examines the interplay between Life Cycle Assessment (LCA) and circular economy (CE) principles in EVs, with a focus on both international trends and India-specific challenges. We analyze CE strategies such as extending battery lifespan, second-life applications, and recycling integrated with LCA to evaluate environmental impacts from raw material extraction to disposal. Key areas include battery chemistry, LCA methodologies, policy frameworks, and industrial practices, informed by a synthesis of over 50 peer-reviewed articles, technical papers, and sustainability reports. Challenges include inconsistent LCA baselines, low material recovery in informal recycling, and regulatory gaps, particularly in India. Despite these, innovations like solid-state batteries and advanced recycling techniques offer promise
Haregaonkar, Rushikesh SambhajiKumar, OmSankar M, GopiKumar, Rajiv
In a developing country like India, the growing energy demand across all sectors underscores the urgent need for clean, sustainable, and efficient energy alternatives. Hydrogen stands out as a promising fuel, offering virtually zero emissions and helping to reduce greenhouse gas (GHG) emissions, which directly contributes to mitigating global warming, ensuring a cleaner environment, and lowering dependency on fossil fuels. In line with Sustainable Development Goal 7 (SDG 7), which seeks to guarantee that everyone has access to modern, cheap, and sustainable energy, hydrogen is well-positioned to be a major player in India's energy transformation. However, hydrogen has unique properties such as its wide flammability range, high reactivity, and high energy content present significant challenges in terms of safety, particularly in its storage, transportation, and usage. Improper handling or inadequate safety measures can lead to hazardous incidents, making robust testing, certification
Pawar, YuvrajDekate, Ajay DinkarThipse, SBelavadi Venkataramaiah, Shamsundara
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
Choudhary, Aditya KantPetale, MahendraDutta, SurabhiBagul, Mithilesh
Electric vehicles (EVs) are the cornerstone of sustainable transportation, but their performance and component longevity are heavily influenced by driving behaviors. This study proposes a comprehensive analytical framework to assess how different driving styles affect the operational health of key EV components such as the battery pack, motor, and DC-DC converter. Various driving styles such as aggressive, moderate, and economical are discriminated against using dynamic vehicle operation signatures including acceleration and braking intensity, turning profiles, and load variations. These behavioral patterns are reflected in the electrical responses, namely current and voltage waveforms across power electronic systems. By analyzing these electrical signatures, a range of KPIs can be estimated for each component, offering insights into their operational stress and degradation trends. Experimental analysis using real-time EV datasets validates the framework’s ability to predict and
Deole, KaushikKumar, PankajHivarkar, Umesh
Fleet owners often encounter significant logistical and financial problems when dealing with battery packs of different ages and conditions. The standard industry practice is to replace old batteries with identical new ones. This process is inefficient because it costs a lot, creates too much inventory, and eliminates battery packs that are still useful too soon. The problem worsens when manufacturers stop making older battery models, which can force a vehicle to retire early. This paper puts forward a framework for mixing different types of battery packs to deliver the performance needed for a vehicle’s mission. We show how this works in three everyday service situations: 1) Repair, when a single damaged pack needs replacing; 2) Life Extension, where aged packs are combined with newer ones to meet mission range; and 3) Performance Restoration, which uses next-gen packs when the original parts are obsolete. The study shows that a vehicle can complete its required missions by
Nair, Sandeep R.Ravichandran, Balu PrashanthHallberg, Linus
Fuel cell technology is gaining prominence as a clean, efficient, and scalable power solution for electric mobility, addressing key limitations of conventional battery systems such as long charging times, limited range, and declining performance in high-utilization applications. Proton Exchange Membrane Fuel Cells (PEMFCs) offer high energy density, rapid refueling, and robust operation under varying load conditions, making them particularly suitable for light electric vehicles such as two-wheelers, e-rickshaws & range extenders. Within the broader category of PEMFCs, air-cooled fuel cells present unique advantages for mobility applications. Their simplified architecture eliminates the need for complex liquid cooling systems, leading to lower system weight, reduced component count, and easier integration. This translates into a compact, lightweight, and cost-effective power unit—ideal for vehicles where space, weight, and maintenance constraints are critical. The market for air-cooled
Singh, SauhardChaudhari, ChinmaySundarraman, MeenakshiSonkar, KapilBera, TapanBadhe, RajeshSrivastva, UmishSharma, Alok
India being highly populated and developing country, the demand for various alternative fuel is increasing drastically. It is driven by the need to reduce dependency on traditional fossil fuels & reduce impact on environmental issues like Greenhouse gas, emissions & pollution. The potential options, CNG (Compressed Natural Gas) & Biodiesel, are becoming increasingly popular and important. Biodiesel, a renewable fuel which is produced from waste materials & crops which grown repeatedly & easily available while CNG is more sustainable than diesel as natural gas is a cleaner-burning fossil fuel in comparison to coal or oil. This paper will focus on comparison between basic properties of Diesel, CNG & Biodiesel. In this study will also focus on survey of various Government initiatives, policies & infrastructural development which are evolving to encourage the usage of CNG & Biodiesel. These fuels are emerging as promising alternative contenders to traditional diesel. It has the potential
Bondada, NanditaBaruah, LabanyaMokhadkar, Rahul
Ammonia has emerged as a promising alternative fuel for transportation because of its high energy density (NH3 has more hydrogen than propane in a similar size tank), simple and carbon-free combustion, and potential to produce sustainably. This paper investigates the feasibility of using ammonia as fuel for internal combustion engines (ICE) and fuel cells in automotive applications. In many ways, ammonia captures these benefits by being produced from renewable energies and having the potential to reduce reliance on fossil fuels. There are significant drawbacks of ammonia however, such as its decreased energy content per unit volume, NOx emissions potential, and necessary engine adaptations. This paper discusses the combustion characteristics of ammonia and how it functions in typical ICE's as well as new fuel cell technology, and the necessary infrastructure to produce, store, and distribute ammonia for automotive applications. The study compares operations to conventional fuels
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
The rapid expansion of electric vehicle (EV) charging infrastructure introduces complex cybersecurity challenges across hardware, software, network, and cloud layers. This review paper synthesizes existing research, standards, and documented incidents to identify critical vulnerabilities and propose layered mitigation strategies. We present a structured threat taxonomy based on the STRIDE model, enriched with real-world attack vectors and mapped to mitigation controls. Our analysis spans physical tampering, insecure firmware updates, protocol-level flaws in OCPP and ISO 15118, and cloud misconfigurations. While prior studies often focus on isolated domains, this work unifies fragmented insights into a cohesive framework. We highlight gaps in current literature, such as inconsistent adoption of secure protocols and limited validation of EVSE identity formats. By aligning threats with industry standards (SAE J3061, NIST CSF, IEC 62443) and scoring risks using CVSS v3.1, we offer a
Aggarwal, AkshitGupta, SaurabhSirohi, KapilArisetty, VenkateshChatterjee, Avik
This study examines the evolving landscape of India's automotive sector in the context of the global push for net-zero emissions. As the world's third-largest automotive market, India is poised to play a momentous role in this transition. The country's automotive sector is anticipated to experience rapid growth, with its market size projected to inflate from USD 437 billion in 2022 to USD 1.8 trillion by 2030. The study also highlights the importance of diverse mobility solutions, such as electric vehicles, green hydrogen, and alternative fuels like bio-CNG and ethanol, in addressing transportation challenges and reducing greenhouse gas emissions. The Indian government's comprehensive approach to promoting green mobility, while balancing the needs of a large and diverse population of 1.4 billion people, is a key focus of this research. Through a detailed analysis of economic, social, energy, regulatory, and technological factors, this study provides insights into the current dynamics
Seshan, VivekBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SDe Castro Gomez, Daniel J.
Emission Regulations for NRMM in India have evolved significantly over past two decades. India has progressively adopted stricter standards to align with best practices carried out globally for curbing air pollution. The latest regulations have introduced stringent caps on nitrogen oxides (NOx), and other emission pollutants, ensuring compliance with environmental sustainability goals. Future legislative frameworks are expected to impose even more rigorous emission limits, while incorporating real-world emission monitoring. This will require powertrain manufacturers to integrate advanced after-treatment systems and adopt cleaner combustion technologies to meet compliance standards. To validate compliance with these stringent limits, rigorous testing methodologies are employed. Portable Emission Measurement Systems (PEMS) have become a crucial tool for real-world emission assessment. PEMS technology allows for on-road and field testing of NRMM under actual operating conditions
Rastogi, AadharGarg, VarunRagot, Nicolas
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
Overloading in vehicles, particularly trucks and city buses, poses a critical challenge in India, contributing to increased traffic accidents, economic losses, and infrastructural damage. This issue stems from excessive loads that compromise vehicle stability, reduce braking efficiency, accelerate tire wear, and heighten the risk of catastrophic failures. To address this, we propose an intelligent overloading control and warning system that integrates load-sensing technology with real-time corrective measures. The system employs precision load sensors (e.g., air below deflection monitoring via pressure sensors) to measure vehicle weight dynamically. When the load exceeds predefined thresholds, the system triggers a multi-stage response: 1 Visual/Audio Warning – Alerts the driver to take corrective action. 2 Braking Intervention – If ignored, the braking applied, immobilizing the vehicle until the load is reduced. Experimental validation involved ten iterative tests to map deflection-to
Raj, AmriteshPujari, SachinLondhe, MaheshShirke, SumeetShinde, Akshay
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
Deshpande, SanjanaBorgaonkar, Subodh
Addressing climate issues is a key aspect of good global governance today. A key aspect of managing the threats caused to the environment around is to ensure a sustainable transportation system so that humans exist in peace with nature. According to sources, in 2020 alone, cars accounted for approximately 23% of global CO2 emissions. In addition, they also emit dangerous pollutants thus damaging the ecosystem. To keep pollutants in check there are emission level testing strategies in place in each country. However, we can do better for a sustainable future. On one hand, the huge volume of vehicles around the world makes it an excellent choice and source for a vast emission level dataset comprising of input features as well as the target variable representing the emission band of the vehicle. In addition to the big data available as mentioned above, major advancements in the machine learning algorithms are done today. The advent of algorithms such as Artificial Neural Networks (ANN) has
Sridhar, SriramAswani, Shelendra
This study develops a one-dimensional (1D) model to enhance transmission efficiency by evaluating power losses within a transmission system. The model simulates power flow and identifies losses at various stages such as gear mesh, bearing, churning, and windage losses. Using ISO/TR 14179, which provides a method for calculating the thermal transmittable power of gear drives with an analytical heat balance model, the 1D model ensures accurate thermal capacity evaluation under standard conditions. A key advantage of this 1D model is its efficiency in saving time compared to more complex 3D modelling, making it particularly useful during the conceptual stage of transmission system development. This allows engineers to quickly assess and optimize transmission efficiency before committing to more detailed and time-consuming 3D simulations. To validate the model, experimental tests were conducted at various motor speeds (RPM) and torque values, using high-precision sensors and dynamometers
Bandi, Nagendra ReddyKolla, KalyanP, SelvandranPulugundla, Krishna ChaitanyaM A, Naveen Kumar
Air pollution is profligate becoming a serious worldwide problem with the increasing population and its subsequent demands. Diesel, Gasoline, Natural Gas, Propane, etc., are some of the traditional fuels used in the power generation sectors. Diesel fuel, popularly utilized for backup power in critical operations, is valued for its swift activation time. This makes diesel generators a preferred choice for commercial properties and hospitals requiring reliable emergency power. Moreover, natural gas, distributed through local utility grids, provides a convenient and readily available fuel source for generators, eliminating the need for on-site fuel storage. On the other hand, CPCB has instructed to modify the emission regulations for genset engines for decarbonization and development clean fuel. The change from CPCB II to CPCB IV+ standard shows the commitment of the Indian government towards environmental sustainability and COP26. Pondering to the stringent emission norms, researchers
Bandyopadhyay, DebjyotiSutar, Prasanna SDhar, Rit PrasadSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SSingh, SauhardMishra, Sumit KumarBera, TapanBadhe, RajeshTule, ShubhamAghav, YogeshLakshminarasimhan, Krishna
Growing population in Indian cities has led to packed roads. People need a quick option to commute for both personal trips and business needs. The 2-3 Wheel Combination Vehicle is a new, modular solution that switches between a two-wheeler (2W) and a three-wheeler (3W). Hero has designed SURGE S32 to be a sustainable and flexible transportation option. It is world’s first class changing vehicle. The idea is to use a single vehicle for zipping through city traffic, making deliveries, or earning an income. Manufactured to deal with the challenges of modern life, this dual-battery convertible vehicle can easily transform from a two-wheeler to a three-wheeler and vice versa within three minutes. The Surge S32 is a versatile vehicle that replaces the need for multiple specialised vehicles. By lowering the number of vehicles on the road, it decreases road congestion, reduces emissions, and improves livelihoods. It powers by electricity, ensuring sustainability in all aspects. The current
Ali Khan, FerozGupta, Eshan
Mass Mobility Systems are critical for a sustainable and progressive society. As the world confronts the serious challenges of global warming and urban traffic congestion, efficient mass mobility solutions become critical in reducing carbon footprints and enabling equitable access. Advancement in mass mobility is not limited to electric buses alone but also includes innovations across conventional ICE vehicles, autonomous vehicles, trains, and other integrated transport networks. Safety and accessibility for users remain critical to the sustainability of future mass mobility concepts. The COVID-19 pandemic exposed vulnerabilities in public transportation, highlighting the urgent need for safer and more resilient systems. Road safety, passenger well-being, and hygienic standards must be deeply embedded into future mobility solutions. Furthermore, strong last-mile connectivity will be essential to ensure that mass mobility truly meets the needs of all citizens. An effective Mass Mobility
Vasudevan, MKumar S, AshokSridevi, MKumar, RajivKumar, Om
This research paper offers a comprehensive evaluation of lithium-ion battery recycling methods, tracing the entire journey from global demand to the practical challenges and solutions for sustainable battery recycling. It starts with the analysis of worldwide LIB demand growth alongside the exponential growth in volumes of spent batteries and recycling rates. The study focuses on the imbalance in production and recovery of critical battery components and its environmental and economic effects. The paper then systematically examines six major recycling methodologies: mechanical, pyrometallurgical, hydrometallurgical, biotechnological, direct, and ion-exchange recycling. It goes into detail about their advantages, limitations, and roles in maximizing the recovery of valuable metals such as lithium, cobalt, and nickel. Traditional techniques like hydrometallurgical and pyrometallurgical methods, and emerging approaches including bioleaching and ion-exchange, are evaluated for their
Jain, GauravPremal, PPathak, RahulGore, Pandurang
In the pursuit of environmental sustainability and cleaner transportation, the global automotive industry is expediting transformation. This paper utilized multi-decade data spanning from 1975 to 2024, for the development of predictive models for fuel economy and CO₂ emissions across a wide range of vehicle technologies from 2026 - 2050. This is done with the help of advanced machine learning algorithms like Linear and Random Forest Regression in Python and integrating insights through Power BI visualizations, the project identifies key correlations between vehicle attributes such as weight, powertrain, and footprint and their environmental performance. Results highlight the increasing impact of electric vehicle adoption, hybridization, and light weighting on overall emissions reduction. These insights help forecast the direction of fuel economy standards, emission patterns, and technology shifts across manufacturers and vehicle types. Beyond technical predictions, the study offers a
Hazra, SandipTangadpalliwar, SonaliHazra, Sanjana
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
Rising environmental concerns and stringent emissions norms are pushing automakers to adopt more sustainable technologies. There is no single perfect solution for any market and there are solutions ranging from biofuels, green hydrogen to electric vehicles. For Indian market, especially in the passenger car segment, hybrid vehicles are favoured when it comes to manufacturers as well as with consumer because of multiple reasons such as reliability, performance, fuel efficiency and lower long-term cost of ownership. For automakers planning to upgrade their fleets in the context of upcoming CAFE III (91.7 g CO2 / km) & CAFE IV (70 g CO2/km) norms, hybridization emerges as the next natural step for passenger cars. Lately, various state governments have also promoted hybrid vehicle sales by offering certain targeted tax breaks which were previously reserved for EVs exclusively. Current study focuses on various parallel hybrid topologies for an Indian compact SUV, which is the highest
Warkhede, PawanKeizer, RubenSandhu, RoubleEmran, Ashraf
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
Mohan, VigneshDarzi, Mahdi
This article describes an enhanced, more efficient way to build and test wire harnesses. The wire harness is a complex, organized bundle of wire found in virtually every motorized vehicle, machinery and equipment. Manual work is usually performed in assembling such harnesses, which is time-consuming and error-prone. Workers usually rely on printed diagrams and basic tools, which can be tiring and tricky to follow, especially when the designs change often. The new system solves many of these issues by combining a smart testing machine called Quad 64 with a large digital display workbench. Instead of looking at paper drawings, workers can now see the full wire layout directly on a screen, life-sized and clear. This makes it easier to understand where each wire goes and what to do next. What’s really helpful is that the system can spot mistakes right away. If a connector is omitted or a wire is placed wrongly, the system will report the error immediately and show it and the remedy. It
Sancheti, Rahul Madanlal
The purpose of this research is to examine the fundamental principles of a circular economy (CE) in relation to the automotive industry in India, which plays a vital role in the country's economy. As a result, energy consumption and environmental impacts also pose significant challenges. CE provide a transformative approach through the life cycle of a vehicle, guiding the automotive industry toward a more sustainable transportation system. In order to decarbonize this industry, the global automotive commission recommends that recycled plastic content in vehicles be increased to 20-25% by 2030. This target necessitates the recovery of plastics from end-of-life vehicles, though these materials are rarely integrated into compounds today. The automotive industry's reliance on plastics has grown substantially due to their lightweight properties, which enhance fuel efficiency, reduce CO₂ emissions, and improve versatility and mechanical performance. polypropylene polymer and several other
Kumar, Vijay Bhooshan
This paper presents Nexifi11D, a simulation-driven, real-time Digital Twin framework that models and demonstrates eleven critical dimensions of a futuristic manufacturing ecosystem. Developed using Unity for 3D simulation, Python for orchestration and AI inference, Prometheus for real-time metric capture, and Grafana for dynamic visualization, the system functions both as a live testbed and a scalable industrial prototype. To handle the complexity of real-world manufacturing data, the current model uses simulation to emulate dynamic shopfloor scenarios; however, it is architected for direct integration with physical assets via industry-standard edge protocols such as MQTT, OPC UA, and RESTful APIs. This enables seamless bi-directional data flow between the factory floor and the digital environment. Nexifi11D implements 3D spatial modeling of multi-type motor flow across machines and conveyors; 4D machine state transitions (idle, processing, waiting, downtime); 5D operational cost
Kumar, RahulSingh, Randhir
The pressing global need for de-fossilization of the transport sector, especially within the heavy-duty segment, has intensified the exploration of alternative clean fuels. In this context, methanol gained traction due to their renewable production pathways, carbon-neutrality, and are being highly promoted by the Indian government to reduce CO2 emissions. Dual direct injection compression ignition (DDICI) is an effective combustion strategy to use methanol in heavy-duty engines, which combines the advantage of high-efficiency compression ignition with the clean-burning potential of methanol. In contrast to spark-ignited premixed methanol engines, this strategy involves a diffusion combustion of the methanol flame, thereby eliminating knocking and enabling running with high compression ratios. This experimental and numerical study presents a comprehensive investigation into the DDICI strategy using methanol as primary fuel and diesel as a pilot for ignition assistance. The work
Singh, InderpalDhongde, AvnishRaut PhD, AnkitGüdden, ArneEmran, AshrafBerry, Sushil
The adoption of sustainability in electric mobility has made it crucial to investigate environmentally friendly materials. Polymer materials used in automotive application plays very important role in material circularity contributing significant value addition to the overall carbon footprint index. This study discloses the development of recycled polyester textiles derived from PET bottle waste and use for automotive interior parts. The use of recycled textiles is directly helping the organization in scope 3 emissions to get the lower carbon footprint value as it is eliminating the use of fossil fuel resources in making the PET textiles. In this study, the development of 50% recycled PET textile and its feasibility for automotive interior is disclosed in detail. The 50 % recycled PET was tested against automotive critical requirements such as sun load UV resistance, abrasion durability, color migrations, soiling resistance, mechanical and thermal properties. The findings showed that
Palaniappan, ElavarasanVaratharajan, SenthilkumaranBalaji, K VDodiya, Rohanbhai
In the context of the accelerating urbanization process, the problem of urban traffic congestion has become more severe. Rail transit, with its advantages of high efficiency, convenience, and environmental friendliness, has become a key force in alleviating urban traffic pressure. An in - depth exploration of passengers’ willingness to travel by rail transit is of great significance for optimizing urban traffic planning, improving the service quality of rail transit, and promoting the sustainable development of cities. This article starts from two dimensions: objective factors and passengers’ subjective perceptions, and comprehensively uses a variety of research methods to conduct an in - depth study on passengers’ willingness to travel by rail transit. In terms of objective factors, this article analyzes the differences in subjective perceptions among different passenger groups from the perspectives of gender, age, education level, and occupation. In terms of subjective perceptions
Wang, GangHuang, LeiYang, Yihao
In the context of mounting urban transportation demands, coupled with the imperatives for energy conservation and carbon reduction, incumbent tram systems confront a range of challenges. This paper proposes a green and low-carbon technological framework for tram, encompassing three phases of planning, design, construction, and operation management. It elucidates the energy-saving and environmental protection technical measures inherent in each phase, accompanied by a thorough analysis of their respective advantages and ramifications. The paper further puts forward suggestions for the green and low-carbon transformation of trams, providing both theoretical guidance and practical reference for the sustainable development of trams.
Luan, Zhi-GangZhou, Hai-ZhuWang, Yuan-QiaoCai, Jing-BiaoZhou, Li-NingZheng, Liang-JiTian, Jiu-Li
At present, the rail transit network in China is well-developed and has become an important means of daily travel for residents. Rail transit stations usually achieve seamless connections with other transportation modes such as buses, taxis, and shared bicycles. It will evolve into an integrated transportation hub, effectively alleviating the pressure on urban surface transportation and playing a pivotal role in dispersing a large number of commuters. Meanwhile, with the vigorous development of rail transit, its energy consumption is increasing. It results in considerable carbon emissions, which poses a huge challenge to China’s goal of achieving carbon neutrality by 2030. In this paper, the building energy consumption simulation tool DesignBuilder is used to model the Tongyuan Road South Station of Suzhou Rail Transit. The energy consumption generated during its operation stage is simulated, and the carbon emissions produced by Tongyuan Road South Station at this stage are calculated
Zhu, Ning
The transportation sector faces heightened scrutiny to implement sustainable technologies due to market trends, escalating climate change and dwindling fossil fuel reserves. Given the decarbonization efforts underway in the sector, there are now rising concerns over the sustainability challenges in electric vehicle (EV) adoption. This study leverages ISO 14040 Lifecycle Assessment methodology to evaluate EVs, internal combustion engine vehicles (ICEVs), and hybrid electric vehicles (HEVs) spanning cradle-to-grave lifecycle phases. To accomplish this an enhanced triadic sustainability metric (TSM) is introduced that integrates greenhouse gas emissions (GHG), energy consumption, and resource depletion. Results indicate EVs emit approximately 29% fewer GHG emissions than ICEVs but about 4% more than HEVs on the current the US grid, with breakeven sustainability achieved within a moderate mileage range compared to ICEVs. Renewable energy integration on the grid significantly enhances EV
Koech, Mercy ChelangatFahimi, BabakBalsara, Poras T.Miller, John
Automotive air conditioning systems are essential for ensuring thermal comfort for passengers. However, these systems require the elimination of refrigerants with high Global Warming Potential (GWP) and a transition toward more environmentally friendly alternatives. For many years, R134a has been the industry standard in automotive applications, following the phase-out of chlorofluorocarbons (CFCs) such as R12. This study evaluates the energy efficiency and environmental impact of several refrigerants in automotive air conditioning systems in tropical climates. A comprehensive literature review is conducted to select the refrigerants to be compared with R134a. The following is chosen: R1234yf, R744 (CO2), R290, R600a and R152a. Then a mathematical model is prepared and validated. The deviation between the results presented by the mathematical model and those in the literature varies from -1.21% to 8.33%. The simulation results suggest that the Coefficient of Performance (COP) of R152a
Oliveira Dias, Vinícius José deBarbieri, Paulo Eduardo LopesMoreira, Thiago Augusto AraújoSantos, Alex HenriqueFreitas Paulino, Tiago de
Urban mobility is one of the major challenges faced by downtown areas in cities worldwide. Understanding how to improve it is essential, as it directly impacts the quality of life of people who live and work in these regions. There is an inconsistency in the fact that vehicles are produced with high efficiency and effectiveness, yet their purpose does not align with the daily commuting needs of large city centers, especially during peak travel times. The tools used in vehicle manufacturing, such as continuous improvement, lean manufacturing, continuous flow, and the theory of constraints, have been applied to balance transportation mode options. The analyzed scenarios aim to promote sustainable development and contribute to enhancing citizens’ quality of life. This study explores the hypothesis that if the conventional unit of measurement for vehicles, typically expressed in terms of vehicle volume or flow (vehicles/hour), were replaced by a metric based on the number of people
Mello Filho, Luiz Vicente Figueira deCanteras, Felippe BenaventeMeyer, Yuri AlexandreEmiliano, William MachadoJúnior, Vitor Eduardo MolinaGabriel, João CarlosIano, Yuzo
Items per page:
1 – 50 of 949