Browse Topic: Sustainable development

Items (823)
Alternative fuels such as Fischer-Tropsch Synthesized Paraffinic Kerosene (FT-SPK) and Catalytic Hydrothermal Conversion Jet (CHCJ) are among the important sustainable aviation fuels (SAFs) for future transportation. However, these alternative fuels often vary in their characteristics, depending on their feedstock and fuel production processes. Therefore, a detailed analysis of these alternative fuels' combustion, emissions, and efficiency must be performed under controlled experiments to understand the impact of fuel properties and operating conditions. This study used a single-cylinder research engine (SCE) with a compression ratio of 17:1. Extensive operating conditions were performed to determine the effect of each fuel on the engine performance, which can be fundamentally understood by fuel properties (e.g., cetane number, heat of combustion, and density) in comparison with Jet-A fuel. The experimental setup includes high-speed data acquisition for combustion analysis and gaseous
Cung, KhanhMiganakallu Narasimhamurthy, NiranjanKhalek, ImadHansen, Greg
Low-Cost Mobile Hydrogen Refuelling Stations: A Cost-Effective Solution for India's Sustainable Transportation” The likely depletion of fossil fuel reserves in the next fifty years and growing environmental concerns caused by petroleum fuel-based vehicles highlight the urgent need for sustainable alternatives. India, a developing country, requires a significant amount of energy to sustain its growth, most of which is imported. Hydrogen is one of the cleanest fuels and offers sustainable pathways to a low-carbon future. The government of India has already launched a Green Hydrogen mission and has set up a very ambitious target for 2030. However, the absence of adequate refueling infrastructure is a significant blockade to India's widespread adoption of hydrogen-powered vehicles. The mobile hydrogen refueling station (MHRS) is a flexible system that enables lower initial capital costs than fixed hydrogen refueling stations and allows for the gradual build-up of hydrogen mobility fleets
Mathur, AnimeshNayak, AjayKumar, Naveen
The automotive sector in India is undergoing a transformation, driven by government policies and regulations aimed at achieving net-zero carbon emissions. In alignment with global climate goals, the Indian government has set ambitious targets to reduce greenhouse gas emissions, with a focus on promoting Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (FCVs). Initiatives like the Faster Adoption and Manufacturing of Hybrid and Electric Vehicles (FAME) Scheme, along with tax incentives, subsidies, and charging infrastructure development, are designed to accelerate the adoption of cleaner vehicles. The introduction of stricter emission standards and the National Electric Mobility Mission Plan (NEMMP) further underscores the push toward sustainable mobility. In response, Indian automotive companies are shifting strategies to align with these government directives. Major players are significantly increasing investments in EV technology, focusing on enhancing battery performance
Patil, Nikhil NivruttiSaurabh, SaurabhBhardwaj, RohitGawhade, RavikantGadve, DhananjayAmancharla, Naga Chaithanya
Recently, as regulations on greenhouse gas emissions have become stricter, driven by global warming, there is increasing interest in engines utilizing environmentally friendly fuels. In this context, ammonia is attracting attention as a potential alternative to fossil fuels in the future. However, due to its distinct fuel properties compared to conventional fuels, research is being conducted on utilizing diesel as an ignition source for ammonia. In this study, the effects of diesel injector fuel flow rate, and micro-pilot (MP) diesel injection timing on combustion and exhaust emission characteristics were analyzed in a single cylinder 12L marine ammonia-diesel dual-fuel engine. Two types of diesel micro-pilot injectors were tested. The first one was high flow rate micro-pilot injector (HMPI) and the second one was low flow rate micro-pilot injector (LMPI). HMPI injector had 66% more number of fuel injector nozzle hole and 250% larger fuel flow rate. Therefore, HMPI injector could
Jang, IlpumPark, CheolwoongKim, MinkiPark, ChansooKim, YongraePark, GyeongtaeLee, Jeongwoo
The utilization of Inconel 718 is increasing daily in stringent operating conditions such as aircraft engine parts, space vehicles, chemical tanks, and the like due to its physical properties such as maintaining strength and corrosion resistance at higher temperature conditions. Besides, Inconel 718 is one of the difficult materials for machining because of maintaining its strength at elevated temperature, which generates higher cutting force leading to observed multiple tool wear mechanisms that affect the surface quality; lower thermal conductivity of materials produces high temperature generation that impacts the tool performance by reducing tool life. In addition, the presence of carbides and high hardness of IN 718 affects the machining performance. Therefore, in this view, this article describes the effect of cutting environments and machining parameters on the machining of Inconel 718 and optimizes the cutting conditions for sustainable machining. Three input parameters namely
Mane, Pravin AshokDhawale, Pravin A.Nipanikar, SureshKhadtare, Avinash N.
A consequence of the automotive industry's shift to electrification is that a significantly higher percentage of a vehicle's lifecycle CO2 emissions occur during the production phase. As a result, vehicle manufacturers and suppliers must shift the focus of product development from the 'in-use phase only' to optimizing the complete product lifecycle. The proper design of a battery has the highest impact to all other phases following in the life cycle. It influences the selection of materials, the manufacturing, in-use and end of life, respectively the recycling and recycling yield for a circular economy. Using real-life examples, the paper will explain what the main parameters are necessary for designing a sustainable battery. What are the low hanging fruits to be considered? In addition, it will elaborate on the relation as well as the impacts to other KPIs like safety, costs and lifetime of the battery. Finally, it will round up in an outlook on how batteries will evolve in the future
Braun, AndreasRothbart, Martin
A newly formulated fiber-based material was developed to offer a sustainable alternative to foam-based vehicle acoustic products. The fiber-based material was designed to be used in multiple vehicle acoustic applications, with different blends of the material available depending on the application. It performs well as an engine bay sound absorber due to its high heat tolerance and good absorption performance. A study was conducted to evaluate the sound absorption performance of this fiber-based material, specifically the engine bay blends, in comparison to that of current foam-based products. The results from this study show that the sound absorption performance of this new fiber-based material can match that of current foam-based materials while providing a sustainable and fully recyclable product, unlike the foam.
Krugh, Jack
The race is on for leadership in cislunar space, considered a gateway to the future of space exploration. Yet operating in this domain introduces unique challenges for propulsion systems. In contrast to low-Earth orbit (LEO), the cislunar environment requires higher precision propulsion solutions; these are necessary to enable rapid and accurate maneuvering of spacecraft and long-term sustainability. Propellants like hydrazine and nitrogen tetroxide offer the high energy density required for cislunar missions, but they must be handled very differently from the inert, non-reactive gases at play in LEO systems.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT, have developed a groundbreaking near-infrared (NIR) fluorescent nanosensor capable of simultaneously detecting and differentiating between iron forms — Fe(II) and Fe(III) — in living plants.
Lin, RuiAdas, Camilo Abduch
Recent advances are reducing the cost of space launch, high specific power solar cells, and the production of satellite systems. Modular architectures with no moving parts and distributed power systems would minimize assembly and maintenance costs. Together, this may enable space-based solar power to provide decarbonized dispatchable power at a lower cost than equivalent technologies such as nuclear power stations. Space-based Solar Power for Instantaneously Dispatchable Renewable Power on Earth discusses the advances in emerging technologies, like thin film solar cells, reusable launch vehicles, and mass-produced modular satellite systems that would make economic space power feasible. Click here to access the full SAE EDGETM Research Report portfolio.
Muelaner, Jody Emlyn
As the automotive sector shifts towards cleaner and more sustainable technologies, fuel cells and batteries have emerged as promising technologies with revolutionary potential. Hydrogen fuel cell vehicles offer faster refueling times, extended driving ranges, and reduced weight and space requirements compared to battery electric vehicles, making them highly appealing for future transportation applications. Despite these advantages, optimizing electrode structures and balancing various transport mechanisms are crucial for improving PEFCs’ performance for widespread commercial viability. Previous research has utilized topology optimization (TO) to identify optimal electrode structures and attempted to establish a connection between entropy generation and topographically optimized structures, aiming to strengthen TO numerical findings with a robust theoretical basis. However, existing studies have often neglected the coupling of transport phenomena. Typically, it is assumed that a single
Tep, Rotanak Visal SokLong, MenglyAlizadeh, MehrzadCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
The spark ignited two-stroke engine, as a cost-efficient power unit with low maintenance demand, is used millionfold for the propulsion of hand-held application, motorcycles, scooters, boats and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. However, poor exhaust emissions, caused by high scavenge losses, especially on port controlled two-stroke engines, and a low efficiency are disadvantages of this combustion process. Under the aspect of increasing environment- and health awareness, the two-stroke technology driven with fossil resources, shows no future advantage. The anthropogenic climate change force for sustainable development of combustion engines whereby reduction of fuel consumption or usage of alternative fuels is an important factor. Best way of a decarbonization to fulfil future climate goals is the utilization of non-carbon fuels. In this field of fuels, hydrogen, with its high energy content and close inexhaustible availability
Yasuda, TerutakaOswald, RolandKirchberger, Roland
Contemporary Japanese society relies heavily on vehicles for transportation and leisure. This has led to environmental concerns owing to vehicle emissions, prompting a shift toward environmentally friendly alternatives, such as clean diesel and electric vehicles. Clean diesel vehicles aim to reduce harmful emissions, whereas electric vehicles are favored because of their minimal emissions and quiet operation. However, the lack of engine noise in electric vehicles can make it difficult for drivers to perceive speed changes, potentially increasing the risk of accidents, and simply amplifying all sounds is not viable because it may cause discomfort. Therefore, this study explored how deviations from expected engine sounds affect the perceived sound quality and vehicle performance assessment. Unlike traditional gasoline-powered and clean diesel vehicles, electric vehicles produce very little running noise, which makes road surface noise more prominent. Given the novelty of electric
Nitta, MisakiIshimitsu, ShunsukeFujikawa, SatoshiIwata, KiyoakiNiimi, MayukoKikuchi, MasakazuMatsumoto, Mitsunori
The main drivers for powertrain electrification of two-wheelers, motorcycles and ATVs are increasingly stringent emission and noise limitations as well as the upcoming demand for carbon neutrality. Two-wheeler applications face significantly different constraints, such as packaging and mass targets, limited charging infrastructure in urban areas and demanding cost targets. Battery electric two wheelers are the optimal choice for transient city driving with limited range requirements. Hybridization provides considerable advantages and extended operation limits. Beside efficiency improvement, silent and zero emission modes with solutions allowing fully electric driving, combined boosting enhances performance and transient response. In general, there are two different two-wheeler base categories for hybrid powertrains: motorcycles featuring frame-integrated internal combustion engine (ICE) and transmission units, coupled with secondary drives via chain or belt; and scooters equipped with
Schoeffmann, W.Fuckar, G.Hubmann, C.Gruber, M.
Fuel cell vehicles (FCVs) offer a promising solution for achieving environmentally friendly transportation and improving fuel economy. The energy management strategy (EMS), as a critical technology for FCVs, faces significant challenges of achieving a balanced coordination among the fuel economy, power battery life, and durability of fuel cell across diverse environments. To address these challenges, a learning-based EMS for fuel cell city buses considering power source degradation is proposed. First, a fuel cell degradation model and a power battery aging model from the literature are presented. Then, based on the deep Q-network (DQN), four factors are incorporated into the reward function, including comprehensive hydrogen consumption, fuel cell performance degradation, power battery life degradation, and battery state of charge deviation. The simulation results show that compared to the dynamic programming–based EMS (DP-EMS), the proposed EMS improves the fuel cell durability while
Song, DafengYan, JinxingZeng, XiaohuaZhang, Yunhe
Depletion of petroleum crude oil and its environmental impacts challenge future generations. Vegetable oils provide a sustainable alternative with benefits like anti-wear properties, biodegradability, and renewability. Kusum oil's ability to lower carbon emissions significantly and promote sustainable industrial practices highlights its potential as a viable green alternative. This research paper presents a comprehensive and comparative analysis of a sustainable, environmentally friendly bio-lubricant and nonedible vegetable oil like Kusum oil. Bio-lubricant is produced by transesterification followed by epoxidation, which is known as epoxidized kusum oil lubricant or dehydrated kusum oil (DKO). The process of epoxidation significantly enhances the properties of Kusum oil, making it a promising alternative to conventional lubricants. It is compared with a widely used conventional mineral oil lubricant like SAE10W40. DKO exhibits comparable density, viscosity index, pour point, and
Prabhakaran, JPali, Harveer SinghSingh, Nishant K.
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensor’s potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensor’s capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
Feichtinger, Christoph Simon
Recently, global interest in hydrogen as a powerful, promising and clean source of energy has increased. Green hydrogen production (GHP) is considered one of the most important modern projects worldwide, as it is the way to achieve a clean, healthy and sustainable environment. GHP plays a major role to improve public health. There are several methods for producing or harvesting green hydrogen, the most famous of which are: 1) The electrolysis of water using a proton exchange membrane and metal foam at low temperatures and 2) Flash Joule Heating (FJH) method for heating plastic waste at high temperatures using low-carbon emissions technology. However, both methods still suffer from some difficulties. This calls for the need to search for scientific solutions to make hydrogen available at reasonable prices. While the first method is considered better for producing high-purity hydrogen compared to the second method, it faces challenges in collecting hydrogen on the surface of the negative
Hamed, Maryam SalahAli, Salah H. R.
The automotive industry is amidst an unprecedented multi-faceted transition striving for more sustainable passenger mobility and freight transportation. The rise of e-mobility is coming along with energy efficiency improvements, greenhouse gas and non-exhaust emission reductions, driving/propulsion technology innovations, and a hardware-software-ratio shift in vehicle development for road-based electric vehicles. Current R&D activities are focusing on electric motor topologies and designs, sustainability, manufacturing, prototyping, and testing. This is leading to a new generation of electric motors, which is considering recyclability, reduction of (rare earth) resource usage, cost criticality, and a full product life-cycle assessment, to gain broader market penetration. This paper outlines the latest advances of multiple EU-funded research projects under the Horizon Europe framework and showcases their complementarities to address the European priorities as identified in the 2Zero
Armengaud, EricRatz, FlorianMuñiz, ÁngelaPoza, JavierGarramiola, FernandoAlmandoz, GaizkaPippuri-Mäkeläinen, JenniClenet, StéphaneMessagie, MaartenD’amore, LeaLavigne Philippot, MaevaRillo, OriolMontesinos, DanielVansompel, HendrikDe Keyser, ArneRomano, ClaudioMontanaro, UmbertoTavernini, DavideGruber, PatrickRan, LiaoyuanAmati, NicolaVagg, ChristopherHerzog, MaticWeinzerl, MartinKeränen, JanneMontonen, Juho
Controlling the combustion phasing of a multi-fuel compression ignition engine in varying ambient conditions, such as low temperature and pressure, is a challenging problem. Traditionally, engine control is achieved by performing experiments on the engine and building calibration maps. As the number of operating conditions increase, this becomes an arduous task, and model-based controllers have been used to overcome this challenge. While high-fidelity models accurately describe the combustion characteristics of an engine, their complexity limits their direct use for controller development. In recent years, data-driven models have gained much attention due to the available computation power and ease of model development. The accuracy of the developed models, which, in turn, dictates the controller’s performance, depends on the dataset used for building them. Several actuators are required to achieve reliable combustion across different operating conditions, and obtaining extensive
Govind Raju, Sathya AswathSun, ZongxuanKim, KennethKweon, Chol-Bum
The authors will present findings from their cradle-to-cradle Product Carbon Footprint (PCF) study which captures an objective and comprehensive system level evaluation of the greenhouse gas (GHG) footprint of four different material types used in the same automotive application: Unsaturated Polyester Resin (UPR) SMC, steel, aluminum and glass fiber reinforced polypropylene (PP-GF). This study includes the simulation driven design of four mid-sized pickup boxes which were designed according to automotive requirements and relevant design guidelines for each material. OEM experts were consulted to validate the relevant specifications and boundary conditions. The technical paper includes details on the geometric design, simulation, production processes, life cycle and environmental impact assessment all in compliance with ISO standards (14040/14044) for the Cradle-to-Cradle PCF. This paper provides guidance and insights to help engineers develop effective strategies for material selection
Halsband, AdamLeinemann, TomkeBeer, MarkusHaiss, Eric
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Sahoo, PriyabrataGarg, IshanRawat, SudhanshuNarula, RahulGupta, AnkitBindra, RiteshRao, Akkinapalli VNGarg, Vipin
Technological advances have led to the widespread use of electric devices and vehicles. These innovations are not only convenient but also environmentally friendly, offering an alternative to polluting fuel-driven machines. Lithium-ion batteries (LIBs) are widely used in electrical appliances and vehicles. Commercial LIBs comprise an organic electrolyte solution, which is considered indispensable to make them energy efficient. However, ensuring safety becomes a concern and may be difficult to achieve with the rising market demand.
Letter from the Guest Editors
Kolhe, Mohan LalZhang, Ronghui
Electric vehicles (EVs) represent a significant stride toward environmental sustainability, offering a multitude of benefits such as the reduction of greenhouse gas emissions and air pollution. Moreover, EVs play a pivotal role in enhancing energy efficiency and mitigating reliance on fossil fuels, which has propelled their global sales to unprecedented heights over the past decade. Therefore, choosing the right electric drive becomes crucially important. The main objective of this article is to compare various conventional and non-conventional electric drives for electric propulsion in terms of electromechanical energy conversion ratio and the thermal response under continuous [at 12 A/mm2 and 6000 rpm] and peak [at 25 A/mm2 and 4000 rpm] operating conditions. The comparative analysis encompasses torque density, power density, torque pulsation, weight, peak and running efficiencies of motor, inverter and traction drive, electromechanical efficiency, and active material cost. This
Patel, Dhruvi DhairyaFahimi, BabakBalsara, Poras T.
The growing number of automobiles on the road has raised awareness about environmental sustainability and transportation alternatives, sparking ideas about future transportation. Few short-term alternatives meet consumer needs and enable mass production. Because they do not accurately reflect real-world driving. Current models are unable to estimate vehicle emissions. However, the purpose of this research is to present an application of an adaptive neuro-fuzzy inference system for managing the various factors contributing to vehicle gasoline engine exhaust emissions. It examines how well the three known standardized driving cycles (DSCs). Accurately reflect real-world driving and evaluate the impact of real-world driving on vehicle emissions. Indirect emissions are inversely proportional to the vehicle’s fuel consumption. The methodology used is Eco-score methodology to calculate indirect emissions of light vehicles. Expected emission charge estimates for different using styles
Shiba, Mohamed S.Abouel-Seoud, Shawki A.Aboelsoud, W.Abdallah, Ahmed S.
This experimental study presents preliminary investigations of prechamber-enabled mixing-controlled combustion (PC-MCC) at −2 bar brake mean effective pressure (BMEP) and 2200 rpm with fuel-grade ethanol (E98). Experimental results are conducted on a prechamber retrofitted single-cylinder Caterpillar C9.3B test engine. First, a series of prechamber-only experiments were conducted with a motored engine to evaluate the salient combustion trends in response to relevant prechamber operating parameters. Under firing conditions, the prechamber operating strategy was assessed with respect to the impact on ignition assistance of direct-injected E98 and overall engine performance. The preliminary results indicate the jet-induced ignition process is robust and prompts diffusion combustion of E98 at diesel-like boundary conditions. The effect of external exhaust gas recirculation (EGR) on the residual tolerance of the prechamber combustion process was also investigated and showed stable
Zeman, JaredDempsey, Adam
The Earth’s biosphere is the most sophisticated complex adaptive system known to exist in the entire universe and has persisted for over 4 billion years. A complex adaptive system is a network of interacting adaptive systems whose nonlinear dynamics and emergent behaviors are difficult to predict and control; therefore, for such systems, past performance is no guarantee of future results, which is particularly the case for the Earths biosphere during a period of exponential technological growth.
A lighter, colorable and fully recyclable thermoplastic body seal from Cooper Standard won the annual Innovations in Lightweighting Award given by the Society for Automotive Analysts. At the society's December meeting, Jay Murdock, senior product development engineer for Cooper Standard, accepted the award and said its FlexiCore product was designed with an eye on strong trends in what OEMs want from suppliers: sustainability, carbon neutrality, lightweighting and recyclability.
Clonts, Chris
This research investigates how distributed energy resources (DERs) and electric vehicles (EVs) affect distribution networks. With sensitivity analysis, the research focuses on how these integrations affect load profiles. The research focuses on sizing of various DERs and EV charging/discharging strategies to optimize the load profile, voltage stability, and network loss minimization. System parameters including load profile, EV charging pattern, weather conditions, DER sizes, and electricity pricing are analyzed to quantify their individual and combined impacts on load variability. However, with increased capacity of DERs, network losses increase. A mathematical model with system and operational constraints has been developed and simulated in MATLAB Simulink environment, validation of the proposed approach in improving the load profile, and reduction in network losses, with the intermittent power generation from DERs and EV integration. Simulation result shows that optimal capacity of
Khedar, Kamlesh KumarGoyal, Govind RaiSingh, Pushpendra
Currently, the adoption rate of pure electric buses is continuously increasing across cities nationwide, and their energy consumption costs have become an important component of urban bus operating expenses. The aim of this study is to explore significant factors related to energy savings for a bus route, which can help bus operators improve route energy efficiency and make resource allocation more reasonable. This study selects per capita energy consumption per thousand kilometers (PKEK) as the energy efficiency indicator and constructs a regression model with robust standard errors and a hierarchical clustering model using GPS operation data, total daily energy consumption data, and card swiping data from electric buses on eight routes in the same operational area of Nanjing from April 1 to June 10, 2021. The research results confirm the existence of significant variables affecting energy efficiency, primarily including: average speed, proportion of high-speed intervals, vehicle age
Li, MuyangSun, HuayangLi, HongQian, XiyouWang, WeiningChen, Xuewu
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
To reduce carbon dioxide emissions from automobiles, the introduction of electric vehicles to the market is important; however, it is challenging to replace all existing IC engine vehicles with electric ones. Consequently, there is increasing anticipation for the use of carbon-neutral fuels, such as e-fuels. This study investigates the effects of GTL (gas-to-liquid), as a substitute for e-fuel, produced from natural gas via the Fischer–Tropsch synthesis method and polyoxymethylene dimethyl ether (OMEmix) produced from methanol, on engine performance. Additionally, combustion image analysis was conducted using a rapid compression and expansion machine (RCEM). GTL fuel combusts similarly to conventional diesel fuel but has slightly lower smoke emissions because it does not contain aromatic hydrocarbons. Further, its high cetane number results in better ignition properties. During the combustion, unburnt hydrocarbons and smoke are generated in the spray flame interference region near the
Shibata, GenYuan, HaoyuYamamoto, HiroyaTanaka, ShusukeOgawa, Hideyuki
Electric vehicles (EVs) represent a promising solution to reduce environmental issues and decrease dependency on fossil fuels. The main drawback associated with the direct torque control (DTC) scheme is that it is incapable of improving the efficiency and response time of the EVs. To overcome this problem, integrating deep learning (DL) techniques into DTC offers a valuable solution to enhance the performance of the drive system of EVs. This article introduces three control methods to improve the output for DTC-based BLDC motor drives: a traditional proportional–integral for speed controller (speed PI), a neural network fitting (NNF)-based speed controller (speed NNF), and a custom neural (CN) network-based speed controller (speed CN). The NNF and CN are DL techniques designed to overcome the limitations of conventional PI controllers, such as retaining the percentage overshoot, settling times, and improving the system’s efficiency. The CN controller reduced the torque ripple by 15
Patel, SandeshYadav, ShekharTiwari, Nitesh
The world is moving towards a green transportation system. Governments are also pushing for green mobility, especially electric vehicles. Electric vehicles are becoming more popular in Europe, China, India, and developing countries. In EVs, the customer's range anxiety and the perceived real-world range are major challenges for the OEMs. The OEMs are moving towards a higher power-to-weight ratio. Energy density plays a crucial role in the battery pack architecture to increase the vehicle range. Higher capacity battery packs are needed to improve the vehicle's range. The battery pack architecture is vital in defining the gravimetric and volumetric energy densities. The cell-to-pack battery technique aims to achieve a higher power-to-weight ratio by eliminating unnecessary weight in the battery architecture. The design of battery architecture depends on the cell features such as the cell shape & size, cell terminal positions, vent valve position, battery housing strength requirements
K, Barathi Raja
The search for environmentally friendly and sustainable lubricants for automotive and industrial applications has led to extensive research on bio lubricants as a viable alternative to conventional engine oils and mineral oils. The biodegradable and ecofriendly nature of vegetable oil, makes it an excellent replacement for the depleting mineral oils. Still, a good number of modifications must be brought in, to overcome the drawbacks of vegetable oils. In this work, the preparation and evaluation of lubricating properties like tribological, rheological, thermal etc. of Neem seed oil (NSO) with and without additives were carried out and effectively compared with the lubricating properties of synthetic oil, Polyalphaolefin 6 (PAO 6) and with a commercial engine oil, SAE20W40. The copper oxide nanoparticles were dispersed in neem seed oil as additive in various proportions (0.1, 0.2, 0.3 and 0.4 wt.%) to enhance the tribological properties. The tribological analysis were carried out to
Menon, Krishnaprasad SR, Ambigai
The growing demand for fossil fuels and the search for alternatives have the potential to reduce emissions and enhance energy security. Karanja oil and tire pyrolysis oil (TPO) are identified as promising substitutes. This study examines the performance and emission characteristics of a 5.2 kW, 1500 rpm, four-stroke single-cylinder compression ignition engine. The engine was tested using diesel, the optimal combination of Karanja oil biodiesel (KOME) and TPO (50:50% volume ratio), and this KOME-TPO blend with hydrogen supplied in dual fuel mode at flow rates of 10 lpm, 20 lpm, and 30 lpm, designated as H10, H20, and H30, respectively. The results indicated that BTE for H30 was the highest, reaching 32.21% compared to 30.52% for diesel at 5.2 kW BP. BSEC for H30 was the lowest at 11.18 MJ/kWh, compared to 11.80 MJ/kWh for diesel at the same BP. Emission analysis showed that smoke and HC emissions were significantly lower for hydrogen-enriched blends. At 5.2 kW BP, HC emissions for H30
Duraisamy, BoopathiStanley Martin, JeromeChelladorai, PrabhuRajendran, SilambarasanMarutholi, MubarakMadheswaran, Dinesh Kumar
The primary issues in using pure vegetable oils for internal combustion engines are their high soot output and reduced thermal efficiency. Therefore in the present investigation, a Heavea Brasiliensis biodiesel (HBB) is used as a carbon source of fuel and ethoxy ethane as a combustion accelerator on a compression ignition (CI) engine. In this investigation, an only one cylinder, four-stroke, air-cooled DI diesel engine with a rated output of 4.4 kW at 1500 rpm was utilized. Whereas heavea brasiliensis biodiesel was delivered straightly into the cylinder at almost close to the end of compression stroke and ethoxy ethane was sprayed instantly in the intake manifold in the event of intake stroke. At various loads, the parameter of ethoxy ethane volume rate were optimised. To minimise exhaust emissions, an air plasma spray technology was employed to cover the engine combustion chamber with a thermal barrier coating. Because of its adaptability for high-temperature applications, YSZ (Yttria
Sagaya Raj, GnanaNatarajan, ManikandanPasupuleti, Thejasree
Items per page:
1 – 50 of 823