Browse Topic: Sustainable development
Low-Cost Mobile Hydrogen Refuelling Stations: A Cost-Effective Solution for India's Sustainable Transportation” The likely depletion of fossil fuel reserves in the next fifty years and growing environmental concerns caused by petroleum fuel-based vehicles highlight the urgent need for sustainable alternatives. India, a developing country, requires a significant amount of energy to sustain its growth, most of which is imported. Hydrogen is one of the cleanest fuels and offers sustainable pathways to a low-carbon future. The government of India has already launched a Green Hydrogen mission and has set up a very ambitious target for 2030. However, the absence of adequate refueling infrastructure is a significant blockade to India's widespread adoption of hydrogen-powered vehicles. The mobile hydrogen refueling station (MHRS) is a flexible system that enables lower initial capital costs than fixed hydrogen refueling stations and allows for the gradual build-up of hydrogen mobility fleets
The race is on for leadership in cislunar space, considered a gateway to the future of space exploration. Yet operating in this domain introduces unique challenges for propulsion systems. In contrast to low-Earth orbit (LEO), the cislunar environment requires higher precision propulsion solutions; these are necessary to enable rapid and accurate maneuvering of spacecraft and long-term sustainability. Propellants like hydrazine and nitrogen tetroxide offer the high energy density required for cislunar missions, but they must be handled very differently from the inert, non-reactive gases at play in LEO systems.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT, have developed a groundbreaking near-infrared (NIR) fluorescent nanosensor capable of simultaneously detecting and differentiating between iron forms — Fe(II) and Fe(III) — in living plants.
Recent advances are reducing the cost of space launch, high specific power solar cells, and the production of satellite systems. Modular architectures with no moving parts and distributed power systems would minimize assembly and maintenance costs. Together, this may enable space-based solar power to provide decarbonized dispatchable power at a lower cost than equivalent technologies such as nuclear power stations. Space-based Solar Power for Instantaneously Dispatchable Renewable Power on Earth discusses the advances in emerging technologies, like thin film solar cells, reusable launch vehicles, and mass-produced modular satellite systems that would make economic space power feasible. Click here to access the full SAE EDGETM Research Report portfolio.
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensor’s potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensor’s capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
Recently, global interest in hydrogen as a powerful, promising and clean source of energy has increased. Green hydrogen production (GHP) is considered one of the most important modern projects worldwide, as it is the way to achieve a clean, healthy and sustainable environment. GHP plays a major role to improve public health. There are several methods for producing or harvesting green hydrogen, the most famous of which are: 1) The electrolysis of water using a proton exchange membrane and metal foam at low temperatures and 2) Flash Joule Heating (FJH) method for heating plastic waste at high temperatures using low-carbon emissions technology. However, both methods still suffer from some difficulties. This calls for the need to search for scientific solutions to make hydrogen available at reasonable prices. While the first method is considered better for producing high-purity hydrogen compared to the second method, it faces challenges in collecting hydrogen on the surface of the negative
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Technological advances have led to the widespread use of electric devices and vehicles. These innovations are not only convenient but also environmentally friendly, offering an alternative to polluting fuel-driven machines. Lithium-ion batteries (LIBs) are widely used in electrical appliances and vehicles. Commercial LIBs comprise an organic electrolyte solution, which is considered indispensable to make them energy efficient. However, ensuring safety becomes a concern and may be difficult to achieve with the rising market demand.
Letter from the Guest Editors
The Earth’s biosphere is the most sophisticated complex adaptive system known to exist in the entire universe and has persisted for over 4 billion years. A complex adaptive system is a network of interacting adaptive systems whose nonlinear dynamics and emergent behaviors are difficult to predict and control; therefore, for such systems, past performance is no guarantee of future results, which is particularly the case for the Earths biosphere during a period of exponential technological growth.
A lighter, colorable and fully recyclable thermoplastic body seal from Cooper Standard won the annual Innovations in Lightweighting Award given by the Society for Automotive Analysts. At the society's December meeting, Jay Murdock, senior product development engineer for Cooper Standard, accepted the award and said its FlexiCore product was designed with an eye on strong trends in what OEMs want from suppliers: sustainability, carbon neutrality, lightweighting and recyclability.
Items per page:
50
1 – 50 of 823