Browse Topic: Life cycle analysis
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
ABSTRACT To support customers during product development, General Dynamics Land Systems (GDLS) utilizes a set of Operations Research/Decision Support processes and tools to facilitate all levels of decision-making aimed at achieving a balanced system design. GDLS employs a rigorous Structured Decision (SD) process that allows for large, highly complex or strategic decisions to be made at the system-of-systems, system, and/or subsystem level. Powerful, robust tools -the Advanced Collaborative System Optimization Modeler (ACSOM) and Logical Decisions for Windows (LDW) - are used to make relatively quick assessments and provide recommendations. The latest ACSOM algorithms have increased the response time for trade study analysis by over 2,000 times and future versions will incorporate logistics analysis helping to reduce vehicle Life Cycle Cost
ABSTRACT The 2015 defense budget, announced in March, 2014 was requested to be $496 Billion, which is down from $553 Billion three years ago [1]. This means that existing equipment, which has been trained on for numerous years, and fought two major wars, will be required to last longer and be maintained at a high state of readiness for years to come. In addition to acquisition and maintenance costs, fuel that propels these vehicles continues to also be at a premium. According to Forbes magazine, the US Department of Defense is the single-largest consumer of fuel in the world [2]. With fuel costs as volatile as ever, and an aging military fleet, researchers need to bring technology to the table that extends the life cycle of our vehicles and reduces the US DoD’s dependence on fuel. Technology that addresses both life cycle cost and fuel savings of commercial vehicles has been used for almost 40 years. This technology is a game changer for specialty vehicles such as police cars
ABSTRACT Rubber tracks are now extremely competitive for vehicles up to 50 tons and fully fielded on 39 ton vehicles. They represent the best of what technology can offer for tracked vehicles, in terms of high durability, performance and low life cycle cost. This is mainly attributed to the optimization through the five (5) technological tools described in this paper. Better from its numerous distinctive advantages, rubber tracks can be adapted to suit virtually any specific need. This ductile rubber track technology can be shaped to match today’s requirements, with the help of advanced rubber compounding and computer simulations
ABSTRACT This paper will focus on understanding the value proposition associated with utilizing advanced lithium-ion 6T solutions versus legacy Pb-acid 6Ts for military ground vehicles. The value proposition will include an analysis of the benefits associated with lithium-ion 6T batteries and reduction in life cycle cost (LCC). The analysis of benefits will include comparative discharge curves at various rates and temperatures, discuss enhancements features such as an integrated battery management system that provides real-time battery diagnostics via CANBus J1939 protocol, increased power/energy density, reduced charge time and increased cycle life. The LCC analysis will investigate acquisition cost comparison, replacement rates, and reduced installation & transportation costs. The LCC analysis concludes with a detailed review of how the lithium-ion 6T solution can drastically reduce the operation and maintenance (O&M) cost of the Joint Light Tactical Vehicle (JLTV) over its 20 year
Composite materials, pioneered by aerospace engineering due to their lightness, strength, and durability properties, are increasingly adopted in the high-performance automotive sector. Besides the acknowledged composite components’ performance, enabled lightweighting is becoming even more crucial for energy efficiency, and therefore emissions along vehicle use phase from a decarbonization perspective. However, their use entails energy-intensive and polluting processes involved in the production of raw materials, manufacturing processes, and particularly their end-of-life disposal. Carbon footprint is the established indicator to assess the environmental impact of climate-changing factors on products or services. Research on different carbon footprint sources reduction is increasing, and even the European Composites Industry Association is demanding the development of specific Design for Sustainability approaches. This paper analyzes the early strategies for providing low-carbon
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs. Thus, the object is to show how much present, typical in-service life-mileage differs from the
The concept of the circular economy provides a framework for a more efficient closed-loop economy. Much literature has been published focusing on circular business models and assessing environmental impact throughout the life cycle. A move towards more circular business models, where the focus transitions to the delivery of a capability rather than the delivery of a product, presents new challenges to manufacturers of complex or certified engineered products. The aviation industry has established several engineering disciplines, life cycle design, and certification approaches that (while not designed with the circular economy in mind) underpin the principles of the circular economy. This paper provides a new conceptual framework for the circular economy that integrates the engineering principles that drive circularity around the life cycle for designing, producing, and operating complex and certified engineering systems. It also identifies the engineering and operational principles
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This SAE Standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape
This SAE Aerospace Recommended Practice (ARP) covers the design and installation requirements for hydraulic systems (up to 8000 psig [56 MPa]) for ground support equipment (GSE). This ARP is derived from AS5440, which provides hydraulic system requirements for aircraft. The recommendations herein are primarily intended for GSE that exchange hydraulic fluid with the aircraft, such as hydraulic service carts, rather than GSE with non-interfacing hydraulic systems. The GSE may be mobile, portable, or stationary
This SAE Aerospace Standard (AS) specifies the general requirements for data recording procedures, packaging, and storing of elastomeric seals and seal assemblies which include an elastomeric element prior to the seal being assembled into hardware components. NOTE: The requirement for packaging is an integral part of the controlled storage procedure and provides a means of positive product identity from the time of manufacture to the time of assembly into a component
Items per page:
50
1 – 50 of 546