Browse Topic: Soils

Items (961)
Focusing on the deformation warning criteria for a new four-lane tunnel affected by an existing tunnel, this study employs numerical simulation to analyze the ultimate strain of the equivalent rock mass. The results reveal the ultimate shear strain and ultimate tensile strain of Class V surrounding rock, offering critical insights for deformation control and early warning systems. Relying on the Maaoling Tunnel Project, the tunnel planar analysis model is established based on the finite difference FLAC3D software to analyze the deformation and strain distribution pattern of the surrounding rock of the new tunnel under different distances and reduction factors between the new and the existing tunnel. Finally, the tunnel crown settlement as an indicator, the establishment of the Maaoling Tunnel V surrounding rock conditions of different distances construction safety warning standard for the construction of large-span tunnels and early warning provides the basis for the relevant
Zhang, YufanTian, WeiLiu, DongxingKang, XiaoyueChen, LimingZheng, Xiaoqing
To address the escalating traffic demands and tackle the complex mechanical challenges inherent in in-situ tunnel expansion, this study, grounded in the Huangtuling Tunnel project in Zhejiang Province, China, focuses on the stability evolution of surrounding rock and the mechanical characteristics of structures during the in-situ expansion of existing tunnels under weak surrounding rock conditions. By systematically comparing core post-excavation features—such as surrounding rock displacement fields, ground pressure distribution pat-terns, and mechanical responses of support structures—between newly constructed tunnels and in-situ expanded tunnels, the research reveals key mechanical principles governing the construction of large-section tunnels in weak rock formations. Specifically, the findings are as follows: (1) Both newly constructed and in-situ expanded large-section tunnels exhibit significant spatial heterogeneity in surrounding rock deformation. The vault-spandrel zones serve
Zheng, XiaoqingKang, XiaoyueXu, KaiChen, TaoHuo, XinwangChen, Chuan
For shallow-buried tunnels in weak surrounding rock, methods such as the Cross Diaphragm (CRD) method, the Center Diaphragm (CD) method, and the Double-sided Wall Pilot Tunnel method are commonly used for tunnel entry construction. These conventional methods require the installation of numerous temporary supports, which significantly impact the progress of tunnel construction to a certain extent. Based on the Yanfeng Tunnel project, this paper innovatively proposes a combined construction method of “Double-sided Wall + Bench Cut Method.” A simulation model considering three-dimensional terrain information is established to conduct a comprehensive analysis of the construction impact on the entire structure throughout the process. The results indicate that this tunnel entry method can effectively control the displacement of the surrounding rock, ensuring safe tunnel entry while accelerating the construction progress. This provides a reference and guidance for similar projects.
Pan, GendongJia, HongboYang, FengXu, KaiSong, YingZhang, Peng
Tracked Military Vehicles are well known in armed forces, due to their use and importance in conventional combat, playing a crucial role since World War I until current combats. Also, as it happens in different generations, the environment involved in these wars changes and those vehicles are being used not only in open field situations, but inside residential neighborhoods also. However, despite their relevance, analyses and studies aimed at understanding these vehicles are scarce at the undergraduate level, which creates a gap among the recent graduate engineers that want to learn and understand how tracked vehicles perform in different scenarios. This is important because understanding initial concepts helps to bring more ideas and start more detailed studies in the area. Therefore, to bridge this gap, a detailed dynamic analysis of a tracked military vehicle is conducted using MATLAB with a dynamic model to evaluate performance, level transitions, and acceleration. Additionally
Dalcin, Pedro Henrique KleimRibeiro, Levy PereiraLopes, Elias Dias RossiRodrigues, Gustavo Simão
22
Assis, Marcelo Suman SilvaPaula Araújo, Gabriel Heleno deBaeta, José Guilherme CoelhoAbreu, Pedro Blaso Barbosa deFilho, Fernando Antonio Rodrigues
In order to ensure the construction safety of tunnels in water-rich sections near reservoir areas, it is very important to adopt comprehensive and reliable advanced geological prediction technology combined with on-site monitoring and measurement. Taking the Chenlingding tunnel as an example, through the comprehensive geological prediction of the broken rock section near the reservoir, the numerical model of the broken rock section was established, and compared with the field measurement data. The results show that the comprehensive advanced geological prediction system combining short, medium and long distances, such as geological radar, seismic wave reflection method and advanced horizontal drilling, has high accuracy in adverse geology, rock fragmentation and water rich conditions in the tunnel; The rich water condition, fault information and rock engineering geology provided by the advanced geological prediction can provide reliable guarantee for the tunnel excavation scheme, the
Dai, YunfeiFeng, MeijieLiu, DachengTang, Xianyuan
The study focuses on the management of deep foundation pit excavation, influenced by temporal and spatial factors, in the context of the challenging environmental circumstances posed by the high-water-level silty soft clay along the Yellow River's northern shore, as part of the Jinan urban rail transit initiative. The subsequent inferences have been made: (1) Throughout the digging phase, issues such as excessive digging and delays in installing steel reinforcements occur, while the subterranean diaphragm wall tends to shift significantly inward within the excavation area due to the disparity in pressure between the water and soil inside and outside. (2) During the building phase, managing wall distortion is imperative, and an enhanced preliminary force should be applied to the support's axial component at points of significant deformation, guaranteeing an excess coefficient for both the support rigidity and the continuous subterranean wall rigidity. (3) In the process of diaphragm
Gao, TiangangZhang, XuPan, FuyongZhang, Wenjun
To address the challenges of high support deformation risk in soft rock tunnels of the Qinling Mountains and slow construction speeds in small-section tunnels due to spatial constraints, this study leverages the engineering geological characteristics of the region. These include predominantly mudstone and sandstone, well-developed joints and fissures, and moderately strong surrounding rock. Based on the Lianhua Mountain Tunnel project, the use of a cantilever roadheader in small-section tunnels with soft rock geology was introduced. Through in-depth research on adaptability and design parameters, it was demonstrated that the cantilever roadheader exhibits good adaptability in the soft rock regions of the Qinling Mountains and has significant potential for broader application. The application research results show that the cantilever roadheader causes minimal disturbance to the surrounding rock, resulting in smaller deformation. It also demonstrates a notable progress advantage in
Wu, JianminHu, RuoqiZhang, TeMeng, Xianghua
When a tunnel passes through the transition zone between two faults, different support schemes have varying impacts on the deformation of the surrounding rock. This study, based on the Zhangzhuang Tunnel's double-fault area, establishes a numerical simulation model using Midas GTS NX to compare and analyze the effects of an enhanced support scheme versus a standard reinforcement scheme. The results indicate that when the non-reinforced support scheme is applied throughout the tunnel, the settlement of the transition zone's crown is 5.7 mm, only 0.27 mm greater than that of the reinforced scheme. Additionally, the variation in support stress in the transition zone between the two schemes is minimal. This demonstrates the feasibility of adopting the non-reinforced scheme, which reduces the number of steel arch frames, enhances construction efficiency, and provides a reference for future construction of small-section tunnels in double-fault conditions.
Wu, JianminNiu, ShuoZhang, TeMeng, Xianghua
Tippers transporting loose bulk cargo during prolonged descents are subject to two critical operational challenges: cargo displacement and rear axle lifting. Uncontrolled cargo movement, often involving loose aggregates or soil, arises due to gravitational forces and insufficient restraint systems. This phenomenon can lead to cabin damage, loss of control, and hazardous discharge of materials onto roadways. Simultaneously, load imbalances during descent can cause rear axle lift, increasing stress on the front steering axle, resulting in tire slippage and compromised maneuverability. This study proposes a dynamic control strategy that adjusts the tipper lift angle in real time to align with the descent angle of the road. By synchronizing the trailer bed angle with the slope of the terrain, the system minimizes cargo instability, maintains rear axle contact, and enhances braking performance, including engine and exhaust braking systems. Computational modelling is employed to assess the
Vijeth, AbhishekBhosle, Devidas AshokCherian, RoshniDash, Prasanjita
Off-highway vehicles (OHVs) routinely navigate unstable and varied terrains—mud, sand, loose gravel, or uneven rock beds—causing increased rolling resistance, reduced traction, and high energy expenditure. Traditional rigid chassis systems lack the flexibility to adapt dynamically to changing surface conditions, leading to inefficiencies in vehicle stability, maneuverability, and fuel economy. This paper proposes an adaptive terrain morphing chassis (ATMC) that can actively modify its structural geometry in real-time using embedded sensors, hydraulic actuators, and soft robotic elements. Drawing inspiration from nature and recent advances in adaptive materials, the ATMC adjusts vehicle ground clearance, track width, and load distribution in response to terrain profile data, thereby optimizing fuel efficiency and performance. Key contributions include: A multi-sensor fusion system for real-time terrain classification Hydraulic actuators and morphing polymers for variable chassis
Vashisht, Shruti
Uneven thawing of frozen soil in the subgrade of wide highway leads to settlement difference of the pavement, which affects the driving comfort. The prefabricated bridge-type pavement mitigates the disease of wide subgrade in permafrost region by applying prefabricated slabs in the subgrade. In order to verify the deformation adjustment effect on wide subgrade of prefabricated bridge-type pavement, earth-filled pavement and prefabricated bridge-type pavement numerical models were established and subgrade mechanical behaviors were analyzed under frozen soil thawing in active layer, frozen soil thawing in localized deteriorated zone and vehicle loading. Comparative analysis of pavement settlement of earth-filled pavement and prefabricated bridge-type pavement under various cases is carried out. The results show that the maximum settlement of prefabricated bridge-type pavement decreases by about 32%~48%, and the settlement difference decreases by about 45%~65%, which has a good adjustment
Yu, YuanqingZhang, LiWang, ShanCheng, Litao
The success of off-road missions for ground vehicles depends heavily on terrain traversability, which in turn requires a thorough understanding of soil characteristics a key component being soil moisture content. When large areas need to be analyzed, satellite imagery is often used, although this approach typically reduces the spatial resolution. This decrease of spatial resolution creates what are known as mixed pixels, when two or more classes or features are in a single pixel’s area, which can lead to noisier data and lower accuracy models. This paper investigates using linear spectral unmixing as a way to help clean / mitigate noisy data to yield better predictive models. Hyperspectral remote sensing from the Hyperion satellite platform and ground truth from the International Soil Moisture Network (ISMN) are used for the dataset. This study found that soil moisture content prediction, comparing the mixed multilayer perceptron (MLP) model with an unmixing approach revealed a 10–30
Ewing, JordanJayakumar, ParamsothyKasaragod, AnushOommen, Thomas
Navigation in off-road terrains is a well-studied problem for self-driving and autonomous vehicles. Frequently cited concerns include features like soft soil, rough terrain, and steep slopes. In this paper, we present the important but less studied aspect of negotiating vegetation in off-road terrain. Using recent field measurements, we develop a fast running model for the resistance on a ground vehicle overriding both small vegetation like grass and larger vegetation like bamboo and trees. We implement of our override model into a 3D simulation environment, the MSU Autonomous Vehicle Simulator (MAVS), and demonstrate how this model can be incorporated into real-time simulation of autonomous ground vehicles (AGV) operating in off-road terrain. Finally, we show how this model can be used to simulate autonomous navigation through a variety of vegetation with a PID speed controller and measuring the effect of navigation through vegetation on the vehicle speed.
Goodin, ChristopherMoore, Marc N.Hudson, Christopher R.Carruth, Daniel W.Salmon, EthanCole, Michael P.Jayakumar, ParamsothyEnglish, Brittney
Navigation in off-road terrains is a well-studied problem for self-driving and autonomous vehicles. Frequently cited concerns include features like soft soil, rough terrain, and steep slopes. In this paper, we present the important but less studied aspect of negotiating vegetation in off-road terrain. Using recent field measurements, we develop a fast running model for the resistance on a ground vehicle overriding both small vegetation like grass and larger vegetation like bamboo and trees. We implement of our override model into a 3D simulation environment, the MSU Autonomous Vehicle Simulator (MAVS), and demonstrate how this model can be incorporated into real-time simulation of autonomous ground vehicles (AGV) operating in off-road terrain. Finally, we show how this model can be used to simulate autonomous navigation through a variety of vegetation with a PID speed controller and measuring the effect of navigation through vegetation on the vehicle speed.
Goodin, ChristopherMoore, Marc N.Hudson, Christopher R.Carruth, Daniel W.Salmon, EthanCole, Michael P.Jayakumar, ParamsothyEnglish, Brittney
The automation of labor-intensive picking and planting operations is having an immediate impact in the agricultural indutry. In its simplest form, robotic automation can reduce the labor and soil disturbance while enabling organic soil cover and increasing species diversification through precision approaches to planting, weeding, and spraying. With this, pesticides and fertilizers can be applied in a more targeted way, and with machinery visiting fields more frequently, earlier and more targeted intervention can occur before pests become established. Small, Mobile, and Autonomous Agricultural Robots identifies issues that need to be resolved fo for this technology to thrive, including improving methods of acquiring and labeling training data to facilitate more accurate models for specific applications. It also discusses concepts such as general-purpose mechanical platforms for use as carriers of agricultural automation systems with high stability, positional accuracy, and variable
Muelaner, Jody E.
San Francisco startup Canvas has developed a robotic system handling one of the most labor-intensive trades in construction: drywall finishing. Leveraging robotic arms from Universal Robots, Canvas has built a machine that reduces the usual five to seven days of spraying and sanding the drywall to just around two days for both Level 4 and Level 5 finishes.
A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt. About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.
Employing multibody dynamic simulations with semi-empirical tire models is widely recognized as a cost-effective approach. A recent development introduces a novel road and tire-soil contact model that is not only swift and memory-efficient but also addresses limitations in classical semi-empirical models. This study conducts a thorough validation of the new road and contact model by creating a detailed multibody model of the four-wheeled vehicle, Fuel Efficiency Demonstrator (FED) – Alpha, integral to NATO's Next-Generation reference mobility model. The comprehensive model encompasses the chassis, suspension, tires, engine, transmission and various other components. Through simulations of various driving scenarios, accounting for complex terrain geometries, spatially varying soil properties, and multi-pass phenomena, the model's performance is evaluated. The simulation results are compared with physical measurements, providing a detailed assessment of the tire-soil model's predictive
Papapostolou, LamprosKoutras, EvangelosLeila, FelipeRibaric, AdrijanNatsiavas, Sotirios
With the recent rise in electric vehicles and mobile devices, managing spent batteries has become a critical global challenge. By 2040, the number of decommissioned electric vehicles is expected to exceed 40 million, leading to a sharp increase in waste batteries. Developing advanced recycling technologies has thus become an urgent priority, as the metals in batteries pose a significant risk of soil and water contamination.
The chemical milling process used in the aerospace industry generates substantial metallic residue in the etching bath, referred to as chemical milling sludge (CMS). The direct disposal of CMS into the environment leads to ecological deterioration and economic losses. This study focused on the recovery of aluminum from the aerospace industry CMS, aiming to mitigate environmental harm and enhance resource efficiency. The energy-dispersive X-ray (EDX) analysis revealed that the aluminum content in extracted CMS increased significantly to 95.86%, compared to 28.98% in non-extracted sludge. The XRD analysis of the CMS extracted samples also revealed the presence of increased Al2O3. The surface morphology study suggested the irregularly shaped particles with large chunks, and fine granules were observed on CMS. The yield of Al2O3 was observed to be 35.9% (wt) prior to the calcination process followed by 12.1% (wt) after calcination. The phytotoxicity study indicated that the CMS inhibited
Prasad, JagSonwani, Ravi Kumar
The asphalt pavement plant mixing hot recycling technology not only reduces the consumption of natural resources by recycling discarded asphalt pavement, but also effectively saves economic costs. However, the composition of recycled asphalt pavement (RAP) materials exhibits significant variability, which hinders the widespread use of RAP in recycled asphalt mixtures (RAM). To address this issue, this article evaluated the variability of RAP with different rock types and the addition of new aggregates and asphalt-aggregate ratios, and developed intelligent software to determine the maximum allowable RAP content for different road grades. At the same time, homogenization measures such as classification and stacking of RAP should be taken to increase the RAP content. The results show that Basalt RAP exhibits more significant variability in grading and asphalt-aggregate ratio compared to Limestone RAP. Additionally, the variability in RAP grading is greater than that in asphalt-aggregate
Shen, ZanDu, MengzeXu, SitianLiu, HainingWang, XianghongXu, GuangjiZhao, Yongli
NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such as tectonic plates and oceans.
A Dartmouth-led research team set out to determine if managing green roof soil microbes could boost healthy urban soil development, a methodology that could be applied to support climate resilience in cities.
Spaceflight outside of the Earth’s protective magnetic field is dangerous from a cosmic radiation perspective. Inside Earth’s magnetic field, where the manned International Space Station (ISS) orbits, the radiation encountered is minimal and almost all is deflected by our planet’s magnetic fields. However, outside that protective shield, the Sun’s solar wind (high energy radiation, solar energetic particles or SEPs) consisting of protons, electrons, alpha particles, and plasmas continuously bombards the spacecraft for the months or years of spaceflight.
Researchers have taken the first steps toward finding liquid solvents that may someday help extract critical building materials from lunar and Martian rock dust, an important piece in making long-term space travel possible.
Imagine the Moon as a hub of manufacturing, construction, and even human life. It’s no longer a far-fetched idea baked in science fiction lore — increased interest and investment in space exploration are pushing efforts to develop the technologies needed to make the moon a viable home for humans.
Komatsu introduced its first battery-electric load-haul-dump (LHD) machine, the WX04B, at the MINExpo tradeshow in September. The WX04B is designed specifically for narrow vein mines in underground hard rock mining operations. Komatsu is pairing the electric LHD with its new OEM-agnostic 150-kW battery charger that was also revealed in Las Vegas. The 4-tonne WX04B LHD features what Komatsu claims is best-in-class energy density, offering up to four hours of runtime on a single charge. The Li-ion NMC (nickel-manganese-cobalt) battery from Proterra has a capacity of 165 kWh and nominal voltage of 660 V. Fewer charge cycles are needed compared to competitors, the company claims, which helps to maximize operational efficiency and minimize downtime. Proterra and Komatsu began their collaboration on the LHD's H Series battery system in 2021, long before Komatsu's acquisition of American Battery Solutions (ABS) in December 2023.
Gehm, Ryan
Global warming has intensified environmental challenges such as more intense heat waves due to the accumulation of greenhouse gases, primarily carbon dioxide (CO2), which is heavily produced in power generation and transportation sectors, traps heat and raises the Earth’s temperature. Significant measures must be taken to reduce its production and impact on our environment. Hydrogen (H2) enrichment is a promising technology that enables higher thermal efficiencies and lower exhaust emissions. However, various parameters need to be optimized for internal combustion engines (ICE), which increases experimental and computational costs. The main goal of this work is to offer a reliable correlation that can be used as an input parameter for turbulent combustion models to enhance predictions and lower the cost of running simulations. Thus, the laminar burning velocity (LBV) of binary fuel mixtures is investigated numerically over a wide range of initial conditions (300–600 K and 1–11 atm) and
Almansour, Bader
Designing non-destructive test (NDT) systems for aerospace clients can feel like engineering with blindfolds on. Even when the parts under test aren’t confidential, they can change rapidly as companies optimize their designs. This accelerated innovation helps launch more powerful, safer vehicles for use inside Earth’s orbit and beyond. But how do you create precision inspection systems without knowing what they’ll inspect in the field?
A new robotic suction cup which can grasp rough, curved, and heavy stone, has been developed by scientists at the University of Bristol. The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers, which have superb adaptive suction abilities enabling them to anchor to rock.
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion. The force exerted by the soil on the sidewall of the
Zerbato, LucaVella, Angelo DomenicoGalvagno, EnricoVigliani, AlessandroData, SilvioSacchi, Matteo Eugenio
Off-roading is the scenario of driving a vehicle on unpaved surfaces such as sand, gravel, riverbeds, rocks, and other natural terrain. Vehicle designed for that purpose requires jumping from height due to uneven surfaces/patches. This also requires them to sustain a high amount of loads acting upon them on impact. Thus, off-roading vehicles should not only provide intended vehicle dynamics performance but at the same time should be durable as well. Drop test which is done in a controlled environment is a widely used method to validate the durability of vehicle in such scenarios wherein the vehicle is dropped from a certain predefined height. In Multibody dynamics simulation, drop test was replicated and acceleration data computed at different locations in the vehicle were correlated with actual physical test data. Correlation was done for different drop heights. This paper presents relevant details of the virtual vehicle modeling, loadcase, test data & subsequent correlation. This
Kaka, VaibhavJain, Arvind
The manufacturing landscape is undergoing a transformation, propelled by the need for innovative, efficient, and precise technology that can effectively replace expensive manual labor. This article examines advancements in Flexiv’s material abrasion technology, specifically focusing on sanding and polishing applications and the utility of force control technology.
A new computer model tool, developed by researchers at the University of Bristol and based at the Bristol Robotics Laboratory, could be used to train astronauts ahead of Lunar missions.
Dust testing of vehicles on unpaved roads is crucial in the development process for automotive manufacturers. These tests aim to ensure the functionality of locking systems in dusty conditions, minimize dust concentration inside the vehicle, and enhance customer comfort by preventing dust accumulation on the car body. Additionally, deposition on safety-critical parts, such as windshields and sensors, can pose threats to driver vision and autonomous driving capabilities. Currently, dust tests are primarily conducted experimentally at proving grounds. In order to gain early insights and reduce the need for costly physical tests, numerical simulations are becoming a promising alternative. Although simulations of vehicle contamination by dry dust have been studied in the past, they have often lacked detailed models for tire dust resuspension. In addition, few publications address the specifics of dust deposition on vehicles, especially in areas such as door gaps and locks. Many authors
Yigci, IbrahimStrohbücker, VeithKunze, MilesSchatz, Markus
Lunar landing and launch pads represent critical infrastructure for enabling a sustained presence on the Moon or other planetary bodies. Such a Moon presence would require repeated lunar landings and takeoffs, preferably near an outpost or habitat. In the absence of takeoff and landing pads, such vehicles could project lunar regolith at high velocities, sandblasting the surrounding infrastructure and causing damage.
Storing energy is one of the key challenges for implementing sustainable but intermittent electricity sources like solar and wind. Engineers at Sandia National Laboratories are collaborating with New Mexico-based CSolPower LLC to develop a very affordable method of accomplishing that storage.
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation. This pressure is mapped onto the load body
Sadasivam, SivasankaranLoganathan, EkambaramMahalingam, Manikandan
The mechanization of crops causes problems in soil structure as it causes compaction. Compaction can be severe depending on the type of tire adopted in the field. Producers are concerned with selecting wheelsets that harm the soil less and remembering to save resources when buying agricultural tires. Agricultural tires are more expensive than road tires, and truck tires can be an alternative for producers to save money. The present study evaluated the interaction between wheelset and ground in a fixed tire testing unit, comparing the impact of different tire models on bare ground. The 6 treatments performed consisted of 3 tire models (p1: road radial, composed of double wheelset - 2×275/80r22.5; p2: agricultural radial - 600/50r22.5; and p3: agricultural diagonal - 600/50-22.5) versus two contact surfaces, one rigid and the other with bare agricultural soil. Seven response variables were used to apply Regression analysis and descriptive statistics. Agricultural tires applied less
Filho, Aldir Carpes MarquesMedeiros, Simone D. S.Martins, Murilo B.Lanças, Kléber P.
Brazil has a robust agricultural sector; however, the mechanization of crops causes several problems in the physical soil structure, including surface compaction. Compaction reduces crop productivity and producer profits. The intensity of compaction varies depending on the wheelset model used, tire type, water content, and soil load applied. Recent studies have shown that soil compaction in sugarcane can be attenuated by maintaining the vegetation cover (straw biomass) on the surface after harvesting. The present study used different tire models to evaluate the interaction between wheelset-soil as a function of different amounts of biomass left over from the sugarcane harvest. A physical simulation system (fixed tire testing unit) was used for the tests. The wheelsets were subjected to controlled loads on tanks with confined and standardized soil samples. The treatments consisted of 3 tire models (p1: road radial, composed of double wheelset - 2×275/80R22.5; p2: agricultural radial
Filho, Aldir Carpes MarquesSartorio, Simone D. M.Martins, Murilo B.Lanças, Kléber P.
In India, agriculture is a vital part of the country’s economy and almost everything depends on it. It takes a lot of time and effort for the farmer to remove the leftover root vegetables and crops in soil. Even after manually removing these crops, they can’t fully recover the leftover thing. This process takes more time and is challenging for the farmer. Due to human error, around 20-30% of the crops and root crops are left out in the field. Unfortunately, poor farmers can’t afford the necessary equipment to remove these crops. Generally, Root crops are cultivated by root crop harvester through diggers present under the chassis in the middle which are seen randomly by operators and cultivated or else through cameras which are highly cost and not affordable by all the farmers, hard to maintain and not technically strong by the farmers to operate the cameras. Hence, it is aimed to design a Plough machine to take the left over root crops in the field as well as to loosen/break up the
Deepan Kumar, SadhasivamM, BoopathiSridhar Raj, SKarthick, K NP, Vivek KumarR, BalamuruganS, Iniya Mounika
In Penn’s Clean Energy Conversions Lab, researcher Peter Psarras and colleagues are repurposing waste from industrial mines, storing carbon pulled from the atmosphere into newly formed rock. The team sees great environmental potential in mine tailings, the sand and sludge left behind after the sought-after ore gets removed. With samples in the lab, they’re trying to determine just how much calcium and magnesium each contains, how to best carbonate it with CO2, how and where they can store the result, and whether the process is scalable.
When asked about the most dreaded tasks on the manufacturing floor, many teams point to sanding, grinding, or polishing. These unforgiving tasks can be tedious, time-consuming, and hazardous, leading to respiratory illnesses and repetitive motion injuries. In today’s economic climate, finding workers willing to perform these taxing jobs can be challenging. Yet, they are often necessary when assembling metal, composite, or other parts into manufactured products.
Litter is not only a problem on Earth. According to NASA, there are currently millions of pieces of space junk in the range of altitudes from 200 to 2000 kilometers above the Earth’s surface, which is known as low-Earth orbit (LEO). Most of the junk is comprised of objects created by humans, like pieces of old spacecraft or defunct satellites. This space debris can reach speeds of up to 18,000 miles per hour, posing a major danger to the 2612 satellites that currently operate at LEO. Without effective tools for tracking space debris, parts of LEO may even become too hazardous for satellites.
Synthetic Aperture Radar (SAR) images are a powerful tool for studying the Earth’s surface. They are radar signals generated by an imaging system mounted on a platform such as an aircraft or satellite. As the platform moves, the system emits sequentially high-power electromagnetic waves through its antenna. The waves are then reflected by the Earth’s surface, re-captured by the antenna, and finally processed to create detailed images of the terrain below.
A team at Delft University of Technology has built a new technology on a microchip by combining two Nobel Prize-winning techniques for the first time. This microchip could measure distances in materials at high precision — e.g., underwater or for medical imaging. The work is now published in Nature Communications. Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. The instrument could lead to new techniques to monitor the Earth’s climate and human health.
Exploring and developing permanent infrastructure on Mars requires the development of technologies to enable safe and efficient operations, from landing, roving, and extravehicular activities (EVAs) to prospecting, evaluating, acquiring, extracting, and utilizing local resources. Martian regolith is likely to be the main resource used for initial Martian in situ resource utilization (ISRU) to lessen the amount of resources and supplies that must be launched at high cost from Earth and take up precious cargo space.
Items per page:
1 – 50 of 961