Browse Topic: Weather and climate
Researchers have created a simulation model to analyze how coastal management activities meant to protect barrier islands from sea-level rise can disrupt the natural processes that are keeping barrier islands above water.
Whether it’s the meeting room of an office building, the exhibition room of a museum or the waiting area of a government office, many people gather in such places, and quickly the air becomes thick. This is partly due to the increased humidity. Ventilation systems are commonly used in office and administrative buildings to dehumidify rooms and ensure a comfortable atmosphere. Mechanical dehumidification works reliably, but it costs energy and — depending on the electricity used — has a negative climate impact.
Compressor durability is a critical factor for ensuring the long-term reliability of Mobile Air Conditioning (MAC) systems in passenger vehicles. This study presents a software based strategy for enhancing compressor life using Smart Fully Automatic Temperature Control (FATC), requiring no additional hardware. The proposed approach leverages existing inputs from the FATC and Engine Management System (EMS) to intelligently manage compressor operation, with a focus on addressing challenges related to prolonged non-usage. In extended inactivity scenarios such as during cold weather, vehicle exportation, storage, or breakdowns, lubrication oil tends to settle in the compressor sump, leaving internal parts dry. Sudden reactivation at high engine speeds under such conditions can cause increased friction, wear and even compressor seizure. To mitigate this, an intelligent reactivation protocol has been developed and integrated into the Climate Control Module (CCM). This protocol continuously
To learn more about the nature of matter, energy, space, and time, physicists smash high-energy particles together in large accelerator machines, creating sprays of millions of particles per second of a variety of masses and speeds. The collisions may also produce entirely new particles not predicted by the standard model, the prevailing theory of fundamental particles and forces in our universe. Plans are underway to create more powerful particle accelerators, whose collisions will unleash even larger subatomic storms. How will researchers sift through the chaos?
As weather-related catastrophes and urban vulnerabilities intensify, there is a growing interest in AI-driven tools for predicting weather patterns and disaster response. Engineers at Texas A&M University have developed CLARKE (Computer vision and Learning for Analysis of Roads and Key Edifices) — a system that uses drone imagery and artificial intelligence to rapidly assess damage after hurricanes and floods.
High-altitude uncrewed aircraft can remain in the lower stratosphere for extended periods, performing a wide range of Earth observation and communications tasks – from monitoring shipping lanes and supporting disaster response to providing internet access. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has now taken an important step in the development of its own high-flying solar aircraft by successfully completing a Ground Vibration Test (GVT) on its innovative HAP-alpha high-altitude platform. Extensive ground trials took place at DLR’s National Experimental Test Center for Unmanned Aircraft Systems in Cochstedt, Germany. Further tests will follow and the first low-altitude flight trial is planned for 2026, subject to ideal weather conditions.
The German Aerospace Center's (DLR) solar-powered high altitude platform (HAP) has completed ground vibration testing, in preparation for low altitude flight testing planned for 2026. German Aerospace Center (DLR), Cologne, Germany High-altitude uncrewed aircraft can remain in the lower stratosphere for extended periods, performing a wide range of Earth observation and communications tasks - from monitoring shipping lanes and supporting disaster response to providing internet access. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has now taken an important step in the development of its own high-flying solar aircraft by successfully completing a Ground Vibration Test (GVT) on its innovative HAP-alpha high-altitude platform. Extensive ground trials took place at DLR's National Experimental Test Center for Unmanned Aircraft Systems in Cochstedt, Germany. Further tests will follow and the first low-altitude flight trial is planned for 2026, subject to ideal
The third-generation Nissan Leaf represents the automaker's efforts to bring the world's first mass-market modern EV up to date. This meant making changes to the powertrain - better winter charging, new NACS connectors - while keeping some things the same. SAE Media spoke with Jeff Tessmer, senior manager, R&D engineer, technology planning and research at Nissan Technical Center North America, about these updates.
Engineers from Australia and China have invented a sponge-like device that captures water from thin air and then releases it in a cup using the sun’s energy, even in low humidity where other technologies such as fog harvesting and radiative cooling have struggled.
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
Researchers have created a 98-milligram sensor system — about one tenth the weight of a jellybean or less than one-hundredth of an ounce — that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination. Then, when a researcher sends a Bluetooth command, the sensor is released from its perch and can fall up to 72 feet — from about the sixth floor of a building — and land without breaking. Once on the ground, the sensor can collect data, such as temperature or humidity, for almost three years.
Low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain, temperature, and humidity. And unlike earlier self-healing robots, they can also partially repair themselves at room temperature.
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensor’s potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensor’s capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
Improving the efficiency of Battery Electric Vehicles (BEVs) is crucial for enhancing their range and performance. This paper explores the use of virtual tools to integrate and optimise various systems, with a particular focus on thermal management. The study considers global legislative drive cycles and real-world scenarios, including hot and cold weather conditions, charging cycles, and towing. A virtual vehicle model is developed to include major contributors to range prediction and optimisation, such as thermal systems. Key components analysed include high voltage (HV) and low voltage (LV) consumers (compressors, pumps, fans), thermal system performance and behaviour (including cabin climate control), thermal controllers, and thermal plant models. The emergent behaviour resulting from the interaction between hardware and control systems is also examined. The methodology involves co-simulation of hardware and control models, encompassing thermal systems (coolant, refrigerant, cabin
Items per page:
50
1 – 50 of 3738