Browse Topic: Weather and climate
The third-generation Nissan Leaf represents the automaker's efforts to bring the world's first mass-market modern EV up to date. This meant making changes to the powertrain - better winter charging, new NACS connectors - while keeping some things the same. SAE Media spoke with Jeff Tessmer, senior manager, R&D engineer, technology planning and research at Nissan Technical Center North America, about these updates.
Engineers from Australia and China have invented a sponge-like device that captures water from thin air and then releases it in a cup using the sun’s energy, even in low humidity where other technologies such as fog harvesting and radiative cooling have struggled.
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
Low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain, temperature, and humidity. And unlike earlier self-healing robots, they can also partially repair themselves at room temperature.
Researchers have created a 98-milligram sensor system — about one tenth the weight of a jellybean or less than one-hundredth of an ounce — that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination. Then, when a researcher sends a Bluetooth command, the sensor is released from its perch and can fall up to 72 feet — from about the sixth floor of a building — and land without breaking. Once on the ground, the sensor can collect data, such as temperature or humidity, for almost three years.
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
Improving the efficiency of Battery Electric Vehicles (BEVs) is crucial for enhancing their range and performance. This paper explores the use of virtual tools to integrate and optimise various systems, with a particular focus on thermal management. The study considers global legislative drive cycles and real-world scenarios, including hot and cold weather conditions, charging cycles, and towing. A virtual vehicle model is developed to include major contributors to range prediction and optimisation, such as thermal systems. Key components analysed include high voltage (HV) and low voltage (LV) consumers (compressors, pumps, fans), thermal system performance and behaviour (including cabin climate control), thermal controllers, and thermal plant models. The emergent behaviour resulting from the interaction between hardware and control systems is also examined. The methodology involves co-simulation of hardware and control models, encompassing thermal systems (coolant, refrigerant, cabin
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensor’s potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensor’s capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
A glow plug is generally used to assist the starting of diesel engines in cold weather condition. Low ambient temperature makes the starting of diesel engine difficult because the engine block acts as a heat sink by absorbing the heat of compression. Hence, the air-fuel mixture at the combustion chamber is not capable of self-ignition based on air compression only. Diesel engines do not need any starting aid in general but in such scenarios, glow plug ensures reliable starting in all weather conditions. Glow plug is actually a heating device with high electrical resistance, which heats up rapidly when electrified. The high surface temperature of glow plug generates a heat flux and helps in igniting the fuel even when the engine is insufficiently hot for normal operation. Durability concerns have been observed in ceramic glow plugs during testing phases because of crack formation. Root cause analysis is performed in this study to understand the probable reasons behind cracking of the
This document establishes the minimum requirements for an environmental test chamber and test procedures to carry out anti-icing performance tests according to the current materials specification for aircraft deicing/anti-icing fluids. The primary purpose for such a test method is to determine the anti-icing performance under controlled laboratory conditions of AMS1424 Type I and AMS1428 Type II, III, and IV fluids.
There’s a lot of hype about generative AI, both pro and con. Researchers at the University of California, San Diego and the Allen Institute for Artificial Intelligence (Ai2) are on the pro side, demonstrating that it can have valuable global impact. They have developed a generative AI climate prediction model they call Spherical DYffusion, which is fast and agile enough to be used as a tool not just by scientists, but by anyone whose decisions are affected by climate trends.
The escalation of road infrastructure anomalies, such as speed breakers and potholes, presents a formidable challenge to vehicular safety, efficient traffic management, and road maintenance strategies worldwide. In addressing these pervasive issues, this paper proposes an advanced, integrated approach for the detection and classification of speed breakers and potholes. Utilizing a sophisticated blend of deep learning methodologies and enhanced image processing techniques, our solution leverages Object Detection to analyze and interpret real-time visual data captured through advanced vehicle-mounted camera systems. This research meticulously details the comprehensive process involved in the development of this system, including the acquisition and preprocessing of a vast, varied dataset representative of numerous road types, conditions, and environmental factors. Through rigorous training, testing, and validation phases, the model demonstrates remarkable proficiency in recognizing and
As part of the Nano4 EARTH initiative, a national challenge launched by the White House and the National Nanotechnology Initiative, researchers are exploring how innovations at the nanoscale can lead to groundbreaking solutions for a more sustainable future.
Items per page:
50
1 – 50 of 3729