Browse Topic: Environmental protection

Items (1,624)
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock
AMS J Aircraft Maintenance Chemicals and Materials Committee
Sustainable Aviation Fuels (SAFs) offer great promises towards decarbonizing the aviation sector. Due to the high safety standards and global scale of the aviation industry, SAFs pose challenges to aircraft engines and combustion processes, which must be thoroughly understood. Soot emissions from aircrafts play a crucial role, acting as ice nuclei and contributing to the formation of contrail cirrus clouds, which, in turn, may account for a substantial portion of the net radiative climate forcing. This study focuses on utilizing detailed kinetic simulations and soot modeling to investigate soot particle generation in aero-engines operating on SAFs. Differences in soot yield were investigated for different fuel components, including n-alkanes, iso-alkanes, cycloalkanes, and aromatics. A 0-D simulation framework was developed and utilized in conjunction with advanced soot models to predict and assess soot processes under conditions relevant to aero-engine combustion. The simulations
Yi, JunghwaManin, JulienWan, KevinLopez Pintor, DarioNguyen, TuanDempsey, Adam
In this work we demonstrate the influence of different refined TCR refining diesel fuels on emission, power and efficiency in comparison to reference Diesel fuel (homologation fuel for Euro 6 emission testing), hydrotreated vegetable oil (HVO) and a blend of poly(oxymethylene)dimethyl ether (OME3) with reference Diesel. The emission characteristics of such TCR fuels used in a production type Diesel engine with modern common rail system has up to now not been tested. The comparison was performed at an engine test bench equipped with a Hatz 4H50 TIC direct injection common rail Diesel engine. For different engine operation points exhaust gas emissions and particulate matters were measured and the results analyzed
Seeger, JanTaschek, Marco
The focus on sustainability has encouraged innovation across industries with a growing emphasis on minimizing environmental impact. In the transportation sector, optimizing engine lubricants emerges as a crucial avenue for achieving sustainable performance as used engine oil is the primary lubricants waste stream. Re-Refined Base Oil (RRBO) presents a compelling solution, offering a sustainable alternative to virgin base oils. By reclaiming and reprocessing used oil, RRBO not only minimizes waste but also embodies the ideology of circularity, promoting resource efficiency and environmental conservation. This study presents the collaborative efforts between an Indian Automotive OEM and Lubricant Technology Partner towards the development of engine oil utilizing Re-Refined Base Oil (RRBO) for automotive applications. Specifically, two formulations were targeted: a 5W-30 A5/B5 oil for Bharat Stage IV passenger car usage and a 15W-40 CI4+ oil for Bharat Stage IV commercial vehicle
Tyagarajan, SethuramalingamSingh, SamsherBondre, SushilThanapathy, Saravana RajaDalvi, Preshit
The gasoline particulate filter (GPF) represents a durable solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as a viable technology in North America to meet the upcoming US EPA tailpipe emission regulation, the proposed “Multipollutant Rule for Model Year 2027”. The goal of this study was to track the evolution of tailpipe particulate emissions of a modern GTDI light duty vehicle under typical North American mileage accumulation; from a fresh state to 4000-mile, and finally to its full useful life of 150,000-miles. For this purpose, a production TWC + GPF after-treatment system was installed in place of the T3B85 TWC-only system. Chassis dyno emissions testing was performed at the pre-determined mileage points with on-road driving conducted for the necessary mileage accumulation. This report will show the outstanding filtration durability and enhanced particulate control and of the current GPF technology all the way to 150,000 miles for
Craig, AngusWarkins, JasonBeattie, JamesNipunage, SanketMoser, DavidDay, RyanBanker, Vonda
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749
AC-9 Aircraft Environmental Systems Committee
The next-gen 15-liter diesel engine meets all 2027 EPA emissions regulations while boosting fuel efficiency. Cummins provided extensive details of the design and engineering efforts involved in developing the new HELM version of its X15 diesel engine. The company says its new engine will offer up to a 7% improvement in fuel economy compared to the current EPA 2024-certified X15 while also meeting all 2027 emissions targets. Truck & Off-Highway Engineering was invited to tour the company's headquarters in Columbus, Indiana, where journalists were given a comprehensive update on the hardware powering the latest X15
Wolfe, Matt
Magnetic cooling technology, grounded in the magnetocaloric effect, is a significant area of study given its immense potential to address escalating energy demands and environmental issues posed by current technologies. Investigations into magnetic cooling systems encompass engineering endeavours and materials research. Magnetic refrigeration at room temperature represents a cutting-edge, high-efficiency, and eco-friendly technology. Despite its current developmental stage, it exhibits immense potential for practical applications and appears to be a viable alternative to conventional vapor compression methods. This review primarily focuses on the applications and materials research aspect of these studies, offering insights into the latest advancements in the field
Meduri, SunilChalla, KrishnaPonangi, Babu Rao
Since signing the legally binding Paris agreement, fighting climate change has been an increasingly important task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore, long term strategies all over the world have been set up to reduce on-road combustion emissions. One of the emerging alternative technologies to decarbonize the transportation sector is Mobile Carbon Capture (MCC). MCC refers to the on-board separation of CO2 from vehicle exhaust. To accurately assess this technology, a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. Adding to the system capital and operational costs, our study includes mass penalty costs, CO2 offloading and transport costs for different transport scenarios. To better relate to a single consumer (driver), the cost can be converted from euro per-tCO2 to euro per-trip or euro per-mile. A sensitivity analysis is then conducted
SAAFI, Mohamed AliHamad, Esam
Decarbonization and a continuous reduction in exhaust emissions from combustion engines are key objectives in the further development of modern powertrains. In order to address both aspects, the DE4LoRa research project is developing an innovative hybrid powertrain that is characterized by the highly flexible combination of two electric motors with a monovalent compressed natural gas (CNG) engine. This approach enables highly efficient driving in purely electric, parallel and serial operating modes. The use of synthetic CNG alone leads to a significant reduction in CO2 emissions and thus in the climate impact of the drivetrain. With CNG-powered engines in particular, however, methane and other tailpipe emissions of climate gases and pollutants must also be minimized. This is possible in particular through efficient exhaust gas aftertreatment and an effective operating strategy of the powertrain. This publication presents measurement results that examine the critical aspect of cold
Noone, PatrickHerold, TimBeidl, Christian
Sustainability remains a dominant trend in packaging and processing, continuing to attract the attention of the life sciences industry and inspire its new initiatives. Although pharmaceutical and medical device manufacturers must prioritize patient safety and product protection, concerns about climate change, greenhouse gas (GHG) emissions, plastic waste, and pressure to move toward a circular economy are prompting a greater focus on improving the sustainability of their products and packaging
Toyota, Mazda and Subaru announced a new technological effort to create new internal combustion engines and ways to use them in the electrification era, specifically for hybrid and plug-in hybrid vehicles. The companies said at a joint press conference in Japan that they would encourage increased use of petroleum alternatives like biofuels and eFuels in their effort to create carbon-neutral vehicles. A joint statement from the three OEMs claims this push for new and better ICEs comes with a focus on “carbon as the enemy” as they develop engines that can better work with electric motors, batteries, and other electric drive units. Toyota, Mazda and Subaru made clear they are not getting rid of EV-only vehicle plans. Here's how each company will approach the new ICE+EV era (quotes provided in English by on-site interpreters
Blanco, Sebastian
With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer. Technologies are compared in respect of their TLR level and
Rothbart, Martin
Let’s start with the uncomfortable truth, climate change is happening, and the automotive industrial network is one of the main industries contributing to greenhouse gas emissions. SKF is an energy intensive business – directly using energy, mainly in the form of electricity and gas, in its operations around the world. In addition, SKF utilizes materials, predominantly steel, and services which can be energy and carbon intensive – such as transports and raw material in production and processing. The combined impact of these direct and indirect energy uses (scope 1, 2 and 3 upstream) generates an excess of over two million metric tons of CO2e per year. This figure would however be significantly higher were it not for the actions SKF has taken to reduce both energy and carbon intensity. In 2000, we were one of the first companies to start to report and set climate targets. Acting on energy and material efficiency improvements and by switching to renewable energy, SKF is targeting
Sguotti, LauraLeprotti, ArturoFerrero, AlessandroD'Aleo, MicheleBerglund, Mats
The escalating energy demand in today’s world has amplified exhaust emissions, contributing significantly to climate change. One viable solution to mitigate carbon dioxide emissions is the utilization of hydrogen alongside gasoline in internal combustion engines. In pursuit of this objective, combustion characteristics of iso-octane/hydrogen/air mixtures are numerically investigated to determine the impact of hydrogen enrichment. Simulations are conducted at 400 K over a wide range of equivalence ratio 0.7 ≤ Ф ≤ 1.4 and pressure 1–10 atm. Adiabatic flame temperature, thermal diffusivity, laminar burning velocity, and chemical participation are assessed by varying hydrogen concentration from 0 to 90% of fuel molar fraction. As a result of changes in thermal properties and chemical participation, it is noticed that the laminar burning velocity (LBV) increases with higher hydrogen concentration and decreases as pressure increases. Chemical participation and mass diffusion were found to be
Almansour, Bader
Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and contribute to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprised of a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for automotive engineering. The goal of drastically reducing greenhouse gas emissions has prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. While this chapter reviews the current state of graphene
Barkan, TerranceCoyner, KelleyBittner, JasonKolodziejczyk, BartJiang, Yuxiang
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. Hydrogen is the key to storing renewably generated electricity chemically. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting the range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance. The limited supply of bioenergy should be reserved for critical applications, such as bioenergy with carbon capture and storage (BECCS), aviation, shipping, and road freight in the most remote locations. Additionally, there are some reasons to prefer ethanol or methanol to diesel-type fuels as they are
Muelaner, Jody E.
The transportation sector has an enormous demand for resources and energy, is a major contributor of emissions (i.e., greenhouse gases in particular), and is defined largely by the kind of energy it uses—be it electric cars, biofuel trucks, or hydrogen aircraft. Given the size of this sector, it has a crucial role in combating climate change and securing sustainability in its three forms: environmental, societal, and economic. In this context, there are many questions concerning energy options on the path toward a more sustainable transportation sector. Is hydrogen the fuel of the future? Is there enough electricity to power a fully electric transportation sector? What happens when millions of electric vehicle batteries need to be decommissioned? Which regulatory measures are effective and appropriate for moving the sector in the right direction? What is the “right” direction? This chapter does not aim to answer all those questions. It does, however, highlight and discuss the most
Beiker, SvenMuelaner, Jody E.
In today’s landscape, environmental protection and nature conservation have become paramount across industries, spurring the ever-increasing aspect of decarbonization. Regulatory measures in transportation have shifted focus away from combustion engines, making way for electric mobility, particularly in smaller engines. However, larger applications like ships and stationary power generation face limitations, not enabling an analogous shift to electrification. Instead, the emphasis shifted to zero-carbon fuel alternatives such as hydrogen and ammonia. In addition to minimal carbon-containing emissions due to incineration of lubricating oil, hydrogen combustion with air results in nitrogen oxide emissions, still necessitating quantification for engine operation compliance with legal regulations. A commonly used multicomponent exhaust gas analyzer on FTIR principle can suffer from higher volumetric water shares in the exhaust gas of the hydrogen engine, influencing the emission analysis
Armbruster, FelinaKraus, ChristophPrager, MaximilianHärtl, MartinJaensch , Malte
In this study, an integrated emission prediction model was used to predict whether EURO7-compliant commercial internal combustion engine vehicles would be able to meet upcoming regulations. In particular, the optimal value of Adblue injection and EHC (Electrically Heated Catalyst) control strategy for each combination of the specifications of the close-coupled SCR system (volume, substrate spec., EHC, etc.) was derived. Through this, it was intended to derive the best specification combination in terms of control and emission performance, and to use the results as a basis for decision-making in the early stages of product concept selection
Cho, JihoChoi, SungmuLee, Sang MinHwang, Dong Min
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery. This includes the mining of material required, refining of the material to a form suitable for manufacturing, manufacturing important
Abraham, Albert J.AbdulNour, Bashar
Air pollution is a significant environmental issue, and exhaust emissions from internal combustion engines are one of the primary sources of harmful pollutants. The transportation sector, which includes road vehicles, contributes to a large share of these emissions. In Europe, the latest emission legislation (Euro 7) proposes more stringent limits and testing conditions for vehicle emissions. To meet these limits, the automotive industry is actively developing innovative exhaust emission-control technologies. With the growing prevalence of electrification, internal combustion engines are subject to continuous variations in load and engine speed, including phases where the engine is switched off. The result is an operating condition characterized by successive cold starts. In this context, the challenge in coping with the emission limits is to minimize the light-off time and prevent fast light-out conditions during idling or city driving. This goal can be achieved by reducing heat
Sartirana, AndreaMontenegro, GianlucaDella Torre, AugustoOnorati, AngeloPace, LorenzoZaldua-Moreno, Naroa
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine. Building on that prior program effort, EPA continued to support further Low NOX demonstration efforts in support of the development of new Federal Emissions Standards for heavy-duty highway vehicles and
Sharp, ChristopherNeely, GaryZavala, BryanRao, SandeshMcDonald, JosephSanchez, James L.
This paper presents the characteristics of more than 260 trim levels for over 50 production electric vehicle (EV) models on the market since 2014. Data analysis shows a clear trend of all-wheel-drive (AWD) powertrains being increasingly offered on the market from original equipment manufacturers (OEMs). The latest data from the U.S. Environmental Protection Agency (EPA) shows that AWD EVs have seen a nearly 4 times increase in production from 21 models in 2020 to 79 models in 2023. Meanwhile single axle front-wheel-drive (FWD) and rear-wheel-drive (RWD) drivetrains have seen small to moderate increases over the same period, going from 9 to 11 models and from 5 to 12 models, respectively. Further looking into AWD architectures demonstrates dual electric machine (EM) powertrains using different EM types on each axle remain a small portion of the dual-motor AWD category. However, these architectures have been shown to have energy savings of 1 % to 5 % over that of identical dual-motor
Allca-Pekarovic, AlexanderKollmeyer, PhillipMiddleton, MairiEmadi, Ali
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. Modern internal combustion engines typically employ various in-cylinder emission reduction techniques along with a multi
Sandhu, Navjot SinghYu, XiaoTing, DavidZheng, Ming
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions. A modern, T3B70, GTDI light-duty truck served as the test vehicle
Craig, AngusWarkins, JasonWassouf, BasselBeall, DouglasBanker, VondaMadaffari Jr, Dominick
Powertrain development requires an efficient development process with no rework and model-based development (MBD). In addition, to performance design that achieves low CO2 emissions is also required. Furthermore, it also demands fuel economy performance considering real-world usage conditions, and in North America, the EPA (U.S. Environmental Protection Agency) 5-cycle, which evaluates performance in a combination of various environments, is applied. This evaluation mode necessitates predicting performance while considering engine heat flow. Particularly, simulation technology that considers behavior based on engine temperature for Hybrid Electric Vehicle (HEV) is necessary. Additionally, in the development trend of vehicle aerodynamic improvement, variable devices like Active Grille Shutter (AGS) are utilized to contribute to reducing CO2 emissions. When equipped with AGS, the engine's heat flow environment also changes, resulting in more complex phenomena in the engine compartment
Ogata, KenichiroKoide, KeijiroKubota, ShunichiTakeda, NaoakiSuzuki, YusukeToshizane, GoSugamata, RyoheiSaito, Mitsunobu
Fuel cell vehicles have always garnered a lot of attention in terms of energy utilization and environmental protection. In the analysis of fuel cell performance, there are usually some outliers present in the raw experimental data that can significantly affect the data analysis results. Therefore, data cleaning work is necessary to remove these outliers. The polarization curve is a crucial tool for describing the basic characteristics of fuel cells, typically described by semi-empirical formulas. The parameters in these semi-empirical formulas are fitted using the raw experimental data, so how to quickly and effectively automatically identify and remove data outliers is a crucial step in the process of fitting polarization curve parameters. This article explores data-cleaning methods based on the Local Outlier Factor (LOF) algorithm and the Isolation Forest algorithm to remove data outliers. For fuel cell experimental data, two algorithms are used to score all data points for outliers
Qin, JiahangHou, YongpingMa, Liying
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance. Recently, EPA has updated the ALPHA model with key changes including the addition
Moskalik, AndrewKargul, JohnButters, KarlaBhagdikar, Piyush
This article investigates the performance of a low-cost throttle-by-wire-system (TbWS) for two-wheeler applications. Mopeds/scooters are still restricted as environmentally harmful. TbWSs can contribute to environmental protection by replacing conventional restrictors. Its consisting of an anisotropic magnetoresistance (AMR) throttle position sensor and a position-controlled stepper motor-driven throttle valve actuator. The decentralized throttle position sensor is operating contactless and acquires redundant data. Throttle valve actuation is realized through a position-controlled stepper motor, sensing its position feedback by Hall effect. Using a PI controller, the stepper motor position is precisely set. Both units transmit and receive data by a CAN bus. Furthermore, fail-safe functions, plausibility checks, calibration algorithms, and energy-saving modes have been implemented. Both modules have been evaluated through hardware-in-the-loop testing in terms of reliability and
Kreß, JannisRau, JensHebert, HektorSchmidt, KarstenPerez-Peña, FernandoMorgado-Estévez, Arturo
Since last decade automotive Industry is witnessing transition from ICE to EV due to stringent environmental laws by government bodies and technological breakthrough. EV technology is emerging day by day. Biggest challenge in front of OEM is the phase shift from ICE to EV. OEM need to decide on glide path for test rig development for this change to support ICE & EV powertrain validation to deliver reliable product to their customers. In EV development, major focus is on investment for battery development. Hence, for the Motor and Gearbox validation balanced approach is to upgrade existing ICE test bench for the EV with minimum effort and cost. This paper provides details on need and approach required to make the ICE test bench capable for EV powertrain validation. Proposed methodology helps to support both type of powertrain and have maximum utilization of the test bench. This paper provides guideline for selection of the additional parts required for EV validation on ICE test bench
Koka, HarikishanPatel, HiralBhavikatti, GururajSutar, Suresh
Battery Electric Vehicles (BEV) are a well-recognized de-carbonization lever that is expected to capture about 15% of road vehicle fleet by 2030 [1, 2]. A large number of organizations are committing to science-based targets (SBTi) and are following roadmap strategies towards Greenhouse Gas (GHG) reduction including all value chain players such as material suppliers, component manufacturers and OEMs [3]. In BEVs, several components are involved in energy transformation and delivery. These components themselves consume energy, and therefore are a cause of GHG emissions during their use. To quantify their contributions and help corporations progress towards decarbonization strategies there is a need for robust use phase calculation methodology. Existing global methods for calculating use phase emissions, such as Green House Gas (GHG) Protocol (version 1.0), provide a good framework, but still have uncertainties in its practical application. This paper attempts to bridge that gap and
Singh, Mayank KumarSharma, SumitPavnaskar, VishweshChakravarty, BithikaSurase, Nilesh
Environmental Protection Agency (EPA) study indicates that a typical passenger vehicle emits about 4.6 metric tons of carbon dioxide per year. The Automotive industry facing a challenge of meeting stringent CO2 emission targets of 95g per kilometer for passenger car application. Thermal efficiency of internal combustion engine is one of the crucial technical parameters, which plays an important role in meeting CO2 emission targets. Global Automotive industry tends to achieve for cleaner, lower emission, low noise & improved performance for automotive products. Engine Overheating is affecting thermal efficiency & thus brake specific fuel consumption of the vehicle. Radiator is one of the critical components in Engine cooling system, which will ensure optimum operating range of internal combustion engine through precise control on coolant flow rate by Thermostat valve. Heat dissipation through radiator is directly proportional to volumetric mass flow rate of atmospheric air. The demand
Palve, ChandrakantThakur, PaurnimaChavan, VishalAher, Amit
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions. Various factors such as material selection, quantity and weight of materials used in parts, design for durability, aerodynamic characteristics, design strategies, design for recycling
Ali, Rifat FahmidaHarel, SamarthShaikh, TahaChakraborty, Pinka
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint. This paper examines the current state and challenges of ELV recycling in India and proposes a sustainable recycling solution for waste bumpers that includes paint removal, modification, reprocessing & recovery of precious metals from xEV Li-ion batteries
Baviskar, AjayKhera, PankajTelgote, AshishDhuria, HimanshuSharma, Amit
New satellites equipped with Corning’s advanced hyperspectral-imaging technology can detect pipeline leaks and other environmental issues, providing precise monitoring and exploration capabilities for businesses and governments
As an important way of energy saving and environmental protection, the lateral stability of straddle-type monorail vehicle (STMV) has attracted more and more attention. In order to solve this problem, a semi-active lateral control strategy of STMV dynamic model based on magnetorheological fluid damper is proposed. The inverse model of magnetorheological damper is constructed by neural network. An adaptive neural fuzzy algorithm for STMV dynamic model based on body acceleration and velocity feedback is designed, and its feasibility is verified by Kalman filter method. Through the simulation comparison of lateral acceleration and yaw angular acceleration, the control method has good measurement accuracy and can meet the needs of practical engineering measurement. It provides a method and basis for the stability and effectiveness of STMV swing semi-active control
Zhou, JunchaoHuang, ShangwuGao, Jianjie
This paper tracks the latest development of UAV noise certification regulations in various countries, outlines the current airworthiness noise requirements, focuses on the overview of various UAV noise assessment methods, and analyses the characteristics and differences of the existing UAV noise evaluation methods in terms of evaluation indicators, measurement procedures and data correction. Combined with the existing domestic environmental protection requirements and noise pollution prevention requirements, as well as the requirements of the UAV superseding law, it can be expected that the impact of UAV noise on people will be an important part of the future UAV airworthiness certification, which will be an important guiding significance for states’ legislation and standardization
Qin, JiaxuFu, JinhuaLi, LiMei, YananJi, Qian
Items per page:
1 – 50 of 1624