Browse Topic: Environmental protection

Items (1,663)
In the context of mounting urban transportation demands, coupled with the imperatives for energy conservation and carbon reduction, incumbent tram systems confront a range of challenges. This paper proposes a green and low-carbon technological framework for tram, encompassing three phases of planning, design, construction, and operation management. It elucidates the energy-saving and environmental protection technical measures inherent in each phase, accompanied by a thorough analysis of their respective advantages and ramifications. The paper further puts forward suggestions for the green and low-carbon transformation of trams, providing both theoretical guidance and practical reference for the sustainable development of trams.
Luan, Zhi-GangZhou, Hai-ZhuWang, Yuan-QiaoCai, Jing-BiaoZhou, Li-NingZheng, Liang-JiTian, Jiu-Li
The road transport mode is predominant in Brazil, representing more than 50% of greenhouse gas (GHG) emissions from energy sector [1]. Currently, trucks use internal compression combustion engine (ICCE) with fuel Diesel as propulsion, considering the reference for technical and economic studies for alternative propulsions such as: electrification or hydrogen (H2) as fuel. Both technologies are extremely important to achieve the goals defined by Brazilian nationally determined contribution (NDC) (commitment to Paris agreement target) to avoid climate changes catastrophic issues due climate temperature risk to exceed 2°C. In addition, several companies have announced sustainability compromises to contribute with reduction of GHG emissions in scopes 1,2 and 3, focusing on Environmental, Social and governance (ESG), where road transportation has a larger contribution to achieving the target. Contran Resolution (CR) n° 882/2021 defines the maximum weights and dimensions of vehicles to be
Ferreira, Bruno FranciscoOliveira Da Silva, Laura de
Lithium-ion batteries (LIBs) have consolidated their place in the technology market for the energetic transition, with global manufacturing capacity exceeding 1 TWh in recent years and costs falling in this competitive environment. At the same time, the number of end-of-life LIBs is increasing, stimulating the recycling industry to process battery streams, thus promoting the circular economy to meet the increased demand for strategic raw materials and decarbonization. Vehicle electrification is the main driver of battery production, but their end-of-life will take some time to be significant in volume in the next years. Consumer electronics such as smartphones, laptops and power tools are now available at an appropriate volume enabling the preparation of recycling industry for the moment. In this scenario, recyclers are looking for sustainable routes to absorb all these streams and the different LIBs chemistries (LFP, NCA, NMC, LCO, LMO) to recover the critical metals (Ni, Co, Cu, Mn
Gobo, Luciana AssisFerrarese, AndreOliveira, Rafael Piumatti deMartins, Thamiris Auxiliadora GonçalvesGuillen, Daniela RomeroSilva Vasconcelos, David daTenório, Jorge Alberto Soares
The aviation sector currently accounts for 2-3% of global Greenhouse Gas (GHG) emissions, while the projected increased air travel demand (average 3.4% per year), might surge the aviation fuel use. This increase in jet fuel demand, associated with the current decarbonization pathway of other sectors might increase the aviation’s absolute emissions, as well as its relative global GHG share. This scenario has driven the aviation stakeholders into a decarbonization strategy, focused on an immediate and gradual GHG reduction effort associated with a net-zero commitment by 2050. Meanwhile, the aviation sector is known as one that set most difficulties to use alternative fuels and/or powertrains, such as battery electric or sustainable hydrogen fueled propulsion systems, already used on some road and rail applications, but still restricted to the aviation, due to the inherent weight and volume tight requirements. In this context, the sustainable aviation fuels (SAF) are set as the most
Barbosa, Fábio Coelho
In response to increasing environmental awareness and the automotive industry's push for sustainability, the development of lightweight and robust components has become a key area of focus. This paper presents a multidisciplinary approach to the design and optimization of an aluminum parking brake lever, leveraging advanced structural optimization techniques to enhance performance while meeting stringent environmental standards. Traditional manufacturing processes for automotive components, such as stamping, often rely on steel due to its strength and ease of processing. However, the high density of steel can significantly impact the overall weight of the vehicle, leading to increased fuel consumption and emissions. In contrast, aluminum’s superior strength-to-weight ratio offers a promising alternative. This study employs Finite Element Analysis (FEA) to model the initial stress history of the lever, followed by the application of structural optimization tools to refine its geometry
Filho, William Manjud MalufCarriero, Emily AmaralRequena, Felipe Carlos GarciaScatolin, Felipe MandichMarini, Vinicius KasterAlves1, Marcelo Augusto LealFerreira, Wallace Gusmão
This study presents a comparative Life Cycle Assessment (LCA) of urban buses powered by Diesel S10 with three fuel blends: B7 (7% biodiesel), B15 (15% biodiesel), and B100 (100% biodiesel). Employing a well-to-wheel approach, the analysis covers the extraction, production, distribution, and use of the fuels, as well as vehicle manufacturing and maintenance. The environmental impacts were quantified using the CML-IA and ReCiPe 2016 (Midpoint and Endpoint) methods. Results indicate that B100 significantly reduces Global Warming Potential, yet exhibits higher impacts in eutrophication, abiotic depletion, and ecotoxicity. Sensitivity analysis regarding vehicle occupancy revealed greater variability for B100. In conclusion, the optimal fuel choice depends on the prioritization of specific impact categories, providing insights for sustainable transportation policies.
Cavaliero, Carla Kazue NakaoBarboza, Franciele AlvesSeabra, Joaquim Eugênio AbelFerreira, Marcela CravoCarpoviki, Renan SiqueiraCruz, Robson Ferreira
Building a green and ecological railway transportation system that incorporates the “Dual-Carbon” Strategy is a central focus and challenge in current industry research. In the western mountainous regions with complex engineering geological conditions and fragile ecosystems, it is particularly important to explore the optimal railway route under the framework of the “Dual-Carbon” strategy. By analyzing the characteristics of the geographic environment of the western mountainous areas and the trend of low-carbon railroad construction, and referring to the relevant principles of railroad line selection, the method of quantifying the carbon emissions during the construction phase of the railroad and the carbon sequestration capacity of the land lost as a result of the railroad project’s land occupation is proposed by selecting 23 indicators from the five aspects of engineering adaptability, low-carbon adaptability, economic adaptability, environmental adaptability, and social adaptability
Wang, Yibo
Whether it’s the meeting room of an office building, the exhibition room of a museum or the waiting area of a government office, many people gather in such places, and quickly the air becomes thick. This is partly due to the increased humidity. Ventilation systems are commonly used in office and administrative buildings to dehumidify rooms and ensure a comfortable atmosphere. Mechanical dehumidification works reliably, but it costs energy and — depending on the electricity used — has a negative climate impact.
This work proposes a novel framework for evaluating the second- and third-life viability of lithium-ion battery packs through the development of the RISE Index—a comprehensive metric based on Resistance growth, Integrity, Safety, and End-of-life usability. While previous research focuses on singular indicators such as residual capacity or State of Health (SoH), these approaches lack a unified, safety-informed structure for reuse qualification. This paper distinguishes itself by integrating multiple aging indicators, including resistance evolution, degradation theory, and thermal safety considerations, into a consolidated decision-making tool designed for practical deployment. The novelty lies in the formulation of the RISE Index, which fuses empirical data with electrochemical degradation mechanisms such as SEI formation, lithium plating, calendar aging, and cycling-induced impedance growth. The methodology includes a comparative analysis of Nickel Manganese Cobalt (NMC) and Lithium
Prakashkumar, Balagopal
The path toward carbon-neutral mobility represents one of the greatest cultural transformations in recent human history. Positioned between industrial heritage, emerging mobility technologies, and the energy supply sector are the users of 1.5 billion motor vehicles worldwide. Conflicting publications on raw material availability, energy efficiency, and the climate neutrality of propulsion systems have led to widespread uncertainty. This Illustrated Energy Primer provides a new foundation for orientation. It begins with a visual explanation of the basic concepts of energy and power, followed by illustrative comparisons of typical energy demands in vehicles and households. The focus then shifts to common types of energy generation systems. Using regional examples—from coal-fired power plants to wind farms, solar installations, and balcony solar panels—the guide provides clear and accessible performance benchmarks for energy production. Next, nine individual experience profiles highlight
Daberkow, Andreas
As global air traffic is expected to increase significantly in the coming decades, reducing the associated climate impact requires scalable solutions. While alternative propulsion technologies such as electric and hybrid-electric systems might offer long-term potential, their current applicability remains limited due to low energy density, limited range and scalability, and system complexity. Consequently, thermodynamic propulsion systems – such as gas turbines and piston engines – are expected to remain dominant in the medium term. In this context, sustainable hydrocarbon-based aviation fuels represent a practical and necessary solution. Certified sustainable aviation fuel (SAF) pathways are currently approved exclusively for use in gas turbines, with certification standards tailored to turbine-specific requirements. Consequently, fuel properties such as cetane number and evaporation behavior are not included in existing specifications. However, when SAF-kerosene blends are used in
Kleissner, FlorianHofmann, PeterVogd, PhilippVauhkonen, VilleKäkölä, JaanaGreve, Alina
Letter from the Guest Editors
He, XinBelgiorno, GiacomoJoshi, Ameya
Amid escalating global warming challenges, the aviation industry must adopt low-carbon and green practices. China, aiming to meet its dual carbon goals, urgently requires enhanced research and development in sustainable aviation fuels (SAF), including their sustainability certification. However, China’s regulatory framework and limited research foundation in biofuels exacerbate this endeavor. This article summarizes the development status of SAF sustainability certification internationally and within China, encompassing the indicator framework, full life cycle greenhouse gas (GHG) calculation methodologies, and emission reduction thresholds. It also highlights issues encountered in the application of current international sustainability certification systems in China, such as high certification costs and inadequate data security. Advancement in domestic sustainability certification in China faces obstacles related to the incomplete foundational database, despite possessing life cycle
Zhang, ShupingHe, YinJia, QuanxingJia, QinTao, ZanMiao, JiaheShi, YaoZhang, XiangpingWang, Siyu
Off-highway vehicles (OHVs) frequently operate in extreme environments—ranging from arid deserts and frozen tundras to dense forests and abrasive mining zones—where structural wear, impact damage, and environmental stress compromise their material integrity. Frequent repairs and component replacements increase operational costs, downtime, and environmental waste, making durability and sustainability key concerns for next-generation vehicle systems. This paper explores a novel class of self-healing biodegradable composites, inspired by biological systems, to address these challenges. The proposed materials combine bio-based resins, microencapsulated healing agents, and shape-memory polymers (SMPs) to autonomously repair microcracks and surface-level damage when triggered by thermal, UV, or mechanical stimuli. The design draws inspiration from natural self-healing systems such as tree bark and reptile skin, replicating their regenerative behavior to enhance structural resilience in OHVs
Vashisht, Shruti
Off-Highway Vehicles (OHVs) — including mining trucks, construction machinery, and agricultural equipment — contribute significantly to greenhouse gas (GHG) emissions and local air pollutants due to their dependence on fossil diesel. Achieving sustainable development goals in off-highway sectors requires transitioning toward alternate fuels that can reduce CO₂, NOₓ, and particulate matter (PM) emissions while maintaining performance and reliability. This paper comprehensively evaluates alternate fuels such as biodiesel, renewable diesel, compressed and liquefied natural gas (CNG/LNG), liquefied petroleum gas (LPG), hydrogen, and alcohol-based blends. Using insights from Service Bulletins, fuel standards, and the Worldwide Fuel Charter, it discusses fuel properties, engine compatibility, operational challenges, sustainability impacts, economic feasibility, safety considerations, and regulatory aspects. Case studies of alternate fuel deployment in OHVs illustrate practical challenges and
Mulla, TosifThakur, AnilTripathi, Ashish
A large number of research studies have raised global concerns about the rapid depletion of traditional energy sources like petroleum. These fuels, being largely non-renewable, are being consumed at a rate much faster than they can be replenished. This growing imbalance between demand and supply has led to fears that, in the near future, the world could face a serious energy crisis if alternative sources are not developed and adopted in time. The use of alternative fuels plays an important role in lowering harmful emissions, including those that contribute to ozone formation and other toxic pollutants. It is a well-established scientific understanding that the continued combustion of fossil fuels is a key driver of global atmospheric warming. As environmental awareness grows, many individuals across the globe believe that shifting toward cleaner and more sustainable fuel sources is essential for protecting and improving the health of our planet. Extensive research is being conducted to
G, ManikandanSubbaiyan, GunasekharanSaminathan, SathiskumarT, KarthiS, GokulJ, Sanmuganathan
In the recent years, the urgency to decarbonize the mobility sector has highlighted the importance of the electrochemical hydrogen use in fuel cells to complement the battery-based electrification. Hydrogen is the greenest energy carrier, and low-temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are part of an ever-evolving scenario, with particularly promising use in high energy demand sectors. Hydrogen is the main player in decarbonisation scenarios, but there are many issues, including its production and storage. There are many categories of hydrogen; in these applications, the finest category of hydrogen, called green hydrogen, is required. To achieve completely green vehicle mobility, enormous technological advances are necessary. This paper presents a 3D-CFD study to analyse the behaviour of PEMFCs by examining the role of humidification, covering fully humidified (anode and cathode), anode-only, cathode-only, and fully dry operations. This is simulated for several
Scialpi, LeonardoD'Adamo, AlessandroMarra, Carmine
This article presents a new generation of electric motors developed for light mobility and industrial applications. The motor range is based on synchronous reluctance technology using non-rare-earth permanent magnets. Three continuous power levels have been developed: 2, 4 and 6 kW. The challenges related to that motor range is their high continuous performances (cooled by natural convection) under nominal 48V, and reparability easiness without adding complexity. These motors stand out thanks to their competitive manufacturing cost and peak efficiency above 94%, which is a remarkable performance for this power and torque class. A prototype of a 6 kW continuous power has been produced and benchmarked. The experimental test showed a high level of correlation with the simulation calculation.
CISSE, Koua MalickMilosavljevic, MisaMallard, VincentValin, ThomasDe Paola, Gaetano
The California Air Resources Board (CARB) and the United States Environmental Protection Agency (US EPA) have recently introduced targets for tailpipe emissions during high-power cold-start conditions for plug-in hybrid electric vehicles (PHEVs). However, the performance characteristics of hybrid powertrains and the effectiveness of cold-start strategies in PHEVs are not well known. In this two-part study, the performance of a production PHEV is examined with the objective of quantifying the impact of high-power cold-start events on overall tailpipe emissions. High temporal fidelity data of powertrain performance and tailpipe emissions generated during cold-start events for various driving conditions are presented for the first time. The selected P2 hybrid vehicle was tested using (i) the European Real Driving Emissions (RDE) test, (ii) the US06 (Supplemental Federal Test Procedure), and (iii) a custom drive cycle developed for this study. Results show that driving conditions leading
Chakrapani, VarunO’Donnell, RyanFatouraie, MohammadWooldridge, Margaret
The nvPM Mission Emissions Estimation Methodology (MEEM) was previously developed to estimate nonvolatile particulate matter (nvPM) emissions from ground certification data using the publicly available data from the International Civil Aviation Organization (ICAO) Aircraft Engine Emissions Databank (EEDB). In order to potentially improve the accuracy of nvPM emissions estimation and to enhance its usefulness to modelers, the method was revised to make use of fuel flow correlations and similar altitude corrections as used in the Boeing Fuel Flow Method 2 (BFFM2). The new fuel flow approach allows for improved trade-off-type assessments between nvPM and gaseous emissions—i.e., less relative uncertainties when assessing results from the two methods. Like the former MEEM, the new method, MEEM2, can be used with just publicly available data such as nvPM emissions indices (EI) from the EEDB as well as predicted fuel flows from publicly available aircraft performance models. MEEM2 has been
Ahrens, DeniseKim, BrianMéry, YoannZelina, JosephDudebout, RudolphMiake-Lye, Richard C.
The United States Environmental Protection Agency (US-EPA) requires nitrogen oxides (NOx) measurement using Chemiluminescent Detectors (CLDs), Non-dispersive Ultraviolet (NDUV), and Zirconia Oxide (ZrO2) analyzers, as outlined in the 40 CFR Part 1065. Quantification of NO2 by CLD requires dual-CLDs; one dedicated to measuring the NO and another coupled with a NO2-to-NO converter to measure the total NOx. Measurement by using dual-CLDs involves mathematically subtracting NO from total NOx to get NO2 information. This requires perfect time alignments of both CLDs assigned for measuring NO and NOx to maintain accurate NO2 calculations. The NO2-to-NO converters can degrade over time and need to be replaced to get accurate total NOx measurement. In this study, Infra-red Laser Absorption Modulation (IRLAMTM) technology, which is an advanced QCL-IR spectroscopy proposed in the previous study [1], is used to measure NO and NO2 simultaneously in the exhaust gas of light-duty vehicles. This
Rahman, MontajirNevius, TimIsrael, JoshuaHara, KenjiNagura, Naoki
Heavy duty diesel engines provide a robust power plant for transportation applications for both on highway and off road applications. Control of criteria pollutants such as particulate matter and NOx at tailpipe for these applications based on standards set by regulatory bodies such CARB and EPA is critical. SwRI has demonstrated capability to achieve 0.02 g/bhp-hr. tailpipe NOx standard through the application of a model based controls in EPA and CARB funded projects. This control mechanism enables precise urea dosing for both steady state and transient conditions by leveraging estimated ammonia storage state in a dual dosing system using a set of chemical kinetics-based SCR observer models. This controller is highly nonlinear, with a significant amount of controller tuning with up to 55 calibratable parameters. In order to improve the accuracy and reduce the time required for calibration of this controller, this work proposes the deployment of a Deep Learning-based SCR plant model in
Chundru, Venkata RajeshRajakumar Deshpande, ShreshtaSharp, ChristopherGankov, Stanislav
Fuels that can be produced in a sustainable manner are of high interest because they can provide an essential step toward net zero emissions vehicles. This study examines the combustion of one such fuel, Dimethyl Ether (DME), in a compression ignition, 4-cylinder, 2.2L engine. Testing was conducted using the Federal Test Procedure (FTP) certification cycle from the US Environmental Protection Agency (EPA). Different sets of calibration maps were designed to target low-NOx (30-50ppm) by using high EGR and intake throttle and high-NOx (approximately 1000ppm) using no EGR. An intermediate, mid-NOx calibration was also evaluated. Varying calibration approaches yielded total integrated engine out emissions ranging from 118 to 145gCO2/km, all below the 191gCO2/km from the baseline diesel. The corresponding NOx+UHC and CO emissions were also evaluated. The mid-NOx calibration was overall more favorable, as it met TIER 3-Bin 20 emissions requirements with the current efficiencies of the base
De Ojeda, WilliamWu, Simon (Haibao)Harrison, ChristopherHall, CarrieArslan, ElahehPulpeiro Gonzalez, Jorge
The growing emphasis on environmental protection and sustainability has resulted in increasingly stringent emission regulations for automotive manufacturers, as demonstrated by the upcoming EURO 7 and 2027 EPA standards. Significant advancements in cleaner combustion and effective aftertreatment strategies have been made in recent decades to increase the engine efficiency while abiding by the emission limits. Among the exhaust aftertreatment strategies, three-way catalyst has remained the primary solution for stoichiometric burn engines due to its high conversion efficiency and ability to simultaneously allow both oxidative and reductive reactions in a single stage with spatial separation due to the oxygen storage capabilities of ceria. However, fuel and lubricant-borne sulfur and phosphorus compounds have been shown to have a significant long-term effect on the activity of three-way catalysts, particularly during the lean-rich transitions and oxygen storage processes. In the present
Sandhu, Navjot SinghYu, XiaoJiang, ChuankaiTing, DavidZheng, Ming
Why smart electrical distribution is the new frontier in sustainable manufacturing. From transitioning to renewable energy, embracing the circular economy and pursuing carbon offsets, today's automakers are actively working to become more sustainable. Many OEMs have big goals to become fully carbon-neutral by 2050. Some believe they can get there even earlier. But look past the cars and sources of energy right into the factories in which the vehicles of today and tomorrow are born and focus on a key question: how can carmakers make significant strides inside their plants to cut waste and improve sustainability?
Hamadani, Mariam
The next generation of mobility, driven by shared, driverless, connected, and electrified vehicles, holds strong potential to advance sustainability through lower emissions and improved resource efficiency. However, critical questions remain regarding their true environmental impact, including battery lifecycle management, material consumption, and circular manufacturing practices. Sustainable Circular Future Mobility: Environmental Impact of Next-gen Vehicles explores these unresolved issues, focusing on the shift from internal combustion to electric vehicles, supply chain challenges, regulatory gaps, and the operational realities of sustainable productization. It also critically examines the risks of greenwashing, the need for consistent standards, and the role of intersectoral collaboration—with energy, urban planning, information and communications technologies, and waste management sectors—in building resilient, scalable solutions. The report provides strategic recommendations and
Abdul Hamid, Umar Zakir
Suppliers are learning several new and unwelcome lessons as the dynamics surrounding U.S. light vehicle trade and emissions legislation quickly shifts. Two major issues are at play here. As the industry continues to feel the impact of reduced or eliminated battery electric vehicle incentives in several North American and European jurisdictions and governments are retrenching on light vehicle emissions legislation - OEMs are questioning the size of the near- and mid-term market. Similarly, as of this writing, the saga surrounding future vehicle and parts tariffs between the U.S. and its major automotive trading partners continues. This unfortunate combination has driven OEMs to delay, extend and rescope future product programs. This jams a stick in the financial spokes of the supply base. Some context is in order. Like clockwork, in the highly competitive global light vehicle market, our industry was trained to expect a regular cadence for product renewals and product cycles. The
Cummins has expanded its Centum diesel generator series that elevates sustained performance while maximizing power density. The latest addition to the company's portfolio is a 17-liter engine platform that can provide up to one megawatt of power. “The S17 is engineered to redefine what you expect from an emergency standby package,” said Emily Scheuerell, Cummins power generation global engineering leader. According to Cummins, the S17 was a clean-sheet design that supports HVO (hydrotreated vegetable oil) fuel flexibility and complies with EPA Tier 2, UL2200 and CSA 22.2 emissions standards.
Wolfe, Matt
The United States Environmental Protection Agency (US EPA) Greenhouse Gas (GHG) Phase 3 regulation targets a substantial reduction in GHG emissions across model year (MY) 2027–2032 class 2b-8 vehicles. This article explores the implementation of alternative fuels, such as compressed natural gas (CNG) and liquefied petroleum gas (LPG), along with powertrain hybridization as viable pathways for achieving these stringent standards in a cost-effective manner. A detailed analysis is performed on a Class-7 medium–heavy-duty (MHD) truck configuration, featuring an inline 4-cylinder 5.2-L spark-ignited (SI) engine, modeled with both CNG and LPG fuels. The vehicle’s powertrain is simulated to evaluate GHG emissions and fuel efficiency. The study further examines the impact of low rolling resistance (LRR) tires and varying tire rolling resistance coefficients (Crr) on vehicle performance. For further lowering the GHG emissions, a hybrid powertrain sizing study was performed. The simulation
Patil, Shubham V.Smith, Edward M.Bachu, Pruthvi R.Ross, Michael G.
Twenty-nine percent of the greenhouse gas emissions in the US are produced by the transportation sector according to the US Environmental Protection Agency. The combination of increasingly stringent regulations on emissions and fuel economy, along with the current practical limitations of electrification motivate continued development efforts for improving internal combustion engine efficiency and emissions. Ethanol, an extensive fuel additive or drop-in replacement for gasoline, is already recognized as a promising transition fuel in decarbonization efforts. Furthermore, lean combustion in spark-ignited (SI) engines has been pursued extensively for engine efficiency and emissions improvements. Lean combustion, however, faces the challenges of decreased combustion stability and strong increases to engine-out NOx at conditions where conventional SI engines are stable (ϕ > 0.7). Water dilution, historically used as a knock inhibitor in performance engines, has shown potential for
Voris, AlexLundberg, MattPuzinauskas, Paulius
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. Life Cycle Assessment (LCA), which among other aspects identifies climate change effects, is an important tool to assess the environmental characteristic of sustainable technologies or products to fulfill this ambitious target. In this context, research is presented that examines the ecological sustainability impacts of a metallic vs a composite bipolar plate made of innovative graphite-compound based foils for fuel cell applications. A bipolar plate is a central component of the fuel cell stack to ensure efficiency and durability. For this purpose, a LCA is performed for both bipolar plate materials. This assessment follows the methodology of DIN EN ISO 14040/44 and the EU Product Environmental Footprint framework. Focusing on cradle-to-gate system boundary conditions, the research emphasizes the
van Sloun, AndreasSchroeder, BenediktKexel, JannikSchmitz, MaximilianBalazs, AndreasWalters, MariusKoßler, SilasPischinger, StefanJoemann, Michael
Replacing fossil fuels with renewable ammonia could provide a crucial step towards the decarbonisation of transport sectors. However, many challenges remain in utilising ammonia within combustion systems: the volumetric energy density of ammonia is significantly lower than that of gasoline, exposure to ammonia (including ammonia slip) can be detrimental to human health, and the production of emissions, including unregulated emissions (such as N2O), from ammonia combustion can be catastrophic for the environment if not treated appropriately. Therefore, there is a need to determine the efficacy of ammonia as a fuel for internal combustion engines and the impact on the efficiency of energy release and the resulting exhaust emissions. A modern spark ignition engine was modified such that ammonia was aspirated through the engine intake air to incrementally displace engine gasoline and maintain a constant work output. It was found that displacing the fuel energy supplied by direct injected
Sivaranjitham, Annaniya MitchellHellier, PaulLadommatos, NicosMillington, PaulAlcove Clave, Silvia
Ammonia is a potential vector of renewably produced hydrogen for combustion systems and decarbonisation of transport. However, anhydrous ammonia has health risks and difficult to handle due to its volatility and toxicity. Therefore, a water-based solution of ammonium hydroxide (NH4OH) was proposed to investigate the potential use as a fuel in a compression-ignition engine. Ammonium hydroxide, also referred to as aqueous ammonia, is liquid phase under atmospheric conditions and, therefore, the storage of such a fuel does not require high pressure. Previous work has established that ammonium hydroxide solution could contribute to energy release during co-combustion with fossil diesel. However, the presence of water reduced combustion stability and limited the extent to which aqueous ammonia could displace diesel. In addition, the characteristics of co-combustion and pollutant emissions of burning such a fuel remain less understood. This study therefore explores the potential of using
Han, YanlinHellier, PaulSchonborn, AlessandroLadommatos, Nicos
The American Petroleum Institute's (API) Proposed Category 12 (PC-12) is currently under development. A target first license date has been set for January 2027, and industry stakeholders are currently at work on PC-12's testing requirements, limits and other criteria that will make up the final performance category. That means change is coming to the heavy-duty diesel lubricants space. The introduction of a new category provides opportunities for enhanced lubricant performance in areas such as improved drain intervals, fuel economy and engine deposit protection. However, one major area of focus for next-generation lubricants will be greater protection and enablement of aftertreatment devices, helping heavy-duty OEMs comply with stringent new emissions standards set by the U.S. Environmental Protection Agency in 2022.
Rodgers, Zachary L.
A consequence of the automotive industry's shift to electrification is that a significantly higher percentage of a vehicle's lifecycle CO2 emissions occur during the production phase. As a result, vehicle manufacturers and suppliers must shift the focus of product development from the 'in-use phase only' to optimizing the complete product lifecycle. The proper design of a battery has the highest impact to all other phases following in the life cycle. It influences the selection of materials, the manufacturing, in-use and end of life, respectively the recycling and recycling yield for a circular economy. Using real-life examples, the paper will explain what the main parameters are necessary for designing a sustainable battery. What are the low hanging fruits to be considered? In addition, it will elaborate on the relation as well as the impacts to other KPIs like safety, costs and lifetime of the battery. Finally, it will round up in an outlook on how batteries will evolve in the future
Braun, AndreasRothbart, Martin
Muelaner, Jody EmlynMoran, MatthewPhillips, Paul
Lee-Jeffs, AnnSafi, JoannaMuelaner, Jody EmlynBarkan, Terrance
Items per page:
1 – 50 of 1663