Browse Topic: Environmental regulations and standards

Items (2,921)
This study develops deep learning (DL) long–short-term memory (LSTM) models to predict tailpipe nitrogen oxides (NOx) emissions using real-driving on-road data from a heavy-duty Class 8 truck. The dataset comprises over 4 million data points collected across 11,000 km of driving under diverse road, weather, and load conditions. The effects of dataset size, model complexity, and input feature set on model performance are investigated, with the largest training dataset containing around 3.5 million data points and the most complex model consisting of over 0.5 million parameters. Results show that a large and diverse training dataset is essential for achieving accurate prediction of both instantaneous and cumulative NOx emissions. Increasing model complexity only enhances model performance to a certain extent, depending on the size of the training dataset. The best-performing model developed in this study achieves an R2 higher than 0.9 for instantaneous NOx emissions and less than a 2
Shahpouri, SaeidJiang, LuoKoch, Charles RobertShahbakhti, Mahdi
Anticipated NOX emission standards will require that selective catalytic reduction (SCR) systems sustain exhaust temperatures of 200°C or higher for effective conversion performance. Maintaining these temperatures becomes challenging during low-load conditions such as idling, deceleration, and coasting, which lower exhaust heat and must be addressed in both regulatory test cycles and day-to-day operation. Cylinder deactivation (CDA) has proven effective in elevating exhaust temperatures while also reducing fuel consumption. This study investigates a flexible 6-cylinder CDA system capable of operating across any combination of fixed firing modes and dynamic skip-firing patterns, where cylinders transition between activation states nearly cycle-by-cycle. This operational flexibility extends the CDA usable range beyond prior implementations. Data was primarily collected from a test cell engine equipped with the dynamic CDA system, while a matching engine in a 2018 long-haul sleeper cab
Baltrucki, JustinMatheaus, Andrew CharlesJanak, Robb
In-Use emission compliance regulations globally mandate that machines meet emission standards in the field, beyond dyno certification. For engine manufacturers, understanding emission compliance risks early is crucial for technology selection, calibration strategies, and validation routines. This study focuses on developing analytical and statistical methods for emission compliance risk assessment using Fleet Intelligence Data, which includes high-frequency telematics data from over 500K machines, reporting more than 1000 measures at 1Hz frequency. Traditional analytical methods are inadequate for handling such big data, necessitating advanced methods. We developed data pipelines to query measures from the Enterprise Data Lake (A Structured Data storage system), address big data challenges, and ensure data quality. Regulatory requirements were translated into software logic and applied to pre-processed data for emission compliance assessment. The resulting reports provide actionable
Arya, Satya PrakashShekarappa, Kiran
In the power industry, high-power Diesel Generator (DG) sets often utilize high power V-engine cylinder configurations to enhance power output within a compact design, ensuring smoother operation and reduced vibration. In this V-engine configurations, the exhaust gas mass flow rate is significantly higher compared to inline engines of similar displacement, due to the greater number of cylinders operating in a compact space, which leads to a higher volume of exhaust gases expelled in a shorter duration. This necessitates the use of a dual Exhaust After Treatment System (EATS) to effectively manage NOx emissions. High-power gensets typically emit NOx levels around 9 g/kWh, presenting significant challenges for developers in adhering to stringent emission standards. To address these challenges and meet CPCB IV+ emission norms, we propose a dual urea dosing system integrated with a novel control strategy aimed at optimizing the treatment of exhaust gases. This paper introduces a dual
K, SabareeswaranK K, Uthira Ramya BalaS K, NejanthenA, RavikumarS, Mahendra BoopathiYS, Ananthkumar
The current and upcoming Internal Combustion Engine (ICE) emission norms are very stringent. It is difficult to meet emission standards with just combustion optimization techniques. As a result, post-treatment is required for Engine-out emissions. Otherwise, these hazardous gases impact the ecosystem of living beings. Many technologies are implemented at the exhaust for reducing the emissions. Diesel Particulate Filter (DPF) is one such technique to achieve lower Particulate Matter (PM) and Particulate Number (PN) emission goals. In order to achieve such emission reduction, the DPF undergoes periodic cleaning called regeneration. During regeneration, the exhaust systems including DPF are maintained at elevated temperatures to achieve proper cleaning. When the vehicle is in regeneration, sudden braking or accelerator pedal release leads to engine Drop to Idle speeds (DTI), which sharply increases the temperature gradient inside the DPF which may result in physical damage like cracks
Anandakrishnan, AbhishekA L, PrathimaBenni Matada, Ajay
This study investigates emissions from motorcycles, focusing on both regulated gaseous pollutants (e.g., CO, NOx, HC) and particulate number (PN) emissions, which are non-regulated for this vehicle category in the actual EU emission regulation. Using a state-of-the-art testbench setup equipped with advanced exhaust gas analysis and particle measurement programme (PMP) system, emissions were analyzed under both standardized homologation cycles (WMTC) and more dynamic Real Driving Cycles (RDCs). Besides the measurement results the technological differences between different motorcycle categories are described. This is followed by a discussion of the influences of engine and exhaust gas aftertreatment systems on emission. The findings reveal, that there are two different subcategories of two-wheeler, which show different emission characteristics. L1e vehicles showed increased emissions compared to passenger cars, caused by the absence of advanced exhaust aftertreatment and on-board
Schurl, SebastianSchmidt, StephanBretterklieber, NikoKupper, MartinKirchberger, Roland
This paper presents measurement results of emissions and fuel economy on real-world driving of two-wheelers in India using a state-of-the-art FTIR PEMS technology. The study aimed to characterize the emissions profiles of a small motorcycle under typical Indian driving conditions, including congested urban traffic and highway driving. This is the continuation of the study conducted previously on bigger motorcycle using gas analyzer [1], with necessary adaptations to suit the specific conditions of Indian roads and traffic. Key parameters such as NOx, CO, CO2 and Fuel consumption were measured during real-world driving cycles and comparison is done with standard WMTC emission testing cycle. The findings of this study provide valuable insights into the actual on-road emissions of two-wheelers in India, which can be used to develop more accurate emission models and guide the development of cleaner and more efficient two-wheeler technologies. Key Considerations: Specifics of Indian Driving
Agrawal, RahulJaswal, RahulYadav, Sachin
In recent years, diesel engine emissions regulations have been strengthened worldwide, necessitating the evaluation of regulatory values under transient conditions. Consequently, the need to assess transient states in the development of diesel engines has increased significantly. The evaluation using MBD (Model Based Development) is considered a promising method for achieving both low fuel consumption and simultaneous reduction of NOx and soot emissions. However, the mechanism of soot formation is complex, making it challenging to model mathematically directly. In this paper, hybrid machine learning approaches combining a physical model and a machine learning model are used to validate the prediction of soot emissions under transient conditions in a diesel engine with an EGR system. Various parameters such as fuel consumption and emissions predicted by the physical model are compared with measurements to validate the accuracy of the physical model. The prediction of soot emissions by
Kitamura, TakahiroMatsuoka, AyanoSuematsu, KosukeOkano, Hiroaki
The EURO 5+ standard (134/2014/EU) has been enforced in the year 2025 for quadricycle in Europe. The exhaust emission regulation under this standard has significantly tightened compared to the EURO4. Also, this standard limits vehicle weight, which remains unchanged from the EURO4 standard. We introduce the unique technologies to meet EURO5+ standard in this paper. Emission limit values of the EURO 5+ standard are more stringent, requiring an 84% reduction in NOx and a 94% reduction in PM compared to the previous standard. Diesel engines with mechanical injection control systems for the previous standard are required significant technological advancements to meet EURO 5+ standard of exhaust emission. The adoption of engine aftertreatment components such as SCR (Selective Catalytic Reduction) for NOx reduction and DPF (Diesel Particulate Filter) for PM reduction are common solution. However, to meet this new regulation, adding the weight of these after-treatment parts would cause the
Nagai, NaotaroTennomi, MasanariTamura, AkiraMochizuki, HiroakiKobayashi, YasushiOnishi, Takashi
In Diesel engine exhaust after treatment system (ATS), Nitrogen Oxides (NOx) emissions control is achieved via Selective Catalytic Reduction (SCR) in which AdBlue or Diesel Exhaust Fluid (DEF) plays vital role. But AdBlue freezes below -11°C due to which in cold climate conditions system performance becomes critical as it affects efficiency as well as overall performance leading to safety and compliance with emission standards issue. So, it is essential to have a probabilistic thermal model which can predict the AdBlue temperature as per ambient temperature conditions. The present paper focuses on developing Bayesian Network (BN) based algorithm for AdBlue system by modelling probability of key factors influencing on its performance including AdBlue temperature, Ambient temperature, Coolant temperature, Coolant flow, Vehicle operating conditions etc. The BN Model predicts and ensures continuous learning and improvement of the system, based on operational data. Methodology proposed in
Thakur, ShivamSalunke, Omkar
The California Air Resources Board (CARB) and the United States Environmental Protection Agency (US EPA) have recently introduced targets for tailpipe emissions during high-power cold-start conditions for plug-in hybrid electric vehicles (PHEVs). However, the performance characteristics of hybrid powertrains and the effectiveness of cold-start strategies in PHEVs are not well known. In this two-part study, the performance of a production PHEV is examined with the objective of quantifying the impact of high-power cold-start events on overall tailpipe emissions. High temporal fidelity data of powertrain performance and tailpipe emissions generated during cold-start events for various driving conditions are presented for the first time. The selected P2 hybrid vehicle was tested using (i) the European Real Driving Emissions (RDE) test, (ii) the US06 (Supplemental Federal Test Procedure), and (iii) a custom drive cycle developed for this study. Results show that driving conditions leading
Chakrapani, VarunO’Donnell, RyanFatouraie, MohammadWooldridge, Margaret
The growing emphasis on environmental protection and sustainability has resulted in increasingly stringent emission regulations for automotive manufacturers, as demonstrated by the upcoming EURO 7 and 2027 EPA standards. Significant advancements in cleaner combustion and effective aftertreatment strategies have been made in recent decades to increase the engine efficiency while abiding by the emission limits. Among the exhaust aftertreatment strategies, three-way catalyst has remained the primary solution for stoichiometric burn engines due to its high conversion efficiency and ability to simultaneously allow both oxidative and reductive reactions in a single stage with spatial separation due to the oxygen storage capabilities of ceria. However, fuel and lubricant-borne sulfur and phosphorus compounds have been shown to have a significant long-term effect on the activity of three-way catalysts, particularly during the lean-rich transitions and oxygen storage processes. In the present
Sandhu, Navjot SinghYu, XiaoJiang, ChuankaiTing, DavidZheng, Ming
The effective reduction of particulate emissions from modern vehicles has shifted the focus toward emissions from tire wear, brake wear, road surface wear, and re-suspended particulate emissions. To meet future EU air quality standards and even stricter WHO targets for PM2.5, a reduction in non-exhaust particulate (NEP) emissions seems to be essential. For this reason, the EURO 7 emissions regulation contains limits for PM and PN emissions from brakes and tire abrasion. Graz University of Technology develops test methods, simulation tools and evaluates technologies for the reduction of brake wear particles and is involved in and leads several international research projects on this topic. The results are applied in emission models such as HBEFA (Handbook on Emission Factors). In this paper, we present our brake emission simulation approach, which calculates the power at the wheels and mechanical brakes, as well as corresponding rotational speeds for vehicles using longitudinal dynamics
Landl, LukasKetan, EnisHausberger, StefanDippold, Martin
Electrified vehicle energy management plays a crucial role in the context of the European Green Deal by facilitating the transition toward sustainable mobility. The development of predictive and robust simulation tools is essential to implement and test different energy management strategies. This study aligns with this objective by presenting the development of an under-hood flows model designed for integration into a 1D vehicle simulator, which is used to perform vehicle simulations about longitudinal performances, energy consumption and range. Vehicle under-hood thermal management is inherently complex due to the interplay of internal flow dynamics and multiple heat transfer mechanisms. A purely 1D modeling approach lacks the spatial resolution required to capture detailed flow field characteristics, while a fully 3D CFD model is computationally prohibitive for scenarios requiring efficient simulations. To address this trade-off, a reduced-order model (ROM) approach is proposed. The
Miccio, StefanoGrattarola, FedericoBaratta, MirkoGiraudo, GabrieleFrezza, DavideBartolucci, Lorenzo
Air quality is an increasing concern, particularly in densely populated urban areas. Indeed, large European cities have seen pollutant concentrations exceed World Health Organization thresholds, with a significant portion of NOx emissions originating from road transportation. Studies have shown that less than five percent of the vehicle fleet, often including vehicles with defective after-treatment systems, is responsible for a disproportionate share of these emissions. This highlights the importance of not solely relying on the gradual renewal of vehicle fleets to mitigate health risks associated with air pollution. This research, funded by the French Agency for the Ecological Transition (ADEME), introduces an experimental methodology aimed at controlling emissions from vehicles already in circulation. Aramis Group, a European specialist of refurbishment and online sales of used cars, provided several refurbished used vehicles for testing, directly taken from its workflow. These
Carlos Da Silva, DanielKermani, JosephFarcot, FabriceGaie, Fabien
The market penetration of Battery Electric Vehicles (BEV) in Europe is not following the foreseen scenario. This is related to several factors, such as uncertainty of the second-hand value of BEV, real driving range under cold conditions and availability of charging stations. Even if the European Community is still planning a full ban of Internal Combustion Engines (ICE) by 2035, in the rest of the world a more technology neutral approach is being pursued. Car manufacturers are developing different powertrain architectures, from mild- to full-hybrid and Range Extenders (REEX). In this context of different emission regulations, and wide range of powertrain architectures, the focus of the development will be the increase of catalyst efficiency without any big impact on exhaust aftertreatment cost. In previous work [1] the authors have used a 1D simulation approach to support the optimization of metallic TWC substrate for the High Power Cold Start use case. Additionally, a 3D CFD was used
Montenegro, GianlucaDella Torre, AugustoMarinoni, AndreaOnorati, AngeloKlövmark, HenrikLaurell, MatsPace, LorenzoKonieczny, Katrin
To curb global warming and meet stricter greenhouse gas emission standards all over the globe, it is essential to minimize the carbon footprint of applications in the mobility and transport segment. The demands on mobility, transportation and services are constantly increasing in line with worldwide population growth and the corresponding need for economic prosperity. This ongoing trend will lead to a significant increase in energy requirements for mobility-related applications in the upcoming time, despite all efficiency improvements. The timely introduction and accelerated spread of low-carbon/carbon-neutral energy sources is therefore of crucial importance. In addition to the switch to electric propulsion systems, particularly in the light-duty vehicle sector, the use of advanced and optimized hydrogen (H2)-powered internal combustion engines (ICE) represents a parallel, compatible technical option, as these applications will also meet the most stringent requirements in terms of
Koerfer, ThomasZimmer, PascalLi, ZhenglingPischinger, StefanLückerath, Moritz
Heavy-duty vehicles powered by hydrogen internal combustion engines (H2-ICEs) present a compelling solution for sustainable transportation. When optimized for ultra-lean operation, H2-ICEs are capable of meeting the most stringent contemporary legislative emission standards. However, achieving optimal drivability necessitates occasionally an enriched operating mode, thereby presenting significant challenges in maintaining ultra-low emissions. In this context, the implementation of advanced exhaust after-treatment technologies becomes essential to ensure near-zero tailpipe emissions with minimal impact on fuel efficiency and drivability. This paper investigates the potential of a passive Selective Catalytic Reduction (SCR) exhaust configuration for a heavy-duty hydrogen (HD H₂) engine, employing testing and modeling of a Lean NOx Trap, utilized as an ammonia (NH3) generator, in conjunction with a downstream Selective Catalytic Reduction system. We underscore the complexities associated
Zafeiridis, MenelaosAlexiadou, PanagiotaKoltsakis, Grigorios
Heavy-duty vehicles contribute significantly to global greenhouse gas emissions and are now facing challenges in meeting emission regulatory standards, particularly cold-start operations. These challenges are particularly significant during transient operations, where fuel efficiency drops and emissions peak due to suboptimal thermal conditions. Advanced powertrains that use hybridization and waste heat recovery with phase-changing materials offer potential pathways to mitigate fuel consumption and emissions under real-world driving conditions. Still, they need to be accurately sized, and the energy flows handled to overcome the disadvantages of increased mass and complexity. This investigation lays the groundwork for the development of advanced power systems by implementing a scalable, map-based model for heavy-duty diesel engines. The model is validated using an open-access dataset related to a heavy-duty vehicle equipped with a 6-cylinder diesel engine, which performed 28 different
Donateo, TeresaMujahid, TalhaMorrone, PietropaoloAlgieri, Angelo
Ammonia is a promising fuel for achieving zero-carbon emissions in internal combustion engines. However, its low flame speed and heat of combustion pose significant challenges for efficient combustion. The pre-chamber (PC) spark-ignition (SI) system offers a viable solution by generating multiple ignition points in the main chamber (MC), enhancing combustion efficiency and enabling at the same time lean-burn operation. This study investigates the combustion characteristics and emissions of an active PC spark-ignition heavy-duty engine fueled with ammonia and ammonia-methane mixtures through numerical 3D-CFD simulations performed using the CONVERGE software. These simulations provide an accurate representation of the complex chemical and physical phenomena occurring within the combustion chamber. The study starts from a fully methane-fueled case, validated against experimental data, and subsequently explores different ammonia-methane mixtures. Then, a detailed spark timing (ST) analysis
Palomba, MarcoSalahi, Mohammad MahdiCameretti, Maria CristinaMahmoudzadeh Andwari, Amin
Upcoming global emissions regulations demand innovation in heavy-duty road and marine transport. This research explores emissions-compliant concepts using both experiments and simulations focused on the Recuperated Split Cycle Engine (RSCE), which separates compression and expansion to enable internal heat recovery and quasi-isothermal compression. A single-cylinder research engine representing the expansion cylinder of an RSCE demonstrated direct injection diesel and port injection hydrogen co-firing. A validated Chemkin-Pro Multi-Zone model first reproduced, then extended this work, evaluating partial diesel substitution with hydrogen or ammonia alongside secondary working fluids (SWF’s liquid N₂, H₂O, NH₃). For the extension, two variants of the split cycle architecture were employed; the RSCE in combination with hydrogen fueling for the heavy-duty road sector, and the novel recuperated reformed split cycle engine (R2SCE), a new architectural and simulation contribution enabling on
Wylie, ElisaPanesar, Angad
Dual-fuel combustion is emerging as a promising solution to address the growing focus on maritime decarbonization, because it is adaptable and needs minimal system modifications. However, natural gas as an alternative fuel must deal with the issue of methane slip, because methane has greater global warming potential than CO2. Conventional aftertreatment systems may incorporate a methane oxidation catalyst to mitigate methane emissions, but effective methane oxidation requires high temperatures of approximately 400 °C. Therefore, exhaust thermal management (ETM) is crucial for maintaining high exhaust gas temperature (EGT) and ensuring conversion efficiency. This study investigates the effectiveness of fully variable valve actuation (VVA), including early exhaust valve opening (EEVO) and early intake valve closing (EIVC), along with lambda control via wastegate control. Each strategy’s effect on exhaust gas temperature is evaluated, while considering potential trade-offs with efficiency
Soleimani, AmirKim, JeyoungAxelsson, MartinHyvonen, JariMikulski, Maciej
Light-duty vehicles (LDV) are scaling up electrification technologies from battery to dedicated hybrid engines (DHEs). The success from electrification of LDVs can be a starting point to look into a similar trending development of commercial vehicles (CV), which are bigger and heavier with more demanding work cycles. “Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles (HDV)—Phase 3” establishes new CO2 emission standards for MY 2032 (Model Year) and later HD vehicles with more stringent CO2 standards phasing in as early as MY 2027 for certain vehicle categories. In this article, the focus is about improving the operational efficiency of MDHD (medium-duty and heavy-duty) vehicles through a selected electrification technology in this study rather than pure BET (battery electric truck). Extended-range electric vehicle (EREVs) systems are studied here to address sustainability regarding charging infrastructure and by using the renewable fuels (hydrogen, ammonia, methanol, and
Wang, HailongMa, TiancaiShuai, ShijinWang, ZihuiSong, Xubin
How Cummins used modeling and other advanced design software to create its most efficient engines yet. As AI and other deep-learning tools begin to help shape the transportation industry, they also bring improvements to existing technology. Modeling and simulation software has rapidly become a crucial tool for improving the design process of new diesel engines. More than two decades after the first X15 engines rolled off the assembly line, Cummins has applied today's modeling tools to help create the HELM version of the X15. The HELM architecture (which stands for Higher Efficiency, Lower emissions and Multiple fuels) is the company's basis for a global platform capable of meeting all manners of emissions regulations while still serving customers across a wide variety of use cases.
Wolfe, Matt
Cummins has expanded its Centum diesel generator series that elevates sustained performance while maximizing power density. The latest addition to the company's portfolio is a 17-liter engine platform that can provide up to one megawatt of power. “The S17 is engineered to redefine what you expect from an emergency standby package,” said Emily Scheuerell, Cummins power generation global engineering leader. According to Cummins, the S17 was a clean-sheet design that supports HVO (hydrotreated vegetable oil) fuel flexibility and complies with EPA Tier 2, UL2200 and CSA 22.2 emissions standards.
Wolfe, Matt
Due to increasingly stringent emission regulations, advanced combustion strategies, such as premixed charge compression ignition (PCCI), have emerged promising solutions for achieving low NOx and soot emissions. However, challenges such as increased unburned hydrocarbon (HC), carbon monoxide (CO) emissions, and a restricted engine operating load range remain unsolved. Since conventional diesel engines are not inherently designed for PCCI operation, re-optimizing engine parameters is essential. The primary objective of this work is to investigate the influence of injector orientation and nozzle spray angle on combustion parameters, performance, and emissions in a PCCI diesel engine. Initial parametric studies revealed that early direct injection combined with high fuel injection pressure limited the PCCI load range to 30% and 60% of the rated capacity with diesel, without and with EGR, respectively, accompanied by higher HC and CO emissions. To address these limitations, the injector
Ranjan, Ashish PratapKrishnasamy, Anand
The present study aims to simulate the non-reacting flow within the cylinder of a two-stroke spark ignition internal combustion engine (SIE) utilizing gasoline direct injection (GDI). A computational fluid dynamics (CFD) analysis was employed to forecast the turbulence levels of the in-cylinder flow, including the root-mean-square (RMS) turbulent velocity. The three-dimensional model was developed using ANSYS-FLUENT. The investigation examined the intake manifold inclination angles of 0°, 10°, 20°, 30°, and 40° for two different types of single-intake port engines (I and II) and a single-type double-intake port engines, that are presented at an engine speed of 1500 rpm. The findings revealed that the highest RMS turbulent velocities occurred at a 30° inclination for the double-intake engine, while the single-intake engines (I) and (II) showed peak velocities at 0° and 10°, respectively. Furthermore, in single-intake engine (I), the RMS turbulent velocity was found to be 38.7% greater
Soliman, MohabElbadawy, Ibrahim
In order to comply with increasingly stringent emission regulations and ensure clean air, wall-flow particulate filters are predominantly used in exhaust gas aftertreatment systems of combustion engines to remove reactive soot and inert ash particles from exhaust gases. These filters consist of parallel porous channels with alternately closed ends, effectively separating particles by forming a layer on the filter surface. However, the accumulated particulate layer increases the pressure drop across the filter, requiring periodic filter regeneration. During regeneration, soot oxidation breaks up the particulate layer, while resuspension and transport of individual agglomerates can occur. These phenomena are influenced by gas temperature and velocity, as well as by the dispersity and reactivity of the soot particles. Renewable and biomass based fuels can produce different types of soot with different reactivities and dispersities. Therefore, this study focuses on the influences of soot
Desens, OleHagen, Fabian P.Meyer, JörgDittler, Achim
Reduced raw emissions from internal combustion engines (ICE) are a key requirement to reach future green-house-gas and pollutive emissions regulations. In parallel, to satisfy the need for increased engine efficiencies, the friction losses of ICEs gains attention. Measures to reduce parasitic drag inside the piston assembly such as reduced piston-ring pretension or thinner grade engine oils may increase oil ingress into the combustion chamber. The oil ingress is known to imply increased particle emissions directly counteracting the raw emission reduction target of engine development. To resolve this target conflict, the transport mechanisms of oil into the combustion chamber are the topic of current research. Specially developed research engines featuring a vertical optical window come with big potential to visualize the phenomena of the oil behavior inside the piston assembly group. Such ‘glass-liner’ engines play a pivotal role in identification and quantification of local and global
Stark, MichaelFellner, FelixHärtl, MartinJaensch, Malte
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. Life Cycle Assessment (LCA), which among other aspects identifies climate change effects, is an important tool to assess the environmental characteristic of sustainable technologies or products to fulfill this ambitious target. In this context, research is presented that examines the ecological sustainability impacts of a metallic vs a composite bipolar plate made of innovative graphite-compound based foils for fuel cell applications. A bipolar plate is a central component of the fuel cell stack to ensure efficiency and durability. For this purpose, a LCA is performed for both bipolar plate materials. This assessment follows the methodology of DIN EN ISO 14040/44 and the EU Product Environmental Footprint framework. Focusing on cradle-to-gate system boundary conditions, the research emphasizes the
van Sloun, AndreasSchroeder, BenediktKexel, JannikSchmitz, MaximilianBalazs, AndreasWalters, MariusKoßler, SilasPischinger, StefanJoemann, Michael
The automotive sector in India is undergoing a transformation, driven by government policies and regulations aimed at achieving net-zero carbon emissions. In alignment with global climate goals, the Indian government has set ambitious targets to reduce greenhouse gas emissions, with a focus on promoting Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (FCVs). Initiatives like the Faster Adoption and Manufacturing of Hybrid and Electric Vehicles (FAME) Scheme, along with tax incentives, subsidies, and charging infrastructure development, are designed to accelerate the adoption of cleaner vehicles. The introduction of stricter emission standards and the National Electric Mobility Mission Plan (NEMMP) further underscores the push toward sustainable mobility. In response, Indian automotive companies are shifting strategies to align with these government directives. Major players are significantly increasing investments in EV technology, focusing on enhancing battery performance
Patil, Nikhil NivruttiSaurabh, SaurabhBhardwaj, RohitGawhade, RavikantGadve, DhananjayAmancharla, Naga Chaithanya
The development of lean-burn gasoline engines has continued due to their significant improvements in thermal efficiency. However, challenges associated with NOx emissions have hindered their mainstream adoption. As a result, the development of an effective NOx after-treatment system has become a key focus in lean-burn engine research. Additionally, HC emissions pose another challenge, as they tend to increase under lean combustion conditions while their conversion efficiency simultaneously declines. This study presents a novel after-treatment system incorporating a lean NOx trap(LNT) and a passive SCR(pSCR) system. This configuration enables efficient NOx reduction at a competitive cost while maintaining operational simplicity. Moreover, conventional catalyst technologies, including three-way catalysts (TWCs) and fuel-cut NOx traps (FCNTs), were optimized to maximize conversion performance under lean operating conditions. To further enhance system performance, various control
Oh, HeechangLee, JonghyeokSim, KiseonLim, SeungSooPark, JongilPark, MinkyuKang, HyunjinHan, DongheeLee, KwiyeonSong, Jinwoo
Items per page:
1 – 50 of 2921