Browse Topic: Parts

Items (34,337)
This paper presents transient, complex, moving mesh, 3-D CFD analysis of an intebrake lubrication oil circuit for predicting flow performance. Intebrake is a mechanism for improving braking performance during over speeding conditions. The mechanism briefly opens the exhaust valve at the end of a compression stroke with a small valve lift and releases the compressed gases, thereby helping in quick application of the brake. There is no fueling during the process and hence, no combustion induced pressure rise which helps in quick application of the brake. During the intebrake operation, opening of the exhaust valve is achieved by using a complex lube oil circuit inside the exhaust rocker lever. The intebrake lube oil circuit consists of various spring-operated valves with micro-sized clearances, high oil pressure generation up to ~ 250 bar, 3-D movement of the mechanism components, and it is a transient operation. The 3-D movement consists of simultaneous rotational and translational
Tawar, Ranjit RamchandraPasunurthi, Shyam SundarBedekar, SanjeevRanganathan, Raj
In this paper, the topology and shape optimization of a vehicle Heating, Ventilation, and Air Conditioning (HVAC) system is presented. The CFD and optimization methodologies are implemented within AcuSolve™ software. The topology optimization algorithm computes the geometry, where the design domain is parameterized with a field of porosity design variables which indicates the material, fluid or solid, throughout the domain. The optimization is performed using the continuous adjoint approach by the Galerkin Least Squares solver on which the AcuSolve™ solver is based. The design is further improved by using shape optimization. To optimize the geometrical shape, a combination of smooth perturbations, in terms of so called morph shapes, are used to deform the geometrical shape in the optimization algorithm. To this end, a parameterization of the design space is done using a moderate number of design variables, each associated with a morph shape. The two optimization phases are connected by
Papadimitriou, DimitriosSandboge, Robert
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
S M, Rahuld, AnanthaKakani, Phani Kumar
Automotive industry is growing rapidly with innovations leading to increase in new features and improving the Quality of vehicles. These new components are developed with the available design standards across global OEMs. This Quality research paper aims to address the need of revision of design standards due to environmental factors prevailing in India. With the increase towards autonomous mobility, the number of electronics is also increasing, and this involves hardware & software evaluation. The hardware testing is a point of concern due to increase in the failure rate from the markets. Environment changes are very much evident with the growing economies and OEMs are developing the components with innovation, but if the basic design standards are not revised in parallel with the changing environment, the issues will continue to trouble the end customers. The failed cases data received from across the country was analyzed and observed that the cases are majorly reported from urban
Marwah, RamnikPyasi, PraveenBindra, RiteshGarg, Vipin
A methodology for optimizing natural properties of a powertrain for an electric vehicle has been presented. A model with six-degree-of-freedom was proposed utilizing ADAMS, and the natural frequencies and energy distribution of the powertrain are estimated using the proposed model. The calculated natural frequencies and energy distribution shown that the initial design of mount stiffness does not meet requirements of natural frequency and decoupling ratio, and vibration isolation standards. To overcome the limitations of conventional optimization techniques, a non-dominated sorting genetic algorithm (NSGA) was adopted for the enhancement optimization the mounts parameters. The optimization objectives included the refinement of the decoupling rates and frequency distribution at all mounting directions. Stiffness parameters of the mounts were optimized via the NSGA. The optimized results confirmed significant improvements for powertrain natural characteristics. This study presented an
Jin, YangLi, DeweiZhao, YangXiao, LeiGuo, Yiming
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
Borton, Zackery
In internal combustion engines, hydrogen is considered as one of the most promising alternatives to replace fossil fuels and reduce CO2 emissions. In such a context, traditional injectors for hydrocarbon fuels are currently being tailored to be used with hydrogen, or a single-hole/multi-hole cap mounted at the injector tip was used to obtain better mixing and air utilization. Nevertheless, the hydrogen injection can be accompanied by the formation of highly under-expanded jets and will significantly influence the downstream mixing process. Therefore, in order to achieve a better understanding on hydrogen-air mixture, this work aims to numerically investigate the influence of the nozzle geometry on the jet behaviors in the near nozzle region. The nozzle diameter ranges from 0.1 mm to 2.0 mm and the nozzle length is from 1mm to 2mm. The injection pressure ranges from 10 bar to 70 bar. As the boundary condition varied, differences in both the internal flow of different nozzle structures
Jiahui, LangLi, YanfeiXu, LubingXiao, MaShuai, Shijin
Roller bearings are used in many rotating power transmission systems in the automotive industry. During the assembly process of the power transmission system, some types of roller bearings (e.g., tapered roller bearings) require a compressive preload force. Those bearings' rolling resistance and lifespan strongly depend on the preload set during the installation process. Therefore, accurate preload setting can improve bearing efficiency, increase bearing lifespan, and reduce maintenance costs over the life of the vehicle. A new method for bearing preload measurement has shown potential for high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes
Gruzwalski, DavidMynderse, James
For fuels sprays under flash boiling conditions, the near nozzle region experiences rapid changes in ambient conditions due to the flashing liquid. So, it is crucial to understand the influence of spray boundary conditions on parcel-based simulations for improved predictions of fuel spray behavior in engine applications. This study builds upon previous research investigating the impact of detailed injector tip geometry on parcel simulations of non-flash boiling conditions by investigating how flash boiling behaviors affect the near nozzle region and parcel initialization conditions. Four key parameters were varied individually from a baseline spray simulation model, which resulted in a total of five cases. The parameter variations were the presence of detailed injector tip geometry versus a simplified flat surface, parcel initialization at the nozzle exit versus at the counterbore exit, the use of experimental rate-of-injection versus one-way coupling with an internal nozzle Volume of
Kumar, AmanVan Dam, Noah
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
This study presents a sophisticated approach to accurately estimating the power losses in the electric vehicle drive unit (e-DU) through a combination of 1D analytical models and 3D computational fluid dynamics (CFD). Understanding and accurately estimating these power losses is crucial for enhancing efficiency and range of electric vehicles (EV). The primary focus is on the types of power losses attributable to mechanical contact friction and oil drag within components such as gear meshes, bearings, and seals. The research specifically examines different analytical models for quantifying power losses due to gear mesh contact and bearing friction. These models were validated against experimental test data, allowing for a comprehensive understanding of their accuracy across a range of operational parameters. Additionally, the impact of oil properties and oil jet flow rates on power losses related to gear and bearing drag was analyzed using analytical methods and correlated with CFD
Motin, AbdulGanamet, Alain
This paper delineates a shift control approach for a dual motor structure incorporating a drum-type shift lever in a parallel mode, which can be approximately categorized into five stages. In the first stage, the torque of the dual motor and internal combustion engine is interchanged, and the engine side torque is reverted to zero within the capacity range, with the P3 motor compensating for the torque loss on the engine side. In the second stage, the vehicle control unit transmits a request for series connection to the powertrain control module and dispatches a request for the internal combustion engine gear position to be in neutral to the powertrain control module. The powertrain control module enters the sequence for the transition from parallel to series and undertakes the action of unloading the C0 clutch torque. Once the C0 clutch torque is completely disengaged, the actual mode is fed back as parallel, and the actual engine gear position is fed back as neutral. In the third
Jing, JunchaoLiu, Yiqiangli, DongfeiZuo, BotaoHuang, Weishan
Hydrogen fuel cell is one of paths to achieve carbon neutrality transportation. In the last two decades, significant improvements have been made in compactness, efficiency and durability of fuel cell systems. For heavy duty truck applications, a life span similar to heavy duty diesel engines is required. As a critical component in the fuel cell system, air compressors play an important role to meet fuel cell systems’ high efficiency and durability requirements. In this paper, a holistic approach has been taken to develop a series of airfoil bearing centrifugal compressors for a wide range of applications from forklift, passenger vehicles to commercial vehicles, and achieve high efficiency and durability of one million start-stops. In the new platform development, cooling circuit was optimized so that the external cooling air circuit for the rotor and air bearings is no longer needed, which resulted in 4% efficiency improvement. Hollow rotor structure was adopted to achieve lightweight
Wang, QianzhenYuan, XixinTao, ZhangFeng, Jin ZengWang, JuanXiao, YongZhou, LeiXin, Jun
Heat shrink polymer is a type of material used in many industries’ segments due to their ability to contract and fit snugly around objects when heat is applied. These products are commonly commercialized in tube format (e.g.: sleeves), made from polyolefin or fluoropolymers, which have the property of shrinking when heated. Nanomaterials present many applications, and their usage is a remarkable tool aiming to improve many properties of materials. Then, many improvements including increase of performance and price reduction may be achieved due to its unique properties when nanomaterials are used into heat shrink polymer sleeves. This work presents a systematic review about the state of the art on heat-shrinkable materials for the automotive industry. As a methodology, articles from the last 10 years on the subject were selected. The keywords “heat shrink” AND “nanomaterial” AND “tubes OR sleeves” were used in three different databases, being “Scopus”, “Web of Science” and “MDPI”. After
Kerche, Eduardo F.Polkowski, RodrigoHoriuchi, LucasGoncalves, Everaldo
The adoption of hydrogen as a sustainable replacement for fossil fuels is pushing the development of internal combustion engines (ICEs) to overcome the technical limitations related to its usage. Focusing on the fuel injector in a DI configuration, it must guarantee several targets such as the adequate delivery of hydrogen mass for the given operating condition and the proper mixture formation in the combustion chamber playing a primary role in reaching the target performance in H2-ICEs. Experimental campaigns and computational fluid dynamics simulations can be used as complementary tools to provide a deep understanding of the injector behaviour and to drive design modifications in a quick and effective way. In the present work an outward opening, piezo-actuated injector purposely designed to be fuelled with hydrogen is tested on several operating conditions to evaluate its performance in terms of delivered mass flow and jet morphology using the Schlieren imaging technique. To
Pavan, NicolòCicalese, GiuseppeGestri, LucaFontanesi, StefanoBreda, SebastianoMechi, MarcoVongher, SaraPostrioti, LucioBuitoni, GiacomoMartino, Manuel
The propulsion system design of GM-Cadillac’s first electric vehicle Lyriq uses an optimized drive unit comprising interior permanent magnet (IPM) motors and silicon traction inverters. The main objective behind the drive unit design was to minimize energy losses and cost while maximizing hardware consolidation, range, performance, power density, and scalability. Two IPM motors with different length and number of stator turns are designed, while their rotor design and stator-conductor profile are kept the same. A high-speed rotor is designed to achieve higher power density. AC winding effect at higher speeds is mitigated by using a bar-conductor with much smaller cross section. The rotor surface has a special notch design to minimize acoustic noise, without use of rotor or stator skew. Also, the traction inverters in the Lyriq EV are engineered with a significant emphasis on being scalable and adaptable for various vehicle architectures while considering a broad range of requirements.
Momen, FaizulJensen, WilliamHe, SongChowdhury, MazharulZahid, AhsanForsyth, AlexanderAlam, KhorshedAnwar, MohammadKim, Young
The drive unit of electric vehicles is a complex system consisting of an electric motor and a gear train, which work together to provide the necessary power for vehicle propulsion. One essential component within this system is the ball bearing, which supports the rotating components such as gears and shafts. This study focuses on the thermal simulation of a ball bearing within the drive unit conducted using the Volume of Fluid (VOF) method coupled with mixed timescale Conjugate Heat Transfer (CHT) in Simerics-MP+ to reduce the computational time while ensuring accuracy in the analysis. The Computational Fluid Dynamics (CFD) approach considers the geometrical details and clearances of the inner race, outer race, cage, and ball within the ball bearing. By accounting for the relative motions between these components, it can accurately model the film formation of the lubricating oil and its impact on heat removal from the bearing. The simulations are conducted at two different shaft speeds
Ballani, AbhishekMotin, AbdulDhar, SujanGanamet, AlainMaiti, DipakRanganathan, RajPandey, Ashutosh
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
Gaylard, Adrian PhilipWeatherhead, Duncan
Many countries around the world are currently working toward carbon neutrality, which would reduce greenhouse gas emissions to net zero by 2050. To achieve carbon neutrality, the search for new fuels to replace gasoline has been active. This study focuses on hydrogen and methanol fuels and examines their effects on plain bearings when these fuels are used in internal combustion engines. Compared to gasoline, these fuels differ significantly in the composition of gases produced after combustion. It is assumed that nitric acid, etc. will be mixed in the engine oil when hydrogen is combusted whilst formic acid, etc. will be mixed in the engine oil when methanol fuel is combusted. For this reason, corrosion tests were conducted by adding nitric acid or formic acid solution to the engine oil then placing plain bearings in the deteriorated oil. The results confirmed that significant corrosion of the bismuth overlay coating occurred and subsequently the performance of plain bearings may
Kondo, MakotoKawaura, HirokiShiroya, TomoyasuWatanabe, Airi
Apple’s mobile phone LiDAR capabilities can be used with multiple software applications to capture the geometry of vehicles and smaller objects. The results from different software have been previously researched and compared to traditional ground-based LiDAR. However, results were inconsistent across software applications, with some software being more accurate and others being less accurate. (Technical Paper 2023-01-0614. Miller, Hashemian, Gillihan, Benes.) This paper builds upon existing research by utilizing the updated LiDAR hardware that Apple has added to its iPhone 15 smartphone lineup. This new hardware, in combination with the software application PolyCam, was used to scan a variety of crashed vehicles. These crashed vehicles were also scanned using a FARO 3D scanners and Leica RTC 360 scanners, which have been researched extensively for their accuracy. The PolyCam scans were compared to FARO and Leica scans to determine accuracy for point location and scaling. Previous
Miller, Seth HigginsStogsdill, MichaelMcWhirter, Seth
In a three-phase voltage source inverter, in order to prevent the direct short circuit of the upper and lower tubes of the bridge arm and ensure the normal operation of the inverter, microsecond-level dead time needs to be added when the power devices are turned on and off. However, due to the dead-time effect, slight distortion may occur in the inverter within the modulation period, and this distortion will eventually lead to harmonic components in the output current after accumulation, thereby generating torque ripple. Against the above background, implementing dead-time compensation strategies is very important. To compensate for the voltage error caused by the dead-time effect, current polarity determination is required first. Then, the dead time is compensated, thereby indirectly compensating for the voltage error caused by the dead-time effect. Regarding the dead-time compensation time, without changing the hardware, this paper proposes a solution to turn off the dead-time
Jing, JunchaoZhang, JunzhiZuo, BotaoLiu, YiqiangYang, TianyuZhu, Lulong
The rapid adoption of electric vehicles (EVs), driven by stricter emissions norms, is transforming both urban and rural mobility. However, significant challenges remain, particularly concerning the charging infrastructure and battery technology. The limited availability of charging stations and the reliance on current high-energy-density cells restrict the overall effectiveness of the e-mobility ecosystem. These constraints lead to shorter vehicle ranges and longer charging times, contributing to range anxiety—one of the most critical barriers to widespread EV adoption. Adding to these challenges, auxiliary systems, especially air-conditioning (AC) systems, significantly impact energy consumption. Among all auxiliary systems, the AC system is the most energy-intensive, often exacerbating range anxiety by reducing the distance an EV can travel on a single charge. Hence, it is essential to focus on enhancing the efficiency of AC systems. This involves redefining and optimizing system
Sen, SomnathJadhav, YashSingh, KaramjeetSorte, SwapnilAnwar, Md Tahir
The majority of transportation systems continue to rely on internal combustion engines powered by fossil fuels. Heavy-duty applications, in particular, depend on diesel engines due to their high brake efficiency, power density, and robustness. Despite significant advancements in diesel engine technology that have reduced emissions and improved efficiency, complex and costly after-treatment systems remain necessary to meet the stringent emission regulations. Dimethyl ether (DME), which can be produced from various renewable feedstocks and possesses high chemical reactivity, is a promising alternative for heavy-duty applications, particularly in compression ignition direct injection engines. Its high reactivity, volatility, and oxygenated composition offer significant potential to address emission challenges while reducing reliance on after-treatment systems. However, DME’s lower energy density requires adjustments in injection parameters (such as injection pressure and duration) or
Cong, BinghaoLeblanc, SimonTjong, JimiTing, DavidYu, XiaoZheng, Ming
The performance of a second-generation Toyota Mirai fuel cell was characterized as part of the SwRI internal research program. This data was used to develop a supervisory controller scheme designed to balance the plant for the fuel cell system during steady-state and transient vehicle conditions. This was accomplished using a Supervisory Integrated Controller (SIC) implemented on a Real-time Power Electronics Control System (RPECS) with a Simulink-based control algorithm. The actuators of interest are the three hydrogen injectors at anode inlet, air compressor and three air side valves on at the cathode inlet. The FC power measurement and pressure sensor readings at the anode and cathode were utilized as real-time feedback for the controller operation. The aim of the controller was to achieve and maintain the power target set by the hybrid powertrain ECU present on the vehicle, which is responsible for balancing power on the fuel cell and battery over the high-voltage bus. These
Chundru, Venkata RajeshKubesh, MatthewLegala, Adithya
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
Yu, Sanguk
In the automotive industry, it is essential to consider not only how well specialty materials perform and are formulated, but also how efficiently and economically they can be applied during manufacturing. This becomes especially important during the early stages of development to prevent issues when these materials are used in new designs by automotive suppliers or manufacturers. With the rapid growth of electric vehicles (EVs), new materials are being used more frequently, and these materials may not have been as thoroughly tested as those used in traditional internal combustion engine (ICE) vehicles. Therefore, it is crucial to ensure that these materials can be applied correctly and efficiently from the start. One way to speed up the development process is through Computational Fluid Dynamics (CFD) modeling. CFD helps predict how materials will behave when dispensed, which is essential for developing the right equipment and conditions for applying these materials. Working with
Kenney, J. AndyDelgado, RobertoHossain, ArifNg, Sze-SzeThomas, RyanChyasnavichyus, MariusTsang, Chi-WeiHwang, MargaretWu, LanceDietsche, LauraMcmichael, JonathanRaines, KevinNelson, Grant
This paper initially delineates the control process of driver-initiated gear changes. The gear-shifting point control module computes the new target gear based on the current updated driving state, and the gear-shifting point decision module assesses the rationality of the new target gear and conveys it to the gear-shifting timing control module. The gear-shifting timing control module selects the reasonable new stage in accordance with the current execution status and outputs the new target gear, coordinating the clutch control module and the brake control module to regulate the clutch engagement/disengagement and the switches of the two clutches. Altering the intention regarding gear changes encompasses gear replacement and variations in power type, which involve the necessary recalculation of the target speed based on the new target gear. Secondly, the conditions for the “change of mind” request in the speed stage are stipulated, which is the stage where the input shaft speed is
Jing, JunchaoHuang, WeishanLi, DongfeiZuo, BotaoLiu, Yiqiang
To ensure the safety and stability of road traffic, autonomous vehicles must proactively avoid collisions with traffic participants when driving on public roads. Collision avoidance refers to the process by which autonomous vehicles detect and avoid static and dynamic obstacles on the road, ensuring safe navigation in complex traffic environments. To achieve effective obstacle avoidance, this paper proposes a CL-infoRRT planning algorithm. CL-infoRRT consists of two parts. The first part is the informed RRT algorithm for structured roads, which is used to plan the reference path for obstacle avoidance. The second part is a closed-loop simulation module that incorporates vehicle kinematics to smooth the planned obstacle avoidance reference path, resulting in an executable obstacle avoidance trajectory. To verify the effectiveness of the proposed method, four static obstacle test scenarios and four RRT comparison algorithms were designed. The implementation results show that all five
Wu, WeiLu, JunZeng, DequanYang, JinwenHu, YimingYu, QinWang, Xiaoliang
Camera-based mirror systems (CBMS) are being adopted by commercial fleets based on the potential improvements to operational efficiency through improved aerodynamics, resulting in better fuel economy, improved maneuverability, and the potential improvement for overall safety. Until CBMS are widely adopted it will be expected that drivers will be required to adapt to both conventional glass mirrors and CBMS which could have potential impact on the safety and performance of the driver when moving between vehicles with and without CBMS. To understand the potential impact to driver perception and safety, along with other human factors related to CBMS, laboratory testing was performed to understand the impact of CBMS and conventional glass mirrors. Drivers were subjected to various, nominal driving scenarios using a truck equipped with conventional glass mirrors, CBMS, and both glass mirrors and CBMS, to observe the differences in metrics such as head and eye movement, reaction time, and
Siekmann, AdamPrikhodko, VitalySujan, Vivek
The integrated bracket is a plastic part that packages functional components such as the ADAS (Advanced Driver Assistance System) camera, rain light sensor, and the mounting provisions of the auto-dimming IRVM (Inner Rear View Mirror). This part is fixed on the windshield of an automobile using double-sided adhesive tapes and glue. ADAS, rain light sensors, and auto-dimming IRVM play an important part in the safety of the driver and everyone present in the automobile. This makes proper functioning of the integrated bracket very integral to occupant safety. Prior to this work, the following literature; Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover [1] outlines the design considerations and advantages of mounting several components on the same bracket. It follows the theme where the authors first define the components packaged on the integrated bracket and then the advantages of packaging multiple components on a single
Chandravanshi, PriyanshDharmatti, Girish
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
Gu, Emilyparenteau, Chantal
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Sahoo, PriyabrataGarg, IshanRawat, SudhanshuNarula, RahulGupta, AnkitBindra, RiteshRao, Akkinapalli VNGarg, Vipin
A tested method of data presentation and use is described herein. The method shown is a useful guide, to be used with care and to be improved with use.
S-12 Powered Lift Propulsion Committee
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down. The current used dynamic seal
A-5B Gears, Struts and Couplings Committee
This specification covers a low-carbon steel in the form of seamless tubing up to 5.50 inches (139.7 mm), nominal OD, inclusive.
AMS E Carbon and Low Alloy Steels Committee
To meet the requirements of high-precision and stable positioning for autonomous driving vehicles in complex urban environments, this paper designs and develops a multi-sensor fusion intelligent driving hardware and software system based on BDS, IMU, and LiDAR. This system aims to fill the current gap in hardware platform construction and practical verification within multi-sensor fusion technology. Although multi-sensor fusion positioning algorithms have made significant progress in recent years, their application and validation on real hardware platforms remain limited. To address this issue, the system integrates BDS dual antennas, IMU, and LiDAR sensors, enhancing signal reception stability through an optimized layout design and improving hardware structure to accommodate real-time data acquisition and processing in complex environments. The system’s software design is based on factor graph optimization algorithms, which use the global positioning data provided by BDS to constrain
Zhan, KaiDiGao, ChengfaXu, DaweiLan, MinyiDing, Rongjing
This study introduces a probabilistic analysis approach to evaluate the gear tooth strength for the hypocycloid engines, which are particularly significant in internal combustion (IC) engine applications due to their unique design and critical requirements for both efficiency and durability. The research utilizes the stress–strength interference (SSI) theory within a “design for reliability” framework to develop a robust methodology for designing the internal gear mechanism required for the hypocycloid gear mechanism (HGM) engine, in accordance with American Gear Manufacturers Association (AGMA) standard gear rating practices. This approach incorporates probabilistic factors to address variations in HGM component parameters, gear material properties, and engine operational conditions. To validate the design and ensure accuracy, a finite element method (FEM)-based verification is employed, to identify potential failure points and enhance the overall reliability of the HGM engine. The
ElBahloul, Mostafa A.Aziz, ELsayed S.Chassapis, Constantin
This specification covers a titanium alloy in the form of seamless tubing (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of seamless tubing (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of seamless tubing (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a cast tin bronze in the form of sealing rings (see 8.5).
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 34337