Browse Topic: Mountings
This research addresses the issue of noise, vibration, and harshness (NVH) in electric buses, which can hinder their widespread adoption despite their environmental benefits. With the absence of traditional engines, NVH control in electric vehicles focuses on auxiliary components like the air compressor. In this study, the air compressor was identified as a major source of vibration, causing harsh contact between its oil sumps and mounting bracket. Analyzing the vibrations revealed that the sump and bracket were not moving freely, increasing noise. Modifying the bracket design to allow more movement between the components successfully reduced both noise and vibration. The paper details the experimental process, findings, and structural damping methods to mitigate NVH in electric buses.
Road noise caused by road excitation is a critical factor for vehicle NVH (Noise, Vibration, and Harshness) performance. However, assessing the individual contribution of components, particularly bushings, to NVH performance is generally challenging, as automobiles are composed of numerous interconnected parts. This study describes the application of Component Transfer Path Analysis (CTPA) on a full vehicle to provide insights into improving NVH performance. With the aid of Virtual Point Transformation (VPT), blocked forces are determined at the wheel hubs; afterward, a TPA is carried out. As blocked forces at the wheel hub are independent of the vehicle dynamics, these forces can be used in simulations of modified vehicle components. These results allow for the estimation of vehicle road noise. To simulate changes in vehicle components, including wheel/tire and rubber bushings, Frequency-Based Substructuring (FBS) is used to modify the vehicle setup in a simulation model. In this
Gear whine has emerged as a significant challenge for electric vehicles (EVs) in the absence of engine masking noise. The demand from customers for premium EVs with high speed and high torque density introduces additional NVH risks. Conventional gear design strategies to reduce the pitch-line velocity and increase contact ratio may impact EV torque capacitor or its efficiency. Furthermore, microgeometry optimization has limited design space to reduce gear noise over a wide range of torque loads. This paper presents a comprehensive investigation into the optimization of transfer gear blanks in a single-speed two-stage FDW electric drive unit (EDU) with the objective of reducing both mass and noise. A detailed multi-body dynamics (MBD) model is constructed for the entire EDU system using a finite-element-based time-domain solver. This investigation focuses on the analysis and optimization of asymmetric gear blank design features with three-slot patterns. A design-of-experiment (DOE
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Companies have invested heavily to improve color in digital imaging, but wavelength is just one property of light. Polarization — how the electric field oscillates as light propagates — is also rich with information, but polarization imaging remains mostly confined to table-top laboratory settings, relying on traditional optics such as waveplates and polarizers on bulky rotational mounts.
The integrated bracket is a plastic part that packages functional components such as the ADAS (Advanced Driver Assistance System) camera, rain light sensor, and the mounting provisions of the auto-dimming IRVM (Inner Rear View Mirror). This part is fixed on the windshield of an automobile using double-sided adhesive tapes and glue. ADAS, rain light sensors, and auto-dimming IRVM play an important part in the safety of the driver and everyone present in the automobile. This makes proper functioning of the integrated bracket very integral to occupant safety. Prior to this work, the following literature; Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover [1] outlines the design considerations and advantages of mounting several components on the same bracket. It follows the theme where the authors first define the components packaged on the integrated bracket and then the advantages of packaging multiple components on a single
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
As “point of need” additive manufacturing emerges as a priority for the Department of Defense (DoD), Australian 3D printing provider SPEE3D is one of several companies demonstrating that its machines can rapidly produce castings, brackets, valves, mountings and other common replacement parts and devices that warfighters often need in an on-demand schedule when deployed near or directly within combat zones. DoD officials describe point of need manufacturing as a concept of operations where infantry and squadron have the equipment, machines, tools and processes to rapidly 3D print parts and devices that are being used in combat. Based in Melbourne, Australia, SPEE3D provides cold spray additive manufacturing (CSAM) machines that use a combination of robotics and high-speed kinetic energy to assemble and quickly bind metal together into 3D-printed parts without the need for specific environmental conditions or post-assembly cooling or temperature requirements. Over the last two years, the
Plastic design is one of the upcoming fields of interest when it comes to weight optimization, sustainability, strength, and overall aesthetics of an automobile. What is often ignored is the amount of flexibility a plastic designer has, of integrating and packaging various components of an automobile into a single part and still make it an integral part of its complex aesthetics. This paper highlights upon one such part that is being developed: An integrated bracket which packages ADAS camera, Rain Light Sensor, and an Auto-dimming IRVM. Apart from packaging the mentioned components, this bracket also has mounting provisions for an aesthetic cover (also referred to as beauty cover). The objective of this paper is to highlight the importance of integration of several parts into a single part for packaging multiple components that need to be placed in a close proximity with each other. This paper includes the demonstration of old design which consisted of multiple parts along with how we
In this study, an optimized structure for opening the headlining considering the deployment of the face-to-face roof airbag was studied. It was confirmed that the deployment performance differs depending on the skin of the headlining, and a standardized structure with mass production was proposed. Non-woven fabric and Tricot skin, which are economical and high-end specifications, satisfy the performance of PVC fusion application specifications after cutting 80% of the skin. The structure that satisfies the entire body including the knit specifications is a type that separates the roof airbag area piece, the corresponding soft piece is separated, and the deployment performance is satisfied with safety. Therefore, the structure is proposed as a standardized structure. This structure is expected to be applicable to roof DAB (Driver Airbag), PAB (Passenger Airbag), and Sunroof Airbag, which will be necessary technologies to secure indoor space. Regardless of which area the airbag will be
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Most motor mounts, even for EV applications, are made of metal alloys. It makes intuitive sense: It's a vibration-intensive mounting application that demands durability that matches the life of the vehicle itself. But there is another way. Now, a composite nylon-based motor mount on the Cadillac Lyriq has won the Society for Automotive Analysts' Innovation in Lightweighting Award. The mount is a collaboration between GM, anti-vibration parts maker DN Automotive and chemical company Celanese. It is made with Zytel PA NVH Gen 2, a new polyamide (PA 66). The results not only showed up in development data, but in the end product, which has reviewers raving about how quiet the Lyriq's cabin is - “crypt quiet,” according to Automotive News.
Globally all OEMs are moving towards electric vehicle to reduce emission and fuel cost. Customers expect highest level of refinement and sophistication in electric vehicle. At present, the customers are sensitive to high pitched tonal noise produced by electric powertrain which gives a lot of challenges to NVH engineers to arrive at a cost-effective solution in less span of time. Higher structure borne tonal noise is perceived in electric vehicle at the vehicle speeds of ~ 28 kmph, 45 kmph and 85 kmph. The test vehicle is front wheel drive compact SUV powered by motor in the front. The electric drive unit is connected to cradle and subframe with help of three mounts. Transfer path analysis (TPA) using blocked forces method is carried out to identify the exact forces of the electric drive unit entering the mounts. Powertrain mount is characterized by applying the predicted forces and dynamic stiffness at problematic frequency is measured. By reducing the dynamic stiffness of powertrain
With the advancement of regulatory norms in automobile industry, there is a challenge to meet performance efficiency targets, especially with a lightweight platform, while providing superior driving experience to customers. The shift towards weight optimization, makes the vehicle structure more susceptible to transfer a diverse range of noise and vibrations through body. Although most undesirable noises perceived inside the cabin can be reduced by superior technology engine mounts and NVH packaging, all such solutions lead to cost addition. Intelligent considerations in part design can be used to supplement predictable transfer paths to quell the unwanted vibrations. One such case is of the gear whine noise in certain rpm bands caused by inherent gear meshing frequency coinciding with natural frequency of an engine mounting bracket. This paper demonstrates two methodologies to counter such a phenomenon, either through engine mount bracket natural frequency optimization or addition of a
During validation of a new brake lining on a light duty truck application, the brake rotor exhibited high lateral runout on the friction surfaces. As the engineering team investigated the issue more carefully, they noticed the rotor lateral runout was also changing from revolution to revolution. The team ran testing on multiple light pickup vehicles and found differences in the amount of rotor runout variation. The rotor lateral runout and runout variation can cause vibration and pulsation of the passenger seat and the steering wheel. To identify the root cause of the high level of rotor lateral runout and runout variation, measurement data was collected and analyzed from the vehicle level test. During further analysis, some of the runout variation corresponded to a wheel bearing internal frequency. The bearing internal geometry was studied to confirm what factors affected the runout variation. The team also conducted testing to see how the mating components may have affected the wheel
ABSTRACT A 3D printed battery bracket is strengthened via post-print thermal annealing, demonstrating a transitionable approach for additive manufacturing of robust, high performance thermoplastic components. Citation: E. D. Wetzel, R. Dunn, L. J. Holmes, K. Hart, J. Park, and M. Ludkey, “Thermally Annealed, High Strength 3D Printed Thermoplastic Battery Bracket for M998,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.
U.S. military service members are provided protective head gear for use in training and operational environments. This headgear is typically in the form of a helmet, at a minimum consisting of a rigid outer shell and an individual fitting and retention system, which is an essential personal protective equipment (PPE) item. Many different helmet configurations are used by the U.S. soldier, depending on their military occupational series, the anticipated threat, and the operational environment.
Items per page:
50
1 – 50 of 874