Browse Topic: Pumps
ABSTRACT Variable displacement pumps have been used in automotive transmissions for decades. L3T had high confidence that a Variable Displacement Oil (VDO) pump would increase overall transmission efficiency. An off-the-shelf (OTS) or OTS modified pump in this pressure and flow range was not found. Therefore, a VDO pump is being developed with the known risk of replacing a highly reliable pump with a new better performing pump of unknown reliability. In this document the development of this VDO pump is discussed. Initial testing of the VDO pump demonstrated an average 25HP savings in pumping losses throughout the transmission operating ranges. At this point, durability testing has not been performed
ABSTRACT The following paper describes the new SAPA automatic transmissions for the future military vehicles. The very high mobility requirements, the reclaim of weight, power & space and the actual relevance of the fuel consumption require a rethinking and a new vision of the automatic transmission concept and design. This is what SAPA has been working on for the last 12 years obtaining excellent technical and commercial results, a concept aimed at reducing the power losses of the conventional powershifting transmission eliminating the torque converter, reducing the spin losses -due to hydraulic pumps and friction discs-, and improving vehicle mobility on variable terrain situations as off-road
This test code describes tests for determining characteristics of hydraulic positive displacement pumps used on off-road self-propelled work machines as referenced in SAE J1116
Researchers are bringing together multiple areas of technical expertise to improve LVAD performance and outcomes. One team will develop a smart magnetically levitated (Maglev) drive system that can sense the body’s physiological changes and automatically adjust the pump speed to meet the patient’s daily output requirement, such as for exercising and sleeping
Curtiss-Wright Corporation Davidson, NC info@curtisswright.com
For many patients waiting for a donor heart, the only way to live a decent life is with the help of a pump attached directly to their heart. This pump requires about as much power as a TV, which it draws from an external battery via a seven-millimeter-thick cable. The system is handy and reliable, but it has one big flaw: despite medical treatment, the point at which the cable exits the abdomen can be breached by bacteria
As medical devices in today’s modern medicine continue to advance, they require power supplies that allow them to perform an ever-widening roles. These lightweight, wearable — and even implantable — medical devices comprise everything from activity/exercise watches, hearing aids, and medical call buttons to pacemakers, insulin pump monitors, and neuro- or gastric stimulators, as well as implantable cardiac pacemakers and defibrillators (ICDs). The rechargeable batteries used in these devices must provide for such vital functions as monitoring, signal processing, collecting and transmitting data, and providing specialized electronic pulses when needed to stimulate cardiac output and other physiological activity
A Gerotor pump is a positive displacement pump consisting of inner and outer rotors, with the axis of inner rotor offset from axis of outer rotor. Both rotors rotate about their respective axes. The volume between the rotors changes dynamically, due to which suction and compression occurs. Due to their high-speed rotations, a Gerotor pump may be subjected to erosion due to cavitation. This paper details about the Computational Fluid Dynamics (CFD) based methodology that has been used to capture cavitation bubbles, which might form during the operation of Gerotor pump and to identify the erosion zone which might be occur due to cavitation bubble getting burst near the surface layers of the gears. A full scale (3D) transient CFD model of a Gerotor pump has been developed using commercial CFD code ANSYS FLUENT. The most challenging part of this CFD flow modeling is to create a dynamic volume mesh that perfectly represents the dynamically changing rotor fluid volume of the Gerotor pump
Pump systems are ubiquitous in medical and life science products, from blood pressure monitors and drug-delivery devices, to pipettors and diagnostic instruments. As the demand for smaller, less intrusive — sometimes even wearable — products grow, engineers must meet these expectations without compromising on pump system performance
Until recently, microscopic robotic systems have had to make do without arms. Now, a team at ETH Zurich has developed an ultrasonically actuated glass needle that can be attached to a robotic arm. This lets them pump and mix minuscule amounts of liquid and trap particles
Compact off-highway machines should be as maneuverable, versatile and energy-efficient as possible. Key to achieving these goals is the electronification of the working hydraulics. New mini excavators, wheel loaders and track loaders from the Eurocomach brand, which is part of the Italian Sampierana Group, demonstrates the improvements that can be gained by utilizing electrohydraulic pump control and software. Sampierana first launched the electronification of its working hydraulics on its six-ton mini excavators. “Our compact construction machines are used for a wide variety of jobs,” said Giuseppe Fabbri, technical manager at Sampierana. “Loading, excavating or digging should be very accurate or quick and productive to perform, as needed, and also support a wide range of tools - from shovels to hammers or mowers
Most of the world is covered in oceans, which are unfortunately highly polluted. One of the strategies to combat the mounds of waste found in these very sensitive ecosystems — especially around coral reefs — is to employ robots to master the cleanup. However, existing underwater robots are mostly bulky with rigid bodies, unable to explore and sample in complex and unstructured environments, and are noisy due to electrical motors or hydraulic pumps. For a more suitable design, scientists at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart looked to nature for inspiration
This specification covers hand and air operated, solvent and oil spray guns
This document covers evaluation techniques for determining the power consumption characteristics of engine driven hydraulic pumps used on heavy-duty trucks and buses. The testing technique outlined in this SAE Recommended Practice was developed as part of an overall program for testing and evaluating fuel consumption of heavy-duty trucks and buses. The technique outlined in this document provides a description of the test to be run to determine power consumption of these engine driven components, the type of equipment and facilities which are generally required to perform these tests are discussed in SAE J745. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation
This SAE Aerospace Information Report (AIR) has been compiled to provide information on hydraulic systems fitted to the following categories of military vehicles. Attack Airplanes Fighter Airplanes Bombers Anti-Sub, Fixed Wing Airplanes Transport Airplanes Helicopters Boats
There are about 64 million cases of heart failure worldwide. According to the American Heart Association, 6.2 million adults in the United States have heart failure and that number is estimated to increase to 8 million by 2030. Heart failure is a progressive clinical syndrome characterized by a structural abnormality of the heart, in which the heart is unable to pump sufficient blood to meet the body’s requirements
The development of microfluidic systems for lab-on-a-chip (LoC) and organ-on-a-chip (OoC) applications require precise fluid flow control. Typically, on-chip flows are controlled by integrating a microfluidic chip with external pumps that deliver fluid flow at the microscale (typically on the order of mL/min) through the microchannels. To this end, commercially available flow devices such as extrusion syringe pumps, peristaltic pumps, and pneumatic pumps have been widely used
This SAE Aerospace Recommended Practice (ARP) covers the design and installation requirements for hydraulic systems (up to 8000 psig [56 MPa]) for ground support equipment (GSE). This ARP is derived from AS5440, which provides hydraulic system requirements for aircraft. The recommendations herein are primarily intended for GSE that exchange hydraulic fluid with the aircraft, such as hydraulic service carts, rather than GSE with non-interfacing hydraulic systems. The GSE may be mobile, portable, or stationary
This SAE Aerospace Information Report presents the following factors that affect hydraulic pump life and performance: a The need to supply hydraulic fluid at the correct pressure and quality to the pump inlet port b Considerations for the pump output c Factors to be considered for the pump case drain lines d The mounting of the hydraulic pump e Hydraulic fluid properties, including cleanliness
An emerging challenge for the extrusion press industry is older hydraulics technology. Many presses continue using inefficient and unreliable hydraulic pumps
Centrifugal pumps are widely used in different thermal fluid systems in automobile industries. Computational fluid dynamics (CFD) analysis of such a thermal fluid system depends on the accurate component modeling of the system components. This paper presents CFD analysis of a centrifugal pump with two different approaches: Transient (moving grid) and the steady state - Multiple Reference Frame (MRF) methods using a commercial CFD solver Simerics MP+®. In addition, flow and pressure drop data obtained using CFD simulations of a vehicle coolant hydraulic system was compared to results from rig test data. The Transient method incorporates the real motion of the pump blades geometry and temporal flow solutions are obtained for instantaneous positions of the blade geometry. In MRF approach, the flow governing equations for the stationary zone are solved in the absolute/inertial reference frame, whereas flow in the moving zone is solved in the relative/non-inertial reference frame. This
As one of the key components of the heat pump system, the electronic expansion valve mainly plays the role of throttling and reducing pressure in the heat pump system. The refrigerant flowing through the orifice will produce complex phase change. It is of great significance to study the internal flow field by means of CFD calculations. Firstly, a three-dimensional fluid model is established and the mesh is divided. Secondly, the phase change model is selected, the material is defined and the boundary conditions are determined. According to the principle of the fluid passing through thin-walled small holes, the flow characteristics of electronic expansion valve are theoretically analyzed. Then the flow characteristics of expansion valve are numerically calculated, and a bench for testing mass flow rate of the expansion valve is built. Then the theoretical value, CFD value and experimental value are compared to verify the correctness of the established three-dimensional fluid model. The
Items per page:
50
1 – 50 of 1812