Browse Topic: Gears
For the team at SmartCap, building top-notch gear for outdoor adventurers isn’t just a business — it’s a passion driven by their own love for the wild. But as demand for their rugged, modular truck caps soared after their move to North America in 2022, they hit a snag: How do you ramp up production without sacrificing the meticulous quality you are known for, all while navigating a tough labor market? Their answer? A bold step into the world of intelligent automation, teaming up with GrayMatter Robotics, and employing the company’s innovative Scan&Sand™ system.
For electric vehicles, it is critical to develop drive units that produce a minimal amount of noise while meeting efficiency needs for a given application. Modern computational resources and accumulated experience allow for engineers to evaluate gear noise early in the development process and influence the design of the drive unit. This paper documents a high-fidelity virtual engineering approach to evaluate gear noise in a concept parallel axis drive unit and provide learnings to influence the design of external structures to improve NVH performance. By using the latest simulation tools to calculate and visualize the noise and vibration characteristics of the drive unit, designers and developers can implement design changes in optimization iterations to reduce noise and vibration. Gear harmonic response is firstly analyzed through a system model which considers structural deflection and misalignment, then a FE housing model is incorporated which is used for noise radiation evaluation
Gear whine has emerged as a significant challenge for electric vehicles (EVs) in the absence of engine masking noise. The demand from customers for premium EVs with high speed and high torque density introduces additional NVH risks. Conventional gear design strategies to reduce the pitch-line velocity and increase contact ratio may impact EV torque capacitor or its efficiency. Furthermore, microgeometry optimization has limited design space to reduce gear noise over a wide range of torque loads. This paper presents a comprehensive investigation into the optimization of transfer gear blanks in a single-speed two-stage FDW electric drive unit (EDU) with the objective of reducing both mass and noise. A detailed multi-body dynamics (MBD) model is constructed for the entire EDU system using a finite-element-based time-domain solver. This investigation focuses on the analysis and optimization of asymmetric gear blank design features with three-slot patterns. A design-of-experiment (DOE
The applications are too numerous to list in their entirety. Coffee grounds. Eggshell waste. Pomegranates and pineapples. Manure and paper mill sludge. Tobacco. These are just a few of the materials that require dewatering, a process that — as its name suggests — separates fluids from solids, often converting what would otherwise go down the drain or end up in a landfill into saleable products.
In Electric vehicle Drive Unit Gears, high mesh misalignments result in shift in load distribution of a gear pair that can increase contact and bending stresses. It can move the peak bending and contact stresses to the edge of the face width and increase gear noise as well. Lower misalignment value is often required to reduce the peak bending and contact stresses and have a balanced load distribution along the gear flank, which in turn helps in reducing noise and improving durability of drive unit. This paper delineates Prescriptive Analytics method that combines virtual simulations, Machine learning (ML) and optimization techniques to minimize different gear misalignments for the electric vehicle drive units. Generally, the manual optimization process is carried out by sequential modifications of stiffness of individual components. However, this process is time consuming and does not account for interactions between the components. In this study, firstly, Machine learning models are
Gear shifting effort or force especially in manual transmission has been one of the key factors for subjective assessment in passenger vehicle segment. An optimum effort to shift into the gears creates a big difference in overall assessment of the vehicle. The gear shifting effort travels through the transmission shifting system that helps driver to shift between the different available gears as per the torque and speed demand. The shifting system is further divided into two sub-systems. 1. Peripheral system [Gear Shift Lever with knob and shift Cable Assembly] and Shift system inside the transmission [Shift Tower Assembly, Shift Forks, Hub and sleeve Assembly with keys, Gear Cones and Synchronizer Rings etc.] [1]. Both the systems have their own role in overall gear shifting effort. There has been work already done on evaluation of the transmission shifting system as whole for gear shifting effort with typical test bench layouts. Also, work has been on assessment of life of the
For a couple of decades, virtually every global original equipment manufacturer spent significant capital and attention raising their sales/production profile in China. It became the world's largest light vehicle market by 2010 and has not looked back. Forming new joint ventures to expand their portfolios through the extension of global offerings, several OEMs even took the opportunity to design China-specific variants. Western OEMs followed these JVs, and scores of European, North American, Japanese and Korean Tier 1 and 2 suppliers followed their OEMs, creating a local supply of global components as China became an integral cog in the machine. A presence in China is core to success for many industry players. China produced about 28 million light vehicles in 2023, based on S&P Global Mobility's estimates. China is not only key for Western OEM profitability, from a volume perspective it is the largest single market (about 31% of the world in 2023) with the highest growth profile. It
With the advancement of regulatory norms in automobile industry, there is a challenge to meet performance efficiency targets, especially with a lightweight platform, while providing superior driving experience to customers. The shift towards weight optimization, makes the vehicle structure more susceptible to transfer a diverse range of noise and vibrations through body. Although most undesirable noises perceived inside the cabin can be reduced by superior technology engine mounts and NVH packaging, all such solutions lead to cost addition. Intelligent considerations in part design can be used to supplement predictable transfer paths to quell the unwanted vibrations. One such case is of the gear whine noise in certain rpm bands caused by inherent gear meshing frequency coinciding with natural frequency of an engine mounting bracket. This paper demonstrates two methodologies to counter such a phenomenon, either through engine mount bracket natural frequency optimization or addition of a
Vehicle transmission gear rattle is one of the most critical NVH irritants for refined vehicles. It is perceived more dominantly in lower gears of vehicle running. It depends on various design parameters like engine input torque amplitude & fluctuations, driveline torsional vibrations, gear micro & macro geometry, shaft flexibility, etc. Establishing exact contribution of each of these parameters to transmission rattle, thru experimental or simulation technique, is very challenging. Current paper explains the NVH CAE benchmark approach deployed to understand difference in rattle behavior of two transmission designs. Paper focuses on simulation of gear impact power and its sensitivity to transmission shaft deflections. Impact power is one of the indicators of transmission rattle noise and transmission shaft deflection is one of the contributors for gear impact power. 3D MBD simulations are carried out to calculate loose gear impact power by applying angular acceleration input to
Worldwide automotive sector regulatory norms have changed and become more stringent and complex to control environmental noise and air pollution. To continue this trend, the Indian Ministry of Road Transport is going to impose new vehicle exterior pass-by noise regulatory norms IS 3028:2023 (Part2) to control urban area noise pollution. This paper studies the synthesis of M1 category vehicle driving acceleration, dominant noise source, and frequency contribution in exterior PBN level. A vehicle acceleration analysis study was carried out to achieve an optimized pass by noise (PBN) level based on the vehicle’s PMR ratio, reference, and measured test acceleration data. Based on the analysis, test gear strategy was decided to achieve a lower PBN level. This strategy involved increasing the effective final drive ratio and optimizing engine calibration, resulting in improvement with acceleration in the ith gear. This increased acceleration surpassed the upper limit of the reference
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile. However, occasionally noise may be produced due to uneven bearing or plastic bush loading or a
NASA intended its Reusable Launch Vehicle program of the 1990s to demonstrate technologies that would enable hypersonic spaceplanes to make affordable, repeated trips into space. It was never intended to improve the performance of hunting, skiing, and sports gear, but, more than 20 years after its cancellation, that’s what’s happened.
Integrating sensors into rotational mechanisms could make it possible for engineers to build smart hinges that know when a door has been opened, or gears inside a motor that tell a mechanic how fast they are rotating. MIT engineers have now developed a way to easily integrate sensors into these types of mechanisms, with 3D printing.
Items per page:
50
1 – 50 of 1954