Browse Topic: Compressors
Compressor durability is a critical factor for ensuring the long-term reliability of Mobile Air Conditioning (MAC) systems in passenger vehicles. This study presents a software based strategy for enhancing compressor life using Smart Fully Automatic Temperature Control (FATC), requiring no additional hardware. The proposed approach leverages existing inputs from the FATC and Engine Management System (EMS) to intelligently manage compressor operation, with a focus on addressing challenges related to prolonged non-usage. In extended inactivity scenarios such as during cold weather, vehicle exportation, storage, or breakdowns, lubrication oil tends to settle in the compressor sump, leaving internal parts dry. Sudden reactivation at high engine speeds under such conditions can cause increased friction, wear and even compressor seizure. To mitigate this, an intelligent reactivation protocol has been developed and integrated into the Climate Control Module (CCM). This protocol continuously
The rapid rise in electric vehicle (EV) adoption demands innovative thermal management solutions to boost battery performance and passenger comfort. This paper introduces a novel control strategy for simultaneous battery and cabin cooling in EVs, utilizing a two-stage fuzzy logic controller. The proposed system incorporates a detailed plant model to simulate real-world conditions and dynamically optimize compressor speed, ensuring energy-efficient thermal management. In the first stage, the fuzzy controller sets the initial compressor speed based on primary inputs such as battery and cabin temperatures. The second stage fine-tunes this speed by considering secondary parameters like condenser and chiller pressures, along with the power output ratio from the plant model. This multi-stage approach guarantees efficient cooling for both the battery and cabin while maintaining safe operating conditions. Our research showcases the efficacy of this control strategy in achieving optimal thermal
This research addresses the issue of noise, vibration, and harshness (NVH) in electric buses, which can hinder their widespread adoption despite their environmental benefits. With the absence of traditional engines, NVH control in electric vehicles focuses on auxiliary components like the air compressor. In this study, the air compressor was identified as a major source of vibration, causing harsh contact between its oil sumps and mounting bracket. Analyzing the vibrations revealed that the sump and bracket were not moving freely, increasing noise. Modifying the bracket design to allow more movement between the components successfully reduced both noise and vibration. The paper details the experimental process, findings, and structural damping methods to mitigate NVH in electric buses.
The International Space Station (ISS) is made livable in great part thanks to a system that captures and removes CO2 from the air. The workhorse inside that system is a compressor, which fulfills its CO2-capture duties, but at a cost: It is noisy and requires frequent maintenance. Engineers at NASA used modeling and simulation with experimental testing to analyze the next generation of compressor designs that get the job done more quietly, with fewer maintenance needs, and at lower fabrication cost.
With the advent of electric and hybrid drivetrain in the commercial vehicle industry, electrically driven reciprocating compressors have gained widespread prominence. This compressor provides compressed air for key vehicle systems such as brakes, suspension systems and other auxiliary applications. To be a market leader, such an E-compressor needs to meet a myriad of design requirements. This includes meeting the performance by supplying air at required pressure and flow rate, durability requirements and having a compact design while maintaining cost competitiveness. The reed valve in such a compressor is a vital component, whose design is critical to meet the aforementioned requirements. The reed valves design has several key parameters such as the stiffness, natural frequency, equivalent mass, and lift distance which must be optimized. This reed valve also needs to open and close rapidly in response to the compressor operating speed. Since it is the order of milliseconds, the valve
In automotive air conditioning systems, compressor is used to convert low pressure low temperature refrigerant into high pressure high temperature refrigerant. Various types of compressors like swash plate, rotary vane, scroll etc. are widely used in the automotive industry for air conditioning applications. In rotary vane compressors, thermal protector is used as a safety device, designed to prevent the compressor from overheating during refrigerant compression process. When the discharge temperature exceeds the preset limit of thermal protector, the thermal protector will activate and stop the electrical supply to compressor clutch to stop the compressor operation thereby preventing potential damage to air conditioning system, engine, and other nearby parts of the vehicle. This technical paper explores the various real-world scenarios for a hot country like India, which may result into higher discharge temperatures of compressor resulting into activation of thermal protector. The
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line. With the
This SAE Recommended Practice is intended to describe a procedure for rating the size of single-stage reciprocating air compressors. It describes the conditions that can be used for testing and it defines a standardized rating expressed in SLPM (SCFM).
The supplier is committed to all facets of the H2 economy as volume production of its power module kicks off for Nikola's Class 8 fuel-cell truck. At its oldest and largest location - a site long accustomed to manufacturing parts for combustion engines - Bosch is now producing what it calls the most complex system it has ever developed: a fuel-cell power module (FCPM). Production at the Stuttgart-Feuerbach site in Germany officially kicked off in July during a Bosch Tech Day event attended by global media. The pilot customer for the FCPMs is Nikola with its Tre hydrogen fuel-cell electric truck, which is expected to launch in North America in the third quarter of 2023. Bosch is committed to all facets of the hydrogen value chain, from developing an electrolysis stack and components for electrolyzers for H2 production, to engineering a drive solution for hydrogen compressors in filling stations. The supplier plans to invest nearly $2.6 billion between 2021 to 2026 in the development and
This SAE Recommended Practice establishes uniform Installation Parameters for desiccant Air Dryers for vehicles with compressed air systems.
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program tor testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343.
Air Supply Unit (ASU) serves as the pneumatic source for the air suspension system in the passenger car segment. The ASU is an electrically driven oil-free compressor with integrated air dryer to deliver dry air to the suspension system. Solenoid valve, Height Sensor and ECU adjusts the pressure in bellow based on the vehicle load condition. During the lab test, pressure was not building up in the compressor due to delivery valve failure. The type of valve in asu is reed valve type, it is mostly used in the micro compressors due to its low cost, simple structure and light weight configuration. The reed movement is based on the pressure difference between the inlet and the compression chamber. Failure analysis is carried out based on the finite element analysis to identify the root cause, the root cause identified is optimized to prevent the failure. An accelerated test condition is arrived based on the FEA and a tailored series of accelerated tests are carried out to reproduce the
Items per page:
50
1 – 50 of 1102