Browse Topic: Hoses and tubes
In today's dynamic driving environments, reliable rear wiping functionality is essential for maintaining safe rearward visibility. This study sharing the next-generation rear wiper motor assembly that seamlessly integrates the washer nozzle, delivering improved performance alongside key benefits such as better Buzz, Squeak, and Rattle (BSR) characteristics, reduced system complexity, cost savings, and enhanced perceived quality. This integrated design simplifies the hose routing which improves the compactness and the efficiency of the design. This also enhances the spray coverage and minimizes the dry wiping unlike the traditional systems that position the washer nozzle separately. A non-return valve (NRV) is incorporated to eliminate spray delays ass it maintains consistent water flow giving cleaning effectiveness. Since this makes the nonfunctional parts completely leak proof due to the advanced sealing, it increases the durability and reliability in long run. As this proposal offers
In this paper, a systematic and in-depth study is carried out on the key engineering problem of the accurate calculation of the flexural capacity of L-shaped concrete-filled steel tubular columns. Based on the basic framework of mechanics theory, the basic design principle of reinforced concrete members is integrated, and the nonlinear characteristics of steel and concrete materials in the process of stress are mainly considered, such as steel yield strengthening, concrete compression damage, etc., and the ultimate bending moment calculation model which is more suitable for the actual stress state is constructed. Through rigorous theoretical derivation and multi-parameter comparative analysis, the final formula for calculating the bearing capacity of special-shaped columns not only has clear mechanical concept support, but also systematically defines the scope of application of the calculation method. The verification results show that the established calculation method not only meets
The following list consists of hose data provided as of December 2025 and is for convenience in determining acceptability of nonmetallic flexible hose assemblies intended for usage under 46 CFR Part 56.60-25. Where the maximum allowable working pressure (MAWP) or type of fitting is not specified, use the manufacturer’s recommended MAWP or type of fitting. This list has been compiled by SAE staff from information provided by the manufacturers whose product listings appear in this document. Manufacturers wishing to list their products in this document shall: a Successfully test their hose to the requirements of SAE J1942, Table 1. b Submit a letter of certification to the SAE J1942 test requirements for each specific type of hose tested (see sample table, Table 1) along with the test results. All sizes should be included in the same letter, which must also include all of the information necessary to make an SAE J1942-1 listing. c SAE will review the letter and may, at their discretion
Minimally invasive and interventional platforms increasingly demand smaller profiles, tighter tolerances, and components that maintain performance under thermal, chemical, and mechanical stress. Polyimide (PI) has emerged as a workhorse within these parameters because it combines high strength, thermal stability, chemical inertness, dielectric performance, and biocompatibility in thin-wall formats suitable for catheters, electrophysiology tools, and neurovascular systems. 1- 3
This SAE Aerospace Standard (AS) establishes the requirements for a grooved clamp coupling and flanges suitable for joining intermediate pressure and temperature ducting in aircraft pneumatic systems. The rigid coupling joint assembly, hereafter referred to as “the joint”, shall operate within the temperature range of -65 °F external ambient to +800 °F internal fluid.
This SAE Aerospace Recommended Practice (ARP) covers procedures or methods to be used for fabricating, handling, testing, and installation of oxygen lines in an aircraft oxygen system.
This SAE Aerospace Standard (AS) defines the requirements for heavy-duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assemblies suitable for use in 400 °F, 3000 psi aircraft hydraulic systems. Assemblies are suitable where rapid rate pressure pulsing and torsional/ longitudinal flexing may occur, in addition to normal hydraulic system loads.
This specification covers established manufacturing tolerances applicable to titanium and titanium alloy tubing. These tolerances apply to all conditions, unless otherwise noted. The term "excl" is used to apply only to the higher figure of the specified range.
Medical tubing is an essential component of countless healthcare applications, from intravenous (IV) and oxygen lines to catheters and diagnostic equipment. These tubes, often made of clear flexible polymers, must be produced to exacting standards: free of contaminants, strong under pressure, and biocompatible. However, the joining process to connect these tubes can introduce significant manufacturing challenges.
This SAE Aerospace Standard (AS) defines a series of standardized tube walls to be used for high pressure hydraulic tubing. These tube walls are applicable to all homogenous tube materials (i.e., aluminum, steel, titanium) throughout a rated pressure range of 1000 to 8000 psi and a maximum rated operating temperature range of 160 to 450 °F. All future aerospace applications for which a required tube outside diameter/tube wall combination is not presently available shall be selected from the table contained herein (see Figure 1).
This Aerospace Standard (AS) defines the requirements for polytetrafluoroethylene (PTFE) heavy duty hose assemblies suitable for use in aircraft and missile hydraulic fluid systems service to 8000 psi and -65 to 400 °F. Gaseous service shall be limited to 150 °F.
This SAE Aerospace Standard (AS) defines the requirements for loop-type clamps primarily intended for general clamping of tubing for aircraft hydraulic systems.
This SAE Aerospace Standard (AS) establishes the requirements for 24° cone flareless fluid connection fittings and nuts and bite type flareless sleeves (see Section 6) for use in aircraft fluid systems at an operating pressure of 5000 psi for the fittings and nuts and 3000 psi for the bite type sleeves.
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
This specification covers an aircraft-quality, low-alloy steel in the form of round, non-welded tubing free from OD surface seams.
The scope of this SAE Aerospace Recommended Practice (ARP) is to establish the procedure for creating titles of aerospace tubing and clamp installation documents generated by SAE Subcommittee G-3E.
This SAE Aerospace Standard (AS) covers the requirements for polytetrafluoroethylene (PTFE) hose assemblies for use in aerospace fuel and lubricating oil systems at temperatures between -67 and 450 °F and at operating pressures per Table 1. The hose assemblies are also suitable for use within the same temperature and pressure limitations in aerospace pneumatic systems, where some gaseous diffusion through the wall of the PTFE liner can be tolerated. Standard hose assembly configurations are defined in AS7051 through AS7056. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this document, for example oxygen, shall be subject to the approval of the purchaser.
This SAE Standard outlines the requirements for a preformed thermosetting hose intended for use in heavy-duty vehicle engines, such as air cleaner inlet, crank case vent, or air cleaner to turbo or to engine inlet.
This SAE Aerospace Standard (AS) defines the requirements for a lightweight polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in high temperature, 400 °F, high pressure, 3000 psi, aircraft hydraulic systems, also for use in pneumatic systems which allow some gaseous diffusion through the PTFE wall.
This Aerospace Standard (AS) defines the requirements for a heavy duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in 400 °F 5000 psi, aircraft and missile hydraulic fluid systems.
This document describes a method for determining the specific gravity of tubing, fabricated from polytetrafluoroethylene, after a controlled heating and cooling cycle. The specific gravity obtained by this method is a measure of relative molecular weight of the resin. The measure, termed relative specific gravity (RSG), increases with decreasing molecular weight (refer to Sperati and Starkweather, 1961).
Items per page:
50
1 – 50 of 3860