Browse Topic: Bearings
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
This specification covers the requirements for a refined paraffinic petroleum-base lubricant.
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and forging stock.
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
This standard covers the requirements for non-separable, airframe antifriction needle bearings and corrosion-resistant and traditional materials intended for use in flight vehicle control systems with radial loads.
This standard covers the requirements for spherical, self-aligning, self-lubricating bearings that are for use in the ambient temperature range of -65 to +160 °F (-54 to +71 °C) at high cyclic speeds. The scope of the standard is to provide a liner system qualification procedure for helicopter sliding bearings defined and controlled by source control drawings. Once a liner system is qualified, the source controlled bearings may be further tested under application conditions.
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, mechanical tubing, forgings, and forging stock.
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
This document defines the criteria used for the selection and placement of landing gear shock strut upper and lower bearings (see Figure 1). Common problems associated with shock strut bearings are presented herein.
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive. Based on previously developed metrics for sound quality, a methodology is proposed with the requirements
Heavy vehicles such as construction machinery generally require a large traction force. For this reason, axle components are equipped with a final reduction gear to provide a structure that can generate a large traction force. Basic analysis of vertical load, horizontal load (traction force), centrifugal force, and torsional torque applied to the wheels of heavy vehicles such as construction machinery and industrial vehicles, as well as actual working load analysis during actual operations, were conducted and compiled into a load analysis diagram. The loosening tendency of wheel bolts and nuts that fasten the wheel under actual working load was measured, and the loosening analysis method was presented. The causes of wheel fall-off accidents in heavy trucks, which have recently become a problem, were examined. Wheel bolts are generally tightened by the calibrated wrench method using a torque wrench. The method is susceptible to variations in friction coefficient and tightening torque
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge. Thus, this paper includes a
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings. This
Items per page:
50
1 – 50 of 3130