Browse Topic: Bearings

Items (3,149)
The ongoing electrification of vehicle powertrains brings attention to components with a minor contribution to overall friction losses in research and development. To optimize the overall energy efficiency, it is essential to analyze and reduce the losses in these components. Wheel bearings are of particular interest in this context, as their friction losses affect both the driving and recuperation phases. These losses are dependent on temperature, mechanical loads and the bearing mounting situation into the vehicle. The analysis of friction losses and their dependency on the factors mentioned above is usually conducted by measurements on component test benches to allow an isolated analysis. In contrast, the friction losses of the complete drive system are measured on powertrain or roller test benches. In this context, the factors affecting the losses in wheel bearings deviate from the measurements obtained on component test benches. The purpose of this paper is to analyses the effect
Hartmann, LukasErxleben, LarsRebesberger, RonHenze, RomanSturm, Axel
Enhancing the performance of naturally aspirated 4-stroke engines relies heavily on improving trapping efficiency, increasing maximum engine speed, and reducing friction losses. In this regard, the valvetrain plays a critical role. Achieving high volumetric efficiency at higher engine speeds necessitates very steep valve opening and closing ramps, making this aspect pivotal in the design process. At high engine speeds, significant dynamic phenomena arise, including valve float during the lift phase and valve bounce during the closing phase. These effects not only induce substantial modifications to the valve lift curve but also increase the mechanical stress on critical components such as the valve and the rocker arm, thereby elevating the risk of failure. Moreover, the timing system substantially contributes to overall engine losses due to frictional energy dissipation, which results from the numerous interactions between moving components. The present work aims to develop a numerical
Tarchiani, MarcoPizzicori, AlessioRaspanti, SandroRomani, LucaMeli, EnricoFerrara, GiovanniTrassi, Paolo
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This standard covers plain and flanged sleeve bearings which are self-lubricating by incorporating polytetrafluoroethylene (PTFE) in a liner in the bore for use in a temperature range of -65 to +250 °F (-54 to +121 °C).
ACBG Plain Bearing Committee
This standard covers all types of manually operated high pressure oxygen, cylinder shut off valves for use in commercial aircraft. It is intended that the valve shall be attached to a pressure cylinder storing oxygen under a nominal pressure of 12.76 MPa (1850 psig) at 21 °C (70 °F). Upon opening the valve, oxygen will be permitted to discharge from the storage cylinder to the valve outlet and to other downstream components of the oxygen system. It shall also be possible to recharge the cylinder through the valve.
A-10 Aircraft Oxygen Equipment Committee
In contemporary global commerce, swift advancements are observed within the maritime transportation sector. The frequency of seafaring voyages increases apace, from which it is discerned that navigational safety emerges as an indispensable concern. Paramount to safeguarding vessel operations and diminishing the susceptibility to maritime mishaps has become the integration of ship domain models. Through incorporation of AIS datasets alongside mathematical statistical evaluations melded with insights derived from ship captains, this discourse introduces a novel risk domain paradigm tailor-made for ships. The curated data amalgamated with maritime captaincy was stratified and overlayered, utilizing techniques such as the maximum density method juxtaposed with least squares calculation to ascertain the periphery defining the ship’s risk precinct. This newly conceived model interweaves aspects of ship maneuverability in concert with evasion protocols predicated on extant ship domain models
Xiong, JuntingZhang, YongChen, XiaofengMeng, FanjunZhang, Junpeng
The force of the solid contact (Fsc ) between the bearing surface and the shaft surface and the friction force (Ffri ) generated in the crankpin bearing have a great influence on the lubrication performance of the crankpin bearing in the engine. Therefore, the micro-circular texture (MCT) has been proposed and designed on the bearing surface of the crankpin bearing for ameliorating its lubrication performance. To evaluate the effectiveness of MCT in detail, based on the lubricating model of the crankpin bearing under the impaction of external load F 0, the influence of the density, depth (hMCT ), and radius (rMCT ) of MCT on the characteristics of the pressure (p) of oil film, thickness of oil film (h), force of solid contacts, and force of the friction in the crankpin bearing are also investigated, respectively. An algorithmic program written in a MATLAB environment is then applied to simulate the lubrication equations of the crankpin bearing and MCT. Some outstanding results of the
Jiao, RenqiangNguyen, Vanliem
An important characteristic of battery electric vehicles (BEVs) is their noise signature. Besides tire and wind noise, noise from auxiliaries as pumps, the electric drive unit (EDU) is one of the major contributors. The dynamic and acoustic behavior of EDUs can be significantly affected by production tolerances. The effects that lead to these scatter bands must be understood to be able to control them better and thus guarantee a consistently high quality of the products and a silent and pleasant drive. The paper discusses a simulation driven approach to investigate production tolerances and their effect on the NVH behavior of the EDU, using high precision transient multi-body dynamic analysis. This approach considers the main effects, influences, and the interaction from elastic structures of electric motor and transmission with accurate gear contact models in a fully coupled way. It serves as virtual end of line test, applicable in all steps of a new EDU development, by increasing
Klarin, BorislavSchweiger, ChristophResch, Thomas
With the ongoing electrification of vehicles, components contributing a minor share of overall drivetrain losses are coming into focus. Analyzing these losses is crucial for enhancing the energy efficiency of modern vehicles and meeting the increasing demands for sustainability and extended driving range. These components include wheel bearings, whose friction losses are influenced by parameters such as temperature, mechanical loads, and mounting situation. Therefore, it is essential to analyze the resulting friction losses and their dependence on the mentioned influencing parameters at an early stage of development, both through test bench measurements and with the help of simulation models. To achieve these objectives, this submission presents a methodology that combines test bench measurements with a measurement-based simulation of the friction losses of wheel bearings occurring in the vehicle as a complete system under varying driving cycles and parameters. For this purpose, an
Hartmann, LukasSturm, AxelHenze, RomanNotz, Fabian
Plastic materials are used for a wide variety of spacecraft applications including seals, bearings, fasteners, electrical insulators, thermal isolators, and radomes. Selecting plastics for use in space is complex due to wide operating temperature ranges, vacuum conditions, and exposure to radiation and atomic oxygen. Additionally, some spacecraft applications require sealing flammable propellants such as hydrogen and oxygen. This article will present some design considerations when selecting plastics for use in spacecraft. It will provide rich data on the performance characteristics of plastics as well as examples of successful spacecraft applications.
Electric vehicles (EVs) require improved drag performance from wheel bearings to achieve a longer range. EVs are heavier and have higher torque output compared to internal combustion-powered vehicles. Due to the increased weight and torque of EVs, there will be higher loads at the bearing-to-knuckle joint. These increased loads may necessitate higher clamp loads to maintain joint integrity. However, higher clamp loads can lead to distortion or reduced roundness of the wheel bearing outer ring. Such distortion permanently increases drag and reduces bearing life. Therefore, after vehicle corner assembly with higher clamp loads, it is critical to minimize outer ring distortion during the initial assembly and throughout the bearing's lifespan. This paper will cover the design considerations for the wheel bearing outer ring to minimize distortion, utilizing Computer-Aided Engineering (CAE) analysis for various designs. A Design of Experiments (DOE) will be conducted to understand the
Mandhadi, Chaitanya ReddyCallaghan, KevinSutherlin, RobertLee, SeungpyoLee, YeonsikBovee, Benjamin
Bearings are essential mechanical components that support external loads and facilitate rotational motion. With the increasing demand for high-performance applications in industries such as semiconductors, aerospace, and robotics, the need for accurate and robust performance evaluation has intensified. Traditionally, bearing performance has been assessed using static or quasi-static theoretical approaches. However, these methods are limited in their ability to capture time-dependent behaviors, which are critical in real-world applications. In this study, a rigid body dynamics analysis was proposed to evaluate the time-dependent behavior of bearings. The methodology was first applied to a deep groove ball bearing, and the results were compared with those obtained from bearing theory to validate the approach. Subsequently, the method was extended to an automotive wheel bearing, and the time-dependent contact angles and ball loads were analyzed under axial and radial loading conditions
Lee, Seungpyo
Wheel bearings play a critical role in providing smooth rotation when vehicles move in straight line and turning motions. Automotive electrification continues to accelerate, emphasizing specific market demands such as lightweighting, lower torque, and quietness. In addition to the above requirements, reduced development timing for automotive programs is required. Recently, the number of bearing manufacturers that utilize Model-Based Development (MBD) have been increasing in order to reduce development time. NTN has developed an integrated calculation automated system which is called Axle Bearing Integrated Calculation System (ABICS) that automates each step of the design processes for third generation hub bearings. After ABICS was released, man-hours per development project were reduced by 80 percent compared to previously used design flows in which each step of the design processes had been performed by a human. In order to further reduce development timing, even more focus has been
Kitada, TatsuyaBarrett, RobMatsubuchi, HirokiSuma, Hiroto
Rolling bearings with optimized friction and performance characteristics can have a significant influence on reducing the power loss, design envelope and weight of hydraulic motors and pumps, gearboxes and axles in construction machinery. If correctly designed, rolling bearings can make a significant contribution to reducing carbon dioxide emissions. Most construction machinery is still operated conventionally, using diesel engines and hydraulic components. In the widely used adjustable axial piston pumps and motors, the input and output shaft are usually supported by two tapered roller bearings that are adjusted against each other. When designing the bearing support, it is advisable to reduce the preload to precisely the required minimum allowed by the load spectrum. The lower bearing preload leads to permanently lower axial forces between the tapered roller end face and inner ring rib and, therefore, to a corresponding reduction in frictional torque.
Scharting, Stefan
This document establishes general design criteria, tolerances, and limits of application for tooling, fixtures, and accessories for mounting and driving gas turbine engine rotors on horizontal and vertical balancing machines.
EG-1A Balancing Committee
This study analyses the effect of external damping of roller bearings on the acoustic behaviour of gearboxes in electric powertrains. The growing use of electric vehicles has increased the importance of reducing gearbox noise, as the lack of noise masking from internal combustion engines and the higher operating speeds of electric motors exacerbate the acoustic challenges. Gearbox noise, which is primarily caused by tooth mesh excitation and its transmission through shafts and bearings, requires strategies to minimise its impact on vehicle comfort and performance. External damping is achieved through the integration of specific elements at the circumference of the outer bearing ring. These elements are utilised to modify the vibration transfer behaviour of the bearing assembly. This, in turn, can lead to a reduction in both structure-borne and airborne noise emissions at the gearbox housing. A test design was created to quantify the effects of different damping configurations. This
von Schulz, KaiLinde, TilmannJäger, Steffen
Engineering precision is an art of nuance — especially when it comes to selecting the right bearing for medical devices. What begins as a straightforward specification process quickly becomes a complex yet familiar puzzle of competing requirements. Oftentimes, engineers discover that a bearing’s performance extends beyond its basic dimensional specs, involving considerations of material properties, system integration and supply chain dynamics.
This specification covers grease for use on aircraft wheel bearings. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a qualified products list (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this
AMS M Aerospace Greases Committee
The reliability and performance of steering systems in commercial vehicles are paramount, given their direct impact on reducing hazardous driving and improving operational efficiency. The torque overlay system is designed to enhance driver control, feedback, and reduce driver fatigue. However, vulnerabilities such as water ingress under certain environmental conditions have raised significant reliability requirements. This article discusses the systematic investigation into how radial bearing sideloading led to the input shaft seal failing to contact the input shaft. Water was allowed a path to enter the TOS module, affecting the electronic sensor, and faulting out the ADAS functionality. Improvement to the bearing support and sealing design culminated to an enhanced TOS module package able to withstand testing procedures that mimic the environmental and use case situation which caused the ingress.
Bari, Praful RajendraKintner, Jason
Optimizing the parameters of asymmetric textures (AT) designed on the surface of sliding frictional pairs (SFP) can make each texture more reasonably distributed. Thereby, the oil film thickness can be more stable; and the lubrication and load ability of SFP can be improved. To clarify this issue, based on the SFP’s lubricating model added by AT using the rectangular structure, parameters of AT including the angle between the horizontal axe and bottom surface (φij), the angle between the lateral axe and bottom surface (γij), and texture’s depth (hij) are optimized. The study results show that the parameters of φij, γij, and hij of AT optimized can create the p (hydrodynamic pressure of liquid) better than the symmetric textures. Significantly, the pmax and load ability of the liquid in the SFP using optimal AT have been greatly increased compared to the liquid in the SFP using the symmetric textures. Accordingly, the results are an important reference for the design and distribution of
Wang, CuifangZhang, Lu
In electrified drivetrains, lubricants are commonly in contact with the motor and other electrical components as well as the gears and bearings. Copper, present in these electrical components, is susceptible to corrosion by fluids containing active sulfur, which can lead to catastrophic failure of the unit. Lubricating fluids for electric vehicles (referred to as e-fluids) must not cause corrosion and must maintain high performance while having suitable electrical conductivity, material compatibility, and heat transfer properties. We describe a new formulation without active sulfur that has recently entered the market, which can protect against copper corrosion. We show that this e-fluid can provide suitable wear protection under field trial conditions, and that the e-fluid provides improved wear protection in bearing (FE-8) tests compared to a traditional extreme pressure axle fluid (API GL-4). Surface analysis (X-ray photoelectron spectroscopy) measurements of the component surfaces
Hopper, Elizabeth R.Williams, Megan S.Gahagan, Michael
In the era of Industry 4.0, the maintenance of factory equipment is evolving with new systems using predictive or prescriptive methods. These methods leverage condition monitoring through digital twins, Artificial Intelligence, and machine learning techniques to detect early signs of faults, types of faults, locations of faults, etc. Bearings and gears are among the most common components, and cracking, misalignment, rubbing, and bowing are the most common failure modes in high-speed rotating machinery. In the present work, an end-to-end automated machine learning-based condition monitoring algorithm is developed for predicting and classifying internal gear and bearing faults using external vibration sensors. A digital twin model of the entire rotating system, consisting of the gears, bearings, shafts, and housing, was developed as a co-simulation between MSC ADAMS (dynamic simulation tool) and MATLAB (Mathematical tool). The gear and bearing models were developed mathematically, while
Rastogi, SarthakSinghal, SrijanAhirrao, SachinMilind, T. R.
Bearings are fundamental components in automotive systems, ensuring smooth operation, efficiency, and longevity. They are widely used in various automotive systems such as wheel hubs, transmissions, engines, steering systems etc. Early detection of bearing defects during End-of-Line (EOL) testing and operational phases is crucial for preventive maintenance, thereby preventing system malfunctions. In the era of Industry 4.0, vibrational, accelerometer, and other IoT sensors are actively engaged in capturing performance data and identifying defects. These sensors generate vast amounts of data, enabling the development of advanced data-driven applications and leveraging deep learning models. While deep learning approaches have shown promising results in bearing fault diagnosis, they often require extensive data, complex model architectures, and specialized hardware. This study proposes a novel method leveraging the capabilities of Vision Language Models (VLMs) and Large Language Models
Chandrasekaran, BalajiCury, Rudoniel
As per metaphor, “The squeaky wheel gets the grease,” and in the case of Battery Electric Vehicles (BEVs), the transmission system has become the focal point for NVH (Noise, Vibration, and Harshness) improvements. With the engine being replaced by the near-silent electric motor, the noise generated by the transmission has become more prominent, demanding greater attention to noise reduction. This shift has created a pressing need for innovations in both design and manufacturing processes to enhance the overall quietness of the vehicle. As a result, ongoing advancements are being made to address and improve the NVH characteristics of BEV transmissions. Following paper will discuss the improvement in NVH achieved through a design innovation in the way bearings are installed and demonstrated a significant amount of improvement. We have used SMT MASTA as a simulation tool to predict the expected results and a Transmission Dyno test bench in an anechoic chamber to test the NVH performance
Pingale, AbhijeetSoni, Jaldeep
Industrial bearings are critical components in aerospace, industrial, and automotive manufacturing, where their failures can result in costly downtime. Traditional fault diagnosis typically depends on time-consuming on-site inspections conducted by specialized field engineers. This study introduces an automated Artificial Intelligence virtual agent system that functions as a maintenance technician, empowering on-site personnel to perform preliminary diagnoses. By reducing the dependence on specialized engineers, this technology aims to minimize downtime. The Agentic Artificial Intelligence system leverages agents with the backbone of intelligence from Computer Vision and Large Language Models to guide the inspection process, answer queries from a comprehensive knowledge base, analyze defect images, and generate detailed reports with actionable recommendations. Multiple deep learning algorithms are provisioned as backend API tools to support the agentic workflow. This study details the
Chandrasekaran, Balaji
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
A-5A Wheels, Brakes and Skid Controls Committee
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
Borton, Zackery
Many countries around the world are currently working toward carbon neutrality, which would reduce greenhouse gas emissions to net zero by 2050. To achieve carbon neutrality, the search for new fuels to replace gasoline has been active. This study focuses on hydrogen and methanol fuels and examines their effects on plain bearings when these fuels are used in internal combustion engines. Compared to gasoline, these fuels differ significantly in the composition of gases produced after combustion. It is assumed that nitric acid, etc. will be mixed in the engine oil when hydrogen is combusted whilst formic acid, etc. will be mixed in the engine oil when methanol fuel is combusted. For this reason, corrosion tests were conducted by adding nitric acid or formic acid solution to the engine oil then placing plain bearings in the deteriorated oil. The results confirmed that significant corrosion of the bismuth overlay coating occurred and subsequently the performance of plain bearings may
Kondo, MakotoKawaura, HirokiShiroya, TomoyasuWatanabe, Airi
Hydrogen fuel cell is one of paths to achieve carbon neutrality transportation. In the last two decades, significant improvements have been made in compactness, efficiency and durability of fuel cell systems. For heavy duty truck applications, a life span similar to heavy duty diesel engines is required. As a critical component in the fuel cell system, air compressors play an important role to meet fuel cell systems’ high efficiency and durability requirements. In this paper, a holistic approach has been taken to develop a series of airfoil bearing centrifugal compressors for a wide range of applications from forklift, passenger vehicles to commercial vehicles, and achieve high efficiency and durability of one million start-stops. In the new platform development, cooling circuit was optimized so that the external cooling air circuit for the rotor and air bearings is no longer needed, which resulted in 4% efficiency improvement. Hollow rotor structure was adopted to achieve lightweight
Wang, QianzhenYuan, XixinTao, ZhangFeng, Jin ZengWang, JuanXiao, YongZhou, LeiXin, Jun
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
Roller bearings are used in many rotating power transmission systems in the automotive industry. During the assembly process of the power transmission system, some types of roller bearings (e.g., tapered roller bearings) require a compressive preload force. Those bearings' rolling resistance and lifespan strongly depend on the preload set during the installation process. Therefore, accurate preload setting can improve bearing efficiency, increase bearing lifespan, and reduce maintenance costs over the life of the vehicle. A new method for bearing preload measurement has shown potential for high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes
Gruzwalski, DavidMynderse, James
The drive unit of electric vehicles is a complex system consisting of an electric motor and a gear train, which work together to provide the necessary power for vehicle propulsion. One essential component within this system is the ball bearing, which supports the rotating components such as gears and shafts. This study focuses on the thermal simulation of a ball bearing within the drive unit conducted using the Volume of Fluid (VOF) method coupled with mixed timescale Conjugate Heat Transfer (CHT) in Simerics-MP+ to reduce the computational time while ensuring accuracy in the analysis. The Computational Fluid Dynamics (CFD) approach considers the geometrical details and clearances of the inner race, outer race, cage, and ball within the ball bearing. By accounting for the relative motions between these components, it can accurately model the film formation of the lubricating oil and its impact on heat removal from the bearing. The simulations are conducted at two different shaft speeds
Ballani, AbhishekMotin, AbdulDhar, SujanGanamet, AlainMaiti, DipakRanganathan, RajPandey, Ashutosh
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers the requirements for a refined paraffinic petroleum-base lubricant.
AMS B Finishes Processes and Fluids Committee
This study proposed the different micro-textures of the SC (square cylinder), SWS (square wedge shape), HS (hemispherical shape), and CR (cylindrical round) to improve the working efficiency of the journal bearing. A hydrodynamic lubrication model of the journal bearing under the impact of the changing dynamic loads is established to analyze the performance of micro-textures. The maximum oil film pressure and minimum frictional force in the journal bearing are selected as two evaluation indices. Some outstanding research results show that all the SC, SWS, HS, and CR added on the bearing surface improved the working efficiency of the journal bearing better than without the micro-textures. Moreover, the HS also improved the working efficiency of the journal bearing better than other structures of SC, SWS, and CR. To optimize the working efficiency of the journal bearing using HS, the dimension ltex and depth htex of HS should be selected and designed in a range of 3.6 < ltex ≤ 3.9 mm and
Song, FengxiangNguyen, VanliemLiu, Yaxi
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
Jha, Niraj KumarYeezaku, Antony NeominVictor, Priyanka EstherKrishnamurthy, Govindasamy
In manual transmission, bearing preload is a vital factor for optimum durability and performance of tapered roller bearings (TRB). To achieve better optimization of bearing preload, a precise measurement method is a minimum requisite. This technical paper investigates multiple ideas and develops a novel methodology for accurate bearing preload measurement, overcoming the challenges produced by the complexity of transmission design. This paper provides a systematic approach to bearing preload measurement in manual transmission along with identification of key parameters responsible for influencing bearing preload, such as rigidity and fit of the components. A comprehensive experimental study at both part level and system level was conducted to quantify the effects of above-mentioned parameters on preload and transmission performance. Furthermore, the paper explores the effect of bearing preload optimization on the durability performance of the transmission unit.
Gaurav, KumarKumar, ArunSingh, Maninder PalDhawan, SoumilSingh, KulbirKumar, KrishanSingh, Manvir
Items per page:
1 – 50 of 3149