Browse Topic: Bearings
Bearings are essential mechanical components that support external loads and facilitate rotational motion. With the increasing demand for high-performance applications in industries such as semiconductors, aerospace, and robotics, the need for accurate and robust performance evaluation has intensified. Traditionally, bearing performance has been assessed using static or quasi-static theoretical approaches. However, these methods are limited in their ability to capture time-dependent behaviors, which are critical in real-world applications. In this study, a rigid body dynamics analysis was proposed to evaluate the time-dependent behavior of bearings. The methodology was first applied to a deep groove ball bearing, and the results were compared with those obtained from bearing theory to validate the approach. Subsequently, the method was extended to an automotive wheel bearing, and the time-dependent contact angles and ball loads were analyzed under axial and radial loading conditions
Rolling bearings with optimized friction and performance characteristics can have a significant influence on reducing the power loss, design envelope and weight of hydraulic motors and pumps, gearboxes and axles in construction machinery. If correctly designed, rolling bearings can make a significant contribution to reducing carbon dioxide emissions. Most construction machinery is still operated conventionally, using diesel engines and hydraulic components. In the widely used adjustable axial piston pumps and motors, the input and output shaft are usually supported by two tapered roller bearings that are adjusted against each other. When designing the bearing support, it is advisable to reduce the preload to precisely the required minimum allowed by the load spectrum. The lower bearing preload leads to permanently lower axial forces between the tapered roller end face and inner ring rib and, therefore, to a corresponding reduction in frictional torque.
This document establishes general design criteria, tolerances, and limits of application for tooling, fixtures, and accessories for mounting and driving gas turbine engine rotors on horizontal and vertical balancing machines.
Engineering precision is an art of nuance — especially when it comes to selecting the right bearing for medical devices. What begins as a straightforward specification process quickly becomes a complex yet familiar puzzle of competing requirements. Oftentimes, engineers discover that a bearing’s performance extends beyond its basic dimensional specs, involving considerations of material properties, system integration and supply chain dynamics.
This specification covers grease for use on aircraft wheel bearings. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a qualified products list (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this
In the era of Industry 4.0, the maintenance of factory equipment is evolving with new systems using predictive or prescriptive methods. These methods leverage condition monitoring through digital twins, Artificial Intelligence, and machine learning techniques to detect early signs of faults, types of faults, locations of faults, etc. Bearings and gears are among the most common components, and cracking, misalignment, rubbing, and bowing are the most common failure modes in high-speed rotating machinery. In the present work, an end-to-end automated machine learning-based condition monitoring algorithm is developed for predicting and classifying internal gear and bearing faults using external vibration sensors. A digital twin model of the entire rotating system, consisting of the gears, bearings, shafts, and housing, was developed as a co-simulation between MSC ADAMS (dynamic simulation tool) and MATLAB (Mathematical tool). The gear and bearing models were developed mathematically, while
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
The increased importance of aerodynamics to help with overall vehicle efficiency necessitates a desire to improve the accuracy of the measuring methods. To help with that goal, this paper will provide a method for correcting belt-whip and wheel ventilation drag on single and 3-belt wind tunnels. This is primarily done through a method of analyzing rolling-road only speed sweeps but also physically implementing a barrier. When understanding the aerodynamic forces applied to a vehicle in a wind tunnel, the goal is to isolate only those forces that it would see in the real-world. This primarily means removing the weight of the vehicle from the vertical force and the rolling resistance of the tires and bearings from the longitudinal force. This is traditionally done by subtracting the no-wind forces from the wind at testing velocity forces. The first issue with the traditional method is that a boundary layer builds up on the belt(s), which can then influence a force onto the vehicle’s
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and forging stock.
This specification covers the requirements for a refined paraffinic petroleum-base lubricant.
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
This standard covers the requirements for non-separable, airframe antifriction needle bearings and corrosion-resistant and traditional materials intended for use in flight vehicle control systems with radial loads.
This standard covers the requirements for spherical, self-aligning, self-lubricating bearings that are for use in the ambient temperature range of -65 to +160 °F (-54 to +71 °C) at high cyclic speeds. The scope of the standard is to provide a liner system qualification procedure for helicopter sliding bearings defined and controlled by source control drawings. Once a liner system is qualified, the source controlled bearings may be further tested under application conditions.
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, mechanical tubing, forgings, and forging stock.
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
Items per page:
50
1 – 50 of 3132