Browse Topic: Seals and gaskets

Items (3,780)
ABSTRACT Additive/Abradable Powder Coatings (AAPC’s) are field proven, thick, solid film graphite coatings that wear in to the ideal functional geometry of mechanical components. Lubed or dry, devices lap in and run with minimized clearance and friction for highest efficiency, quietest operation, and longest life in sandy environments. AAPC’s will improve military readiness, reduce sustainment costs, and cut components logistics and fuel consumption. Processing is easy, robust and effective on new and used components in prototyping, production and remanufacturing. Worn components can be restored in theater to achieve durable, ‘better than new’ performance levels. Applications include turbos, IC pistons, lube pumps, hydraulics, roots blowers, screw compressors, refrigerant compressors, lip seal seats, and others. This paper will focus on the AAPC benefits observed on pistons and turbo compressor housings
Suman, Andrew
ABSTRACT The M1 Abrams will be the primary heavy combat vehicle for the US military for years to come. Improvements to the M1 that increase reliability and reduce maintenance will have a multi-year payback. The M1 engine intake plenum seal couples the air intake plenum to the turbine inlet, and has opportunities for improvement to reduce leakage and intake of FOD (foreign object debris) into the engine, which causes damage and premature wear of expensive components
Tarnowski, StevePennala, SteveGoryca, MaryKauth, Kevin
ABSTRACT Military vehicle survivability can be enhanced by implementing Lightweight Fuel Tanks with an Engineered Self-Sealing and Energy Absorbing solution. A thin walled plastic or aluminum fuel tank with an outer self-sealing protection coating and a properly installed ballistic baffle provide increased sealing performance as compared to amour protected fuel tank. Design features include reduced weight penalty, survivability, self-sealing against kinetic energy threats, maximum fuel in space claim, flexible design, and low tooling charges. Citation: Stuck, LW, “Self Sealing Fuel Tanks in Vehicles Without Armor”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Stuck, Larry
ABSTRACT Lip seals are vital components that serve two primary purposes – keep liquids/lubricants in and keep sand/contaminants out. An additional task is to confine pressure. Test study results indicate that self-polishing Additive Abradable Graphite Coatings (AAGC’s) will protect sealed rotating components from sand, and extend lubricant maintenance interval on gearboxes, PTO’s, and the like. Citation: A. Andrew Suman, “Improve Lip Seal Performance and Increase Sand Resistance With A Low Cost Graphite Shaft Coating”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Suman, AndrewSilvey, TomSmith, Zachary
Most of the heavy commercial vehicles are installed with Pneumatic brake system where the medium is a pressurized pneumatic air generated with the reciprocating air compressor. Heating is an undesirable effect of the compression process during loading cycles as reciprocating air compressors are concerned. Therefore it is necessary to reduce the delivery air temperature of compressor for safer operation of downstream products. The present investigation deals with the measurement of the delivery air temperature of a typical 318 cc water cooled compressor. A through steady state conjugate heat transfer analysis is conducted for the given speed and with the specification cooling water flow rate to predict the delivery air temperature. Pressure drop across the cooling water flow path has been measured and optimum flow rate is arrived to meet the design requirement. The results of characteristic analysis and comparative research show that the cooling system can obviously reduce the cylinder
N, PrabhakarV A, Sahaya IrudayarajRaj, AmalT, Sukumar
This SAE Aerospace Recommended Practice (ARP) provides an overview of the various types of polytetrafluoroethylene (PTFE) backup rings for hydraulic and pneumatic fluid power applications, including their advantages and disadvantages
A-6C2 Seals Committee
This specification covers a cast leaded-tin bronze in the form of sealing rings (see 8.5
AMS D Nonferrous Alloys Committee
Aerospace engine components like discs, blisks and rings are engineered to perform in extreme operating environments. They need to withstand intense heat and stress and be as lightweight as possible to meet exacting specifications. These parts are also notoriously difficult to machine, and manufacturers who work with them must meet serious challenges of their own. Holding tight tolerances, maintaining predictable tool life and accounting for internal material stress relief from material removal can be especially difficult when profiling complicated features such as thin-walled flanges, undercut pockets and seal fins
This specification covers a fluorocarbon (FKM) rubber in the form of O-rings, O-ring cord, compression seals, and molded-in-place gaskets for aeronautical and aerospace applications
AMS CE Elastomers Committee
Innovators at NASA Johnson Space Center have developed a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces to be used for inflatable space habitats
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS, AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7410 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
Sodium is used as a coolant in the fast reactor’s primary and secondary loops to transfer enthalpy from the reactor and transport it to the expander. However, handling sodium is difficult, and it can be hazardous if it comes into contact with air, which causes an exothermic reaction. During maintenance of sodium loop components, isolation is typically accomplished with valves. The valve leaking is caused by the seal or the gland. Seal leakage is compensated because it occurs within the line, but gland leakage should be zero because the liquid is harmful. To address this requirement, the author attempted to design a special type of valve in which sodium is allowed to rise through an annular path along the stem and heat transfer is augmented in such a way that the required enthalpy is evacuated to freeze sodium inside the annular path, confirming the fail-safe zero gland leakage. A finned tube assembly is fitted around the stem to achieve this concept of expanded surface heat transfer
Kudiyarasan, SwamynathanBiswas , Sitangshu Sekhar
The present study discusses the determination of the Seal drag force in the application where an elastomeric seal is used with a metallic interface in the presence of different fluids. An analytical model was constructed to predict the seal drag force and an experimental test was performed to check the fidelity of the analytical model. A Design of Experiment (DoE) was utilized to perform an experimental test considering different factors affecting the Seal drag force. Statistical tools such as the Test for Equal Variances and One Way Analysis of Variance (ANOVA) were used to draw inferences for the population based on samples tested in the DoE test. It was observed that Glycol fluids lead to lubricant wash-off resulting in increased seal drag force. Additionally, non-lubricated seals tend to show higher seal drag force as compared to lubricated seals
Yarolkar, MakrandTelore, MilindPatil, Sandip
Unlike conventional heat shrink tubes or enclosure systems which only seals wires and splices on the outside, a novel Acrylate based sealing technology developed and introduced by Eurotech is a low viscosity fluid formulated to be applied to the splices either in liquid droplets or by dipping, utilizes fast capillary-wicking action and quick self-cure inside the wires to form a robust, cost effective, flexible, impenetrable seal to prevent moisture damage of wire harnesses and associated electrical components. This technology is an enabler of new wire harness architectures currently limited by the shortcomings of conventional sealing products such as heat shrink tubes which come up short when the splice configurations or geometries become too complex or difficult for sealing from the outside. Sealing mechanism investigation was launched and the results of the analytical experiments are presented to reveal how this unique sealing technology works to effectively withstand pneumatic air
Chung, Dennis
Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket (MLS) to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. The current design of cylinder head gasket mainly evaluates the sealing performance in hot and cold state through finite element analysis. The sealing performance of cylinder head gasket is mainly determined by sealing pressure, fatigue and lateral movement in the joint, which have been widely studied [1]. However, no one has been involved in the study of factors affecting sealing pressure and lateral movement in the joint. This paper focuses on the influence of the temperature distribution and rigidity of cylinder block and cylinder head on the sealing pressure of cylinder head gasket and the lateral
Dong, Shen XiaoJingwei, MaHu, Jia JiaYu, Peng FeiWang, Jin LinShen, Jing QianJi, Lei
As part of the development of its new powertrain consisting of two electric motors, a combustion engine and a gearbox, Renault SAS followed an original approach to achieve an assembly with an optimized, robust, and reliable link between the main electric motor and the gearbox. The running operation optimization as well as the high reliability is achieved by processing the following topics: filtration of vibrations and operating jolts; solving of tribological problems specific to splined connections, such as fretting corrosion and abrasive tooth wear; avoidance of potential seizure of elements with cyclic relative slippage under load; and eventually, control of wear and tear on the sealing and damping O-rings, which must accept oscillating translational movements at the same time as torque transfer. The aim of this article is to retrace the main steps taken to achieve the desired reliability and performance targets for this type of product. The most remarkable points of this approach
Hay, MaximeDutfoy, LaurentLigier, Jean-louisMerçay, Patrice
Inverter is the power electronics component that drives the electrical motor of the electrical driven compressor (EDC) and communicates with the car network. The main function of the inverter is to convert the direct current (DC) voltage of the car battery into alternating current (AC) voltage, which is used to drive the three-phase electric motor. In recent days, inverters are present in all automotive products due to electrification. Inverter contains a printed circuit board (PCB) and electronic components, which are mounted inside a mechanical housing and enclosed by a protective cover. The performance of the electrical drive depends upon the functioning of the inverter. There is a strong demand from the customer to withstand the harsh environmental and testing conditions during its lifetime such as leakage, dust, vibration, thermal tests etc. The failure of the inverter leads to malfunction of the product, hence proper sealing and validation is necessary for inverters to protect
Duraipandi, Arumuga PandianLeon, RenanRibot, HerveRaja, Antony VinothFarooqui, AltafhussainChandrasekaran, Vinoth-Roy
Many surgeries today are performed via minimally invasive procedures, in which a small incision is made, and miniature cameras and surgical tools are threaded through the body to remove tumors and repair damaged tissues and organs. The process results in less pain and shorter recovery times compared to open surgery
This document establishes standard gland design criteria and dimensions for static axial O-ring seal applications without anti-extrusion devices specifically for engines and engine control systems operating at a maximum pressure of 1500 psi (10345 kPa). NOTE: The criteria herein are similar, but not identical, to those in AS4716 and the legacy standard MIL-G-5514
A-6C2 Seals Committee
Gaskets are used widely for sealing of bolted joints. This paper focuses on Rubber over Metal (ROM) gaskets, which are widely used in the automotive industry. Finite Element Analysis (FEA) of ROM gaskets is complex and involves material (hyper-elastic), contact and geometric nonlinearity. Gaskets can be flat or have one or multiple beads. Analytical approaches are available for flat gaskets without bead patterns. This paper focuses on analyzing ROM gaskets with beads in automotive axle differential carrier housings and cover pans. This paper describes a simplified FEA approach that uses 1D and 2D elements with derived properties for gasket joints instead of modeling ROM gaskets with three-dimensional (3D) elements. The major characteristics that determine sealing behavior are contact pressure and contact width. These characteristics are determined by the cover pan deflection. The cover pan deflection was calculated using a simplified FEA approach. The regression model is used to
Samshette, ShivkumarShedge, VikramNilangekar, Abhijit
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head. The decision to select aluminium alloy for both the cylinder block and head still allows the design
Dhadse, AshishDharan R, BharaniVellandi, VikramanSasikumar, MLoganathan, S.
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties. A large number of researches on rubber/graphene compounds preparation methods and applications can be found in literature and results are promising
Veloso, VerônicaPinto, EduardoSantiago, MarceloBortoli, BrunaRibeiro, WillianPolkowski, Rodrigo
This specification covers an ethylene propylene rubber in the form of molded rings, molded compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications
AMS CE Elastomers Committee
This specification covers a fluorocarbon (FKM) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7259 specification
AMS CE Elastomers Committee
This specification establishes the requirements for a polysulfide sealing compound in putty consistency to be used for form-in-place sealing of removable doors, skins, and panels
AMS G9 Aerospace Sealing Committee
This SAE Aerospace Standard (AS) specifies solid, un-cut polytetrafluoroethylene (PTFE) retainers (backup rings) for use in glands in accordance with AS4716. They are usually used in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with O-rings and other seals for static and dynamic applications
A-6C2 Seals Committee
This SAE Aerospace Standard (AS) provides dimensions for a standardized test fixture that can be used to evaluate the dynamic performance requirements defined in some elastomer material standards of O-rings in rod glands per AS4716
AMS CE Elastomers Committee
This SAE Aerospace Standard (AS) specifies solid polytetrafluoroethylene (PTFE) retainers (backup rings) for use in static glands in accordance with AS5857. They are usually for use in hydraulic and pneumatic systems as anti-extrusion devices in conjunction with O-rings and other seals
A-6C2 Seals Committee
This material has resistance to diester-based engine oil (MIL-PRF-7808) and fuel, but usage is not limited to such applications. This material is not suitable for use in synthetic phosphate ester based hydraulic fluids (AS1241) or helicopter transmission lubricating oils (DOD-PRF-85734, MIL-PRF-32538). For gas turbine engine lubricating oils (AS5780, MIL-PRF-23699), resistance varies by class and should be evaluated individually (see Note regarding high performance oils). This material has a typical service temperature range of -70 to +392 °F (-56.7 to +200 °C) for Class 1 and Class 2 and -70 to +437 °F (-56.7 to +225 °C) for Class 3. The service temperature range of the material is a general temperature range, but the presence of particular fluids and specific design requirements may modify this range. Each application should be considered separately. It is the responsibility of the user to determine that this specification is appropriate for the environments (temperature range
null, null
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the application of polymeric bearings for linear actuation systems. Design considerations are included for recommended fit and function in conjunction with material selection and load-bearing capability
A-6C2 Seals Committee
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc
A-5B Gears, Struts and Couplings Committee
This SAE Recommended Practice is intended for hubs and spoke wheels used on Class 6, 7, and 8 truck/truck-tractor non-powered front axles, powered and non-powered rear axles and trailer axles, for which bearing setting is manually adjusted. Assemblies using spacers to control bearing preload and endplay may differ in geometry and bearing componentry
Truck and Bus Wheel Committee
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7379 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
This document provides a method/procedure for specifying the properties of vulcanized elastomeric materials (natural rubber or synthetic rubbers, alone or in combination) that are intended for, but not limited to, use in rubber products for automotive applications. This document covers materials that do not contain any re-use, recycled, or regrind materials unless otherwise agreed to by manufacturer and end user. The use of such materials, including maximum percent, must be specified using a “Z” suffix. This classification system covers thermoset High Consistency Elastomers (HCEs) only. Thermoplastic Elastomer (TPE) materials are classified using SAE J2558. Silicone Formed In Place Gasket (FIPG) systems such as Room Temperature Vulcanized (RTV) Silicones, and Liquid Silicone Rubber (LSR) systems are classified using ASTM F2468
Committee on Automotive Rubber Specs
Items per page:
1 – 50 of 3780