Browse Topic: Seals and gaskets
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
This specification covers an acrylonitrile-butadiene rubber in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
Plastic materials are used for a wide variety of spacecraft applications including seals, bearings, fasteners, electrical insulators, thermal isolators, and radomes. Selecting plastics for use in space is complex due to wide operating temperature ranges, vacuum conditions, and exposure to radiation and atomic oxygen. Additionally, some spacecraft applications require sealing flammable propellants such as hydrogen and oxygen. This article will present some design considerations when selecting plastics for use in spacecraft. It will provide rich data on the performance characteristics of plastics as well as examples of successful spacecraft applications.
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings molded from AMS7274 rubber. It shall be used for procurement purposes.
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings machined from AMS3617 polyamide material. It shall be used for procurement purposes.
This specification controls surface condition, manufacturing defects and inspection requirements, and defines methods of measurement for elastomeric toroidal sealing rings (O-rings) for static (including gasket) applications.
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings machined from AMS3650 material. It shall be used for procurement purposes.
This SAE Aerospace Standard (AS) specifies the dimensions, tolerances and size codes (dash numbers) for O-rings with a larger cross-section than those to AS568, for use in glands per MIL-G-5514 where squeeze at low temperature is often insufficient to provide a leak-tight seal.
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings.
This SAE Aerospace Standard (AS) provides a standardized test procedure that can be used to evaluate material capability in a dynamic sealing application. This procedure will be utilized by applicable elastomer material specifications which are used for production of O-rings and other seals. This specification is applicable to the dynamic testing requirements for aerospace elastomer parts utilizing materials conforming to AMS7XXX series specifications, user specifications, or print on a Purchase Order (PO) that calls out this document for aerospace applications. This procedure is intended for testing NBR. Other elastomers may have different requirements which will require a separate procedure.
This aerospace test standard establishes the requirements and procedures for evaluating and comparing the impulse fatigue performance of high pressure hydraulic fittings and tubing. This test method may be used to test similar fluid system components, if desired.
This document recommends standard gland dimensions for static radial O-ring seal applications specifically for engine and engine control systems and provides recommendations for modifying these glands in special applications.
This document establishes standard gland design criteria and dimensions for static axial O-ring seal applications without anti-c operating at a maximum pressure of 1500 psi (10345 kPa).
For years the NVH community has known that openings in the dash sheet metal, such as holes to pass wire harnesses through, creates an acoustical weak point that limits the potential noise reduction of the dash insulation system. These pass-throughs can also be a source of water leaks into the vehicle’s interior. With internal combustion engines and now electric inverter power plants generating significant high frequency sound, the need to seal this area is vital. By molding a lightweight barrier that draws through the fiber/absorber interior decoupler and dash sheet metal which mates to a secondary seal molded into an outer engine dash decoupler, the two opposing molded barriers meet in the engine compartment and compress together forming a seal around the wire harness. This male/female molded seal replaces the conventional snap in grommet and eliminates noise/water leaks. The system Sound Transmission Loss (STL) is equivalent to similarly insulated sheet metal with no holes
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down. The current used dynamic seal
This specification covers a cast tin bronze in the form of sealing rings (see 8.5).
A lighter, colorable and fully recyclable thermoplastic body seal from Cooper Standard won the annual Innovations in Lightweighting Award given by the Society for Automotive Analysts. At the society's December meeting, Jay Murdock, senior product development engineer for Cooper Standard, accepted the award and said its FlexiCore product was designed with an eye on strong trends in what OEMs want from suppliers: sustainability, carbon neutrality, lightweighting and recyclability.
This material type has resistance to hot air, but generally has poor resistance to fuels and lubricants, but usage is not limited to such applications. Each application should be considered separately. This material type has a typical service temperature range of -85 to 500 °F (-65 to 260 °C). The operating temperature range of the material is a general temperature range, but the presence of particular fluids and design parameters may modify this range. Recommendations on the material selection are based on available technical data and are offered as suggestions only. Each user should make his own tests to determine the suitability for his own particular use.
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications.
When a physician injects a patient with medication from a glass vial, they want to know that the drug inside that vial is sterile and stable. That’s where Genesis Packaging Technologies comes in. Genesis Packaging Technologies, formally a division of the West Company, was founded in 1946. Today, Genesis is a one of the leaders in the science and technology of parenteral vial sealing and residual seal force testing.
Items per page:
50
1 – 50 of 3331