Browse Topic: Fasteners

Items (5,293)
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws
E-25 General Standards for Aerospace and Propulsion Systems
ABSTRACT Protection Engineering Consultants (PEC) has performed static and dynamic-pendulum tests on bolted and welded connection sub-assemblies to generate data for development and validation of modeling approaches capable of accurately predicting the behavior of connections exposed to shock loads. The connections consisted of Rolled Homogeneous Armor (RHA) steel plates, Grade 8 bolts, and fillet welds of ER80-S wire, as typically used in armored vehicles. A summary of the forty physical tests on nine connection configurations are provided along with strain gage and Digital Image Correlation (DIC) data. The specimens were designed to have typical failure modes, i.e. bolt shear, plate tear-out, and weld shear fracture. Using these data, high-fidelity numerical models were developed, with exceptionally good comparisons to the experimental data. During the development of the numerical models, crucial modeling parameters were identified and were shown to have significant influence to the
Hadjioannou, MichalisBarsotti, MattSammarco, EricStevens, David
ABSTRACT In this paper a new bolt attachment method was explored, where the attaching bolts were divided into two sets. The first set of bolts was tightened and was used to connect the underbody plate to the hull under ordinary operations. The second set of bolts connecting the plate and the hull were not tightened and had some extra axial freedom. Under blast loading, the first set of bolts would break due to high tensile and shear loads, but the second set of bolts would survive due to extra axial freedom which allows the plate and the hull vibrate and separate from each other to a certain extent. A simulation model was developed to verify this concept. Three underbody plate-hull connection approaches were simulated and analyzed: 1) all tightened bolts, 2) some bolts not fully seated, 3) all bolts not fully seated. The simulation results show that with option 1), 100% of the bolts broke under the blast loading. With option 2) the not fully seated bolts survived and continued to
Kang., JianLiedke, MarkMason, James
ARP6366 defines a comprehensive and widely-accepted set of specification guidelines to be considered by those seeking to use or design fiber optic sensors for aerospace applications. Some of the most common applications for fiber optic sensing within aerospace include inertial guidance and navigation (gyros) and structural monitoring (temperature, strain, and vibration sensing). Common sensor infrastructure elements include: transmitting and receiving opto-electronics (e.g., sources and receivers); multiplexing and demultiplexing optics; optical cabling; and signal processing (both hardware and firmware/software
AS-3 Fiber Optics and Applied Photonics Committee
This SAE Aerospace Recommended Practice establishes the requirements and procedures for eddy current inspection of open fastener holes in aluminum aircraft structures
AMS K Non Destructive Methods and Processes Committee
This specification covers closely-wound helical coil, screw thread inserts made from an age hardenable nickel base alloy formed wire of the type identified under the Unified Numbering System as UNS N07750. The inner surface of the insert coil, after assembly into a screw thread tapped hole, provides internal threads of standard 60° Unified Form
E-25 General Standards for Aerospace and Propulsion Systems
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inches: a Wrenching Nuts: i.e., hexagon, double hexagon and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion and heat resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180,000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers aircraft-quality solid rivets and tubular end rivets made from a corrosion-resistant steel of the type identified under the Unified Numbering System as UNS S34700
E-25 General Standards for Aerospace and Propulsion Systems
Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation
Conventional drug delivery is often like cracking a nut with a sledgehammer. Whether the drug is swallowed, injected, inhaled, or absorbed through the skin, it ultimately diffuses to most parts of the body, including those where it isn’t needed — or where it even might cause harm
This specification covers a corrosion-resistant steel in the form of wire
AMS F Corrosion and Heat Resistant Alloys Committee
Fastener joints play a critical role within aircraft engine structures by connecting vital structural members and withstanding various load scenarios, including impact occurrences like foreign object damage (FOD) on engine nacelles. The precise modeling and simulation of fastener joint behavior under dynamic loads are pivotal to ensuring their structural integrity and functionality. Simulation is essential for minimizing costly experiments in evaluating the challenging design aspect of containing FOD. Prior investigations on fastener joints have predominantly focused on quasi-static or in-plane dynamic loads. This study introduces a comprehensive methodology to simulate the impact dynamics of fastener joints, accommodating both in-plane and out-of-plane loads. The approach investigates the significance of rate-dependent and three-dimensional stress effects, including some comparative investigations using a simplified sequential stress update formulation available in LS-DYNA to
Singh, ShatrughanRoy Mahapatra, Debiprosad
In the intricate world of orthopedic device manufacturing, precision quality isn’t just a requirement, it’s the cornerstone of life-changing patient outcomes. SpiTrex Orthopedics, a global leader in medical device contract manufacturing, specializes in implants for the spine, trauma, and extremity markets (Spi.Tr.Ex.), including spinal rods, cross connectors, hooks, and a variety of stateof-the-art screws, nails, and plates. The company has a multi-site smart factory manufacturing footprint across North America and Europe
This specification establishes the requirements for flake or granular cetyl alcohol, solvents for dissolving the cetyl alcohol, preparation and application requirements for use of cetyl alcohol as an installation lubricant on mechanical fasteners, such as pins, bolts, nuts, washers, threaded or nonthreaded fastening devices, and inspection criteria for coated parts
E-25 General Standards for Aerospace and Propulsion Systems
This article presents a strategy for the virtual calibration of a large-scale model representing a self-piercing rivet (SPR) connection. The connection is formed between a stack of three AA6016-T4 aluminum sheets and one SPR. The calibration process involves material characterization, a detailed riveting process simulation, virtual joint unit tests, and the final large-scale model calibration. The virtual tests were simulated by detailed solid element FE models of the joint unit. These detailed models were validated using experimental tests, namely peeling, single-lap joint, and cross-tests. The virtual parameter calibration was compared to the experimental calibration and finally applied to component test simulations. The article contains both experiments and numerical models to characterize the mechanical behavior of the SPR connection under large deformation and failure
André, VictorCostas, MiguelLangseth, MagnusMorin, David
This procurement specification covers tubular, blind rivets fabricated from a corrosion resistant nickel-copper alloy of the type identified under the Unified Numbering System as UNS N04405, and of 52 ksi minimum shear strength for self-plugging style rivets
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers aircraft-quality solid rivets made from a corrosion resistant nickel-copper alloy of the type identified under the Unified Numbering System as UNS N04400 and of 46 ksi minimum shear strength
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Standard (AS) establishes the geometric control requirements for bolts, screws, and studs where worded notes and symbolized notes are used for straightness, concentricity, squareness, and runout
E-25 General Standards for Aerospace and Propulsion Systems
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods. The first is the virtual chip test
Jan, JamesKhorran, AaronHall, MarkTorcellini, SabrinaDoody, David
Threaded joints are considered the most basic of components. Although in use for over a century, significant problems still exist with their usage. Wheel bolt loosening in overloaded segments such as HD tippers and high-speed intercity buses poses a safety challenge for drivers, passengers, and pedestrians. Wheel nut loosening is a notable cause of service, fretting, and cracks in the mating components; contributing a significant chunk of warranty cost to the company. The need of the hour is to reinforce these joints while keeping resources at bay. This paper establishes a methodology for the evaluation and design of a safe wheel bolt joint interface including key parameters such as embedding, axial forces, and shear forces. It is necessary to obtain the minimum preload requirement for a wheel bolt joint to hold the clamped surfaces intact, which if not maintained otherwise would cause relative movement, play, shear load onto the bolt, and eventually failure. For physically auditing
Raghatate, ShreyasSharma, SuchitSindal, Vinayak
Items per page:
1 – 50 of 5293