Browse Topic: Fasteners
The smart industrial revolution in any organization brings faster product delivery to the market, which can meet customer expectations and full life requirements without failure. Failure per machine (FPM) is a very critical metric for any organization considering warranty cost and customer perception. One such area which needs a detailed evaluation is bolted joints. Bolts play a pivotal role when integrating a subassembly with the main structure. Often, it is challenging to address bolt failure issues due to vibration induced in structures. Current bolt virtual evaluation methods help to evaluate bolts in simple loading conditions such as axial and bending loads. But it is quite complicated to evaluate the bolts which are prone to vibration loading. Traditional methods of using gravity loads miss out on dynamic characteristics, hence it must be simulated using modal dynamic analysis. With the current vADV (virtual accelerated design verification) method it is not possible to capture
Plastic materials are used for a wide variety of spacecraft applications including seals, bearings, fasteners, electrical insulators, thermal isolators, and radomes. Selecting plastics for use in space is complex due to wide operating temperature ranges, vacuum conditions, and exposure to radiation and atomic oxygen. Additionally, some spacecraft applications require sealing flammable propellants such as hydrogen and oxygen. This article will present some design considerations when selecting plastics for use in spacecraft. It will provide rich data on the performance characteristics of plastics as well as examples of successful spacecraft applications.
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5-inch, 22.5-inch, and 24.5-inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
This SAE Information Report is provided as an advisory guide and is not intended to be made a procurement requirement. Individual application discretion is recommended. The content has been presented as accurately as possible, but responsibility for its application lies with the user. The document covers a number of the variables in the torque-tension relationship: friction, materials, temperature, humidity, fastener and mating part finishes, surfaces, and the kind of tightening tools or equipment used. With an understanding of the variables to be considered, several methods to determine and tighten fasteners using the torque-tension relationship are identified. This guide is limited in application to fasteners with ISO-metric or UN series threads. Other thread types, such as self-tapping or thread forming, may apply to some aspects of this standard but are not specifically covered. The procedures described in this document are based on general factors for the determination of the
This paper presents an analytical approach for identifying suspension kingpin alignment parameters based on screw axis theorem and differential calculation model. The suspension kingpin caster and inclination alignment parameters can produce additional tire force, which affects vehicle handling dynamics. In wheel steering process, the multi-link suspension control arms lead to movement of the imaginary kingpin, which can cause change in suspension kingpin alignment parameters. According to the structure mechanism of commercial vehicle multi-link independent suspension, the kinematics characteristics of imaginary kingpin were analyzed based on the screw axis theorem. The angular velocity and translation velocity vectors were calculated. In order to avoid the influence of bushing deformation, the unique differential identification model was established to evaluate the suspension kingpin alignment parameters, and the identification results were compared with the ADAMS/Car data. The
Biomedical metal implant materials are widely used in clinical applications, including dental implants, hip replacement, bone plates, and screws. However, traditional manufacturing processes face limitations in meeting customized medical needs, internal structural control, and efficient material utilization. For example, when producing complex-shaped titanium alloy parts using conventional methods, the material consumption ratio is as high as 10:1–20:1, leading to significant material waste.
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inch: a Wrenching Nuts: i.e., hexagon, double hexagon, and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion- and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws.
Items per page:
50
1 – 50 of 5105