Browse Topic: Parts and Components
Bearings are essential mechanical components that support external loads and facilitate rotational motion. With the increasing demand for high-performance applications in industries such as semiconductors, aerospace, and robotics, the need for accurate and robust performance evaluation has intensified. Traditionally, bearing performance has been assessed using static or quasi-static theoretical approaches. However, these methods are limited in their ability to capture time-dependent behaviors, which are critical in real-world applications. In this study, a rigid body dynamics analysis was proposed to evaluate the time-dependent behavior of bearings. The methodology was first applied to a deep groove ball bearing, and the results were compared with those obtained from bearing theory to validate the approach. Subsequently, the method was extended to an automotive wheel bearing, and the time-dependent contact angles and ball loads were analyzed under axial and radial loading conditions
The interaction of electric, electronic (E/E) and mechanical components defines the quality of a BEV’s powertrain. Component selection, their integration and calibration aim at meeting legal requirements for EMC and safety as well as competitive targets for efficiency, NVH and driving comfort. These tasks in particular need attention on electromagnetic events on the DC bus, the high-power electronics of inverters, the e-motors, and the drive shaft. Each component within this environment is defined by its electromechanical features with variabilities selected from a large set of operating parameters. Consequently, a complete powertrain and its controllers give rise to endless combinations for powertrain operation. How to understand and avoid risk laden and ineffective parameter options, how to find powertrain control parameters for safe, efficient and comfortable operation? And how to find solutions within competitive development timeframes? Particular issues include high voltage risks
Medical tubing is an essential component of countless healthcare applications, from intravenous (IV) and oxygen lines to catheters and diagnostic equipment. These tubes, often made of clear flexible polymers, must be produced to exacting standards: free of contaminants, strong under pressure, and biocompatible. However, the joining process to connect these tubes can introduce significant manufacturing challenges.
The increased functionality of today’s medical devices is astounding. Optical devices, for example, analyze chemicals, toxins, and biologic specimens. Semiconductor devices sense, analyze, and communicate. Microelectromechanical system (MEMS) devices utilize inertial methods to detect motion, direct light, and move components over short distances. Radiofrequency (RF) devices communicate wirelessly to other devices directly and remotely over the Internet. Handheld acoustic devices scan the body and build a virtual 3D model that shows conditions in the body. The innovation currently happening in the medical device industry is staggering, limited only by imagination and finding technical methods to implement the vision.
September is unofficially known in the industry as a key forecasting month. It's when several suppliers lock in their revenue forecasts for the next year. As we approach 2026, there are still several balls in the air with respect to the trajectory of the light vehicle market. Looming U.S. tariffs, negative economic and geo-political shifts, and the impact of changes to U.S. vehicle emission legislation have all brought with them a cloud of uncertainty that hovers over the industry. An industry that requires greater planning clarity, not less. Let's start with the tariffs. As of this writing, the major vehicle and parts importers outside of North America have agreed to 15% U.S. tariffs for vehicles and parts. In the case of Japan and the European Union, this is 12.5 percentage points higher than 2024 levels. In the case of South Korea, it's 15 points more, as there was a free trade agreement in force. While these framework agreements drive some level of certainty, the final details
Researchers at the Department of Energy’s Oak Ridge National Laboratory are using advanced manufacturing techniques to revitalize the domestic production of very large metal parts that weigh at least 10,000 pounds each and are necessary for a variety of industries, including clean energy.
As fast as modern electronics have become, they could be much faster if their operations were based on light, rather than electricity. Fiber optic cables already transport information at the speed of light, but to do computations on that information without translating it back to electric signals will require a host of new optical components.
This SAE Information Report is provided as an advisory guide and is not intended to be made a procurement requirement. Individual application discretion is recommended. The content has been presented as accurately as possible, but responsibility for its application lies with the user. The document covers a number of the variables in the torque-tension relationship: friction, materials, temperature, humidity, fastener and mating part finishes, surfaces, and the kind of tightening tools or equipment used. With an understanding of the variables to be considered, several methods to determine and tighten fasteners using the torque-tension relationship are identified. This guide is limited in application to fasteners with ISO-metric or UN series threads. Other thread types, such as self-tapping or thread forming, may apply to some aspects of this standard but are not specifically covered. The procedures described in this document are based on general factors for the determination of the
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5-inch, 22.5-inch, and 24.5-inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
This ARP provides definitions and background information regarding the physical performance and testing of DDVs. This ARP also provides extensive guidance for the preparation of procurement specifications and functional testing.
Items per page:
50
1 – 50 of 34114