Browse Topic: Hardware

Items (2,529)
In response to the escalating demand for high-performance, miniaturized, and integrated radio frequency (RF) systems, this research explores the application of the Zynq UltraScale+ RFSoC XCZU47DR chip in the realm of integrated RF transceiver technology. An 8-channel, 4.8Gsps multi-channel distributed collaborative spectrum sensing architecture has been designed, incorporating lightweight IQ neural network, which comprises a convolutional layer, three Bottleneck Units (BNU), a Global Average Pooling (GAP) layer, and a Fully Connected (FC) layer. Notably, each BNU encapsulates one or two inverted bottleneck residual blocks that integrate the concepts of inverted residual blocks and linear bottlenecks. The parameter counts and computational complexity associated with the convolution operation are significantly reduced to merely 11.89% of those required by traditional networks. The performance metrics of the hardware circuit were validated through a constructed test system. Within a 2GHz
Chen, WangjieYang, JianZhu, WeiqiangShi, SonghuaZhou, MingyuFan, Zhenhong
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
Feroz Ali, L.Madhankumar, S.Hariush, V.C.Jahath Pranav, R.Jayadeep, J.Jeffrey, S.
This study meticulously examines the ignition coil (IG), a pivotal component in engine operation, which transforms the low voltage from the battery into the high voltage necessary for spark plug electrode flashover, initiating the combustion cycle. Considering the importance of IG coils in engine operation which has a direct impact on the engine performance. Any failure in the IG coils is judged as a critical failure and encompasses severe repercussions. The paper details an investigation into the issue of ‘White Deposition’ on IG coils. White deposit was observed in IG Coils during new model development in bench level durability test. A comprehensive failure analysis was conducted, employing vibration analysis, thermal analysis, and chemical analysis of the white deposits to ascertain the root cause. Subsequent to identifying the root cause, the study elaborated on hardware design enhancements as a solution. These design changes were rigorously tested on engine benches, confirmed for
Patel, Hardik ManubhaiGupta, VineetChand, SubhashKumar, Nitish
ABSTRACT Interest in application containerization has been on the rise in recent years within the embedded and secure computing communities. Containerization within embedded systems is still relatively new and thus the question of its practical use in secure environments is still unanswered. By using proven kernels and virtual machines, containerization can help play a key role in application development and ease of deployment within trusted computing environments. Containerization can bring many benefits to the development and deployment of secure applications. These benefits range between ease of development and deployment through use of unified environments to security benefits of namespaces and network isolation. When combined with the seL4 microkernel and DornerWorks use of the VM Composer toolset, mixed criticality systems incorporating containerization can be rapidly and easily developed and deployed to embedded hardware. This paper describes the various advantages, use-cases
Prins, TaylorVanVossen, RobertBarnett, TomElliott, Leonard
ABSTRACT Vehicle electrification technology has demonstrated its effectiveness for passenger vehicles, mainly due to environmental performance needs to meet fuel economy and green-house-gas emissions standards. Military vehicles require, among other specific features, not only the ability to move undetected but to perform at the lowest combined fuel and energy consumption possible. An experimental prototype HMMWV XM1124 with a series hybrid powertrain, which provides the ability for electric mode only and hybrid operation for reducing fuel consumption, is being investigated. The aim of this paper is to create a model of XM1124, validate it and utilize it to analyze the effect of vehicle electric range and performance. Additionally, the validated model allows evaluation of various operating strategies and hardware configurations for reducing the fuel consumption and improving vehicle performance
Gauchía, A.Worm, J.Davis, C.Naber, J.
ABSTRACT This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of sub-domains that are each managed by a separate core/accelerator (CPU/GPU) pair. The five components at the core of HCT, which ultimately enable the distributed/heterogeneous computing approach to large-scale dynamical system simulation, are as follows: (a) a method for the geometric domain decomposition; (b) methods for proximity computation or collision detection; (c) support for moving data within the heterogeneous hardware ecosystem to mirror the migration of simulation elements from subdomain to subdomain; (d) parallel numerical
Negrut, DanHeyn, TobySeidl, AndrewMelanz, DanGorsich, DavidLamb, David
ABSTRACT One of the best ways to achieve full hardware utilization while maintaining a strict level of security and safety in a single System on a Chip (SoC) is through the use of virtualization. In this paper, we will explain the capabilities of the Xilinx Zynq UltraScale+ MultiProcessor SoC (MPSoC) and how they relate to target technology areas such as ARM processors and multi-core technology. We will also explain the features of Xen that aid in improving the safety and security of a virtualized system. We will provide examples of how to utilize these features, identify benefits, and explain how they can be used to implement several technology features including: SWAP-C reductions via consolidations, modular software architectures, and integration of multiple real-time operating systems
VanVossen, Robert
ABSTRACT Presenting a reference architecture for High Performance Embedded Computing for use in Ground Vehicles, based on OpenVPX, up to 40 Gigabit / Second data fabrics (Infiniband and Ethernet), methods of Remote Direct Memory Access, and Open Standard software layers (OFED). How to provide the appropriate chassis and backplanes to accommodate the HPEC modules, Signal I/O, and data fabrics which can then provide sophisticated capabilities, such as software defined radios, active protection systems, electronic warfare, and sensor processing (fusion and analysis). Illustrate paths for technology refresh, showing historical and expected gains in hardware performance across technology refresh cycles and the SWaP-C reduction for a fixed amount of processing capacity over time
Jedynak, David
ABSTRACT A discussion on the utility of physics-based compact thermal models to guide the design, integration, operation and control of thermally sensitive vehicle components is presented. Effective component selection requires honest and accurate representation of the key performance attributes expressed by physics-based models. Parallel developments and lessons learned from the Electronics Industry on component packaging and characterization is discussed. An example application of a physics-based model driven design is presented for an Electrical Energy Dissipater design used on typical hybrid vehicles. Low fidelity models are used early in the design to support system requirements decomposition into discreet design attributes. High fidelity thermal and electromagnetic models are used to explore the design space and to optimize performance metrics. Accurate and robust reduced order thermal models are used for the continuous prognostic, diagnostic monitoring and control of the device
Kassinos, AdonisLippsmeyer, JeffreyWebb, Steven
ABSTRACT Model based design techniques are being used increasingly to predict vehicle performance before building prototype hardware. Tools like ADAMS and Simulink enable very detailed models of suspension components to be developed so vehicle performance can be accurately predicted. In creating models of vehicle systems, often there is a question about how much component detail or model fidelity is required to accurately model system performance. This paper addresses this question for modeling shock absorber performance by comparing a low fidelity and high fidelity shock absorber model. A high fidelity and low fidelity mathematical model of a shock absorber was developed. The low fidelity shock absorber model was parameterized according to real shock absorber hardware dimensions. Shock absorber force vs. velocity curves were calculated in Simulink. The results from the low fidelity and high fidelity model were compared to shock absorber force vs. velocity test results. New vehicle
Masini, ChrisYang, Xiaobo
ABSTRACT A cybersecurity exploit can be crafted to affect the vehicle diagnostic adapter system, which consists of the technician, vehicle diagnostic adapter, device drivers, and maintenance software all working together in a trusting relationship. In this paper, application layer encryption of the SAE J1939 diagnostic traffic between the vehicle diagnostic application and the in-vehicle secure gateway is developed to mitigate the vulnerabilities in potential attack paths. The proposed encryption strategy uses AES-128, which uses 16-byte cipher blocks. The secure connection is established by adjusting the bit rate to over twice the normal speed and packing a single J1939 message into two encrypted sequential CAN frames, The in-vehicle diagnostic gateway employs a hardware security module. A provisioning process is employed wherein the diagnostic application and the hardware security module both generate public-private key pairs. An elliptic curve Diffie-Hellman (ECDH) key exchange then
Daily, Jeremy S.Kulkarni, Prakash
The next-gen 15-liter diesel engine meets all 2027 EPA emissions regulations while boosting fuel efficiency. Cummins provided extensive details of the design and engineering efforts involved in developing the new HELM version of its X15 diesel engine. The company says its new engine will offer up to a 7% improvement in fuel economy compared to the current EPA 2024-certified X15 while also meeting all 2027 emissions targets. Truck & Off-Highway Engineering was invited to tour the company's headquarters in Columbus, Indiana, where journalists were given a comprehensive update on the hardware powering the latest X15
Wolfe, Matt
Crew Station design in the physical realm is complex and expensive due to the cost of fabrication and the time required to reconfigure necessary hardware to conduct studies for human factors and optimization of space claim. However, recent advances in Virtual Reality (VR) and hand tracking technologies have enabled a paradigm shift to the process. The Ground Vehicle System Center has developed an innovative approach using VR technologies to enable a trade space exploration capability which provides crews the ability to place touchscreens and switch panels as desired, then lock them into place to perform a fully recorded simulation of operating the vehicle through a virtual terrain, maneuvering through firing points and engaging moving and static targets during virtual night and day missions with simulated sensor effects for infrared and night vision. Human factors are explored and studied using hand tracking which enables operators to check reach by interacting with virtual components
Agusti, Rachel S.Brown, DavidKovacin, KyleSmith, AaronHackenbruch, Rachel N.Hess, DavidSimmons, Caleb B.Stewart, Colin
This paper proposes a novel approach to the design of a Hardware Abstraction Layer (HAL) specifically tailored to embedded systems, placing a significant emphasis on time-controlled hardware access. The general concept and utilization of a HAL in industrial projects are widespread, serving as a well-established method in embedded systems development. HALs enhance application software portability, simplify underlying hardware usage by abstracting its inherent complexity and reduce overall development costs through software reusability. Beyond these established advantages, this paper introduces a conceptual framework that addresses critical challenges related to debugging and mitigates input-related problems often encountered in embedded systems. This becomes particularly pertinent in the automotive context, where the intricate operational environment of embedded systems demands robust solutions. The HAL design presented in this paper mitigates these issues. The design is structured as a
Simmann, GabrielVeeranna, VinayKriesten, Reiner
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, gas temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin. The approach is cheap in terms of computational effort (likewise ICE order
Sues, MichaNojavan, AidinKirchhof, JanSchirmacher, Rolf
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements. This paper shows a method to
Haspl, AndreasUnterweger, MichaelaKuruc, JanPlettenberg, MirkoAkasapu, Uday Venkateswar
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current. A feedforward harmonic current generation module is developed, which allows the application of harmonic current commands to a motor control system with adjustable magnitude
He, SongPeddi, VinodChang, Le
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit. With XiLS evaluation environment as the foundation
Lim, TaewoongBaek, JunhoDongmyeong, LeeJeon, Jee HwanLee, HyeonseobPark, JunhyeongMyeong, HanseungKim, MyeongwooChoi, Seockhwan
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost. This becomes even more critical when introducing new damper technology on
Rasal, ShraddheshAsthana, ShivamVellandi, VikramanArconada, Verónica SantosTosolin, Guido
Through real-time online optimization, the full potential of the performance and energy efficiency of multi-gear, multi-mode, series–parallel hybrid powertrains can be realized. The framework allows for the powertrain to be in its most efficient configuration amidst the constantly changing hardware constraints and performance objectives. Typically, the different gears and hybrid/electric modes are defined as discrete states, and for a given vehicle speed and driver power demand, a formulation of optimization costs, usually in terms of power, are assigned to each discrete states and the state which has the lowest cost is naturally selected as the desired of optimum state. However, the optimization results would be sensitive to numerical exactitude and would typically lead to a very noisy raw optimum state. The generic approach to stabilization includes adding hysteresis costs to state-transitions and time-debouncing. These added costs could result in systems remaining in sub-optimal
Kudupley, HarshalMawardi, AndryasPatel, Nadirsh
The paper introduces two methods for controlling motor voltage. One method requires the implementation of boost hardware, while the other allows for voltage control in battery failure mode without any additional hardware requirements. The boost voltage strategy for the hybrid system is based on managing boost modes, determining target voltages, and implementing PI control. The boost mode control includes different modes such as initial mode, normal mode, shutdown mode, and fault mode. Determining the boost target voltage involves regulating the boost converter with variable voltages depending on the operating states of the motor and generator. The second voltage control method without boost hardware is proposed in order to ensure that the vehicle can still function like a traditional car even under abnormal conditions of high-voltage battery failure in micro-mixing systems. In this mode, instead of conventional torque control, the generator operates in a voltage control mode where
Jing, JunchaoSun, XudongLiu, YiqiangHuang, Weishan
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test. Also fatigue life predictions are shown to correlate well with validation tests carried out on a full-scale axle
DeJack, Michael A.Tichy, Richard
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this
Svensson, KenthFitzgerald, RussellMartin, Glen
Dramatic video of the first flight of the Space Launch System (SLS), from the initial blastoff to rocket-booster separation, gave NASA essential information about the performance of the Artemis I flight. It also proved the capabilities of a new rugged video camera mounted on the exterior of the core rocket stage. The camera, developed using patented NASA hardware and agency expertise, survived the heat of blastoff and the cold of space, and it’s now ready for extreme conditions on Earth
Sustainability has evolved from being just a niche engagement to a fundamental necessity. The reduction of carbon emissions from aspects of human activity has become desirable for its ability to mitigate the impact of climate change. The Transportation industry is a critical part of the global economy – any effort to curb emissions will have a significant impact on CO2 reduction. Engine lubricant can play an efficient and key role to enhance powertrain performance that have undergone significant hardware changes to reduce emissions. As part of a significant collaborative programme between Tata Motors and Infineum, a new engine oil formulation SAE 5W-30 API FA-4 has been developed and commercially introduced for use in the modern Bharat Stage 6 Phase 2 engines. Introduction of SAE 5W-30 API FA-4 engine oil for Tata Commercial Vehicle application is a step towards delivering a sustainable option beyond improved fuel economy, longer drain interval and enhanced engine wear protection
Tyagarajan, SethuramalingamSingh, SamsherThanapathy, Saravana RajaBondre, SushilPollington, MarkLim, Pei YiMadan, Lalit
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF. Additional for BS 6 (phase 2) PM sensor becomes an important part to keep the
Sharma, PrashantHareesh, SangarajuV, SuryanarayananPalanisamy, KrishnarajP, JagdesanRathiya, Akash
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase. The
Hol, PranavPrasad, Tej
In the Philippines, air pollution is a serious environmental issue that calls for the creation of efficient air quality monitoring systems for source-receptor analyses. This paper describes the creation of a system for monitoring air quality that was created with this objective in mind. The system uses a variety of sensors to assess important air contaminants and includes low-cost IoT-based data gathering technologies. In order to facilitate source-receptor analysis, it also uses data processing and analytic methods. The analysis of linked literature demonstrates the importance of IoT-based, crowd-sourced, and low-cost air quality data gathering systems in expanding air quality monitoring capabilities. As crucial approaches for comprehending pollution patterns and causes, spatiotemporal analysis of air pollution data and receptor modeling of particulate matter are addressed. Furthermore, the comparison of fuel economy estimates from various approaches highlights the need of precise and
Corpus, Robert Michael Baria
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line. A set of optimal controls that has been developed, including power flow controls on the tie line
Rashkin, Lee JoshuaDonnelly, TimothyCook, MarvinYoung, Joseph
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection. The coordinator has been optimized and validated through the virtual test campaign: the developed control function and a complete ATS model were integrated in the simulation
Pozzi, ChiaraCiaravino, ClaudioDonniacuo, AntonioFerreri, PaoloPrevitero, GiuseppeChen, FedericoTotaro, NicolaMital, Rahul
Since the introduction of ice crystal icing certification requirements [1], icing facilities have played an important role in demonstrating compliance of aircraft air data probes, engine probes, and increasingly, of turbine engines. Most sea level engine icing facilities use the freezing-out of a water spray to simulate ice crystal icing conditions encountered at altitude by an aircraft in flight. However, there are notable differences in the ice particles created by freeze-out versus those observed at altitude [2, 3, 4]. Freeze-out crystals are generally spherical as compared to altitude crystals which have variable crystalline shapes. Additionally, freeze-out particles may not completely freeze in their centres, creating a combination of super-cooled liquid and ice impacting engine hardware. An alternative method for generating ice crystals in a test facility is the grinding of ice blocks or cubes to create irregular shaped crystals. These grind-out particles have a different
Neuteboom, MartinFleurent-Wilson, EricChalmers, Jennifer
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc
A-5B Gears, Struts and Couplings Committee
Whether you call them packs, boxes, or trays, the structures that envelop and protect EV battery cells and their supporting electrical and thermal-management hardware are among the industry’s top subsystem priorities. Optimizing the battery pack involves a host of manufacturing and material choices, mass and package tradeoffs, safety provisions, and structural design/engineering challenges, OEM and supplier experts told SAE Media
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming. This article refines the dynamic inversion part of current hierarchical trajectory tracking controller for 4WIS/4WID vehicles with consideration of the nonlinear tyre/vehicle dynamics
Yu, YunchangLi, RunfengJi, WenfeiLu, ZiwangTian, Guangyu
Steering actuator lag is detrimental to the performance of lateral control systems and often leads to oscillation, reduced stability margins, and in some cases, instability. If the actuator lag is significant, compensation is required to maintain stability and meet performance specifications. Many recent works use a high-level approach to compensate for delay by utilizing model-based methods such as model predictive control (MPC). While these methods are effective when accurate models of both the vehicle and the actuator are available, they are susceptible to model errors. This work presents a low-level, adaptive control architecture to compensate for unknown or varying steering delay and dynamics. Using an inner-loop controller to regulate steer angle commands, oscillation can be reduced, and stability margins can be maintained without the need for an accurate vehicle model. The Smith Predictor (SP) control scheme is implemented in the inner-loop to mitigate the effects of the
Kennedy, William ThomasBevly, David M.
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses. To improve the dynamic performance of the hinge mechanism, a surrogate-assisted NSGA-II multi-objective optimization design framework for hard point coordinates of struts, combining the radial basis neural network
Zhang, SuoGao, YunkaiChang, Mengjie
Structural Health Monitoring (SHM), especially in the field of rotary machinery diagnosis, plays a crucial role in determining the defect category as well as its intensity in a machine element. This paper proposes a new framework for real-time classification of structural defects in a roller bearing test rig using time domain-based classification algorithms. Along with the bearing defects, the effect of eccentric shaft loading has also been analyzed. The entire system comprises of three modules: sensor module – using accelerometers for data collection, data processing module – using time-domain based signal processing algorithms for feature extraction, and classification module – comprising of deep learning algorithms for classifying between different structural defects occurring within the inner and outer race of the bearing. Statistical feature vectors comprising of Kurtosis, Skewness, RMS, Crest Factor, Mean, Peak-peak factor etc. have been extracted from the 1-D time series data
Gorantiwar, AnishTaheri, SaiedZahiri, FeraidoonMoslehi, Bijan
The paper describes the integration of a high-speed data acquisition and diagnostics controller used in an advanced engine platform. The controller enables ultra-low emissions and new benchmarks of engine efficiency while running a Gasoline Compression Ignition (GCI) cycle on a 2.2L, 4-cylinder engine. The system enables real-time combustion feedback and vibration analysis in engines. The paper focuses on: (1) the development of an interpolative sampling algorithm for transposition of time acquired data to the crank angle domain using a production crank sensor (60-2 tooth wheel); (2) the control unit, high-speed data acquisition, communication rates between the dedicated data acquisition and base controller to ensure cycle-to-cycle feedback; and, (3) validation exercises using cylinder pressure measurements. The study shows how the algorithm resolves cylinder pressure information over an engine cycle, validating its robustness across acquisition rates of 50 and 200 kHz, with crank
De Ojeda, WilliamWu, Simon (Haibao)
Vehicular odometers serve as a standard component in driver assistance system to provide continuous navigation. Odometer fraud is the disconnection, resetting, or alteration of a vehicle’s odometer with the intent to change the number of miles indicated. Odometer fraud occurs when the seller of a vehicle falsely represents the actual mileage of a vehicle to the buyer. But the Odometer readings are essential when it comes to ascertaining the fair market value of a used vehicle. Hence, there is a need to protect the odometer which resides in the instrument cluster of the digital cockpit. Any manipulation is very difficult to detect and to prove once made, even by expert technicians using specific On-Board Diagnostics (OBD) testing devices. One of the most critical issues is that currently odometers are not locked out from external access, in contrast to other vehicle components, which have higher protection levels. As a result, odometers are not sufficiently cyber-secured and there is a
Ansari, AsadullahP.C., KarthikD H, SharathDevarasu, Dhanasekaran
This SAE Aerospace Recommended Practice (ARP) is not a certification document; it contains no certification requirements beyond those already contained in existing certification documents. The purpose of this ARP is to provide: a Guidelines for potential usage of life samples depending upon the mission environment and at user discretion to use them or not. b Guidelines of: 1 Who approves the parts to be used. 2 Notification requirements to manufacturers. 3 Traceability and segregation. 4 Packing and labeling of such parts. This ARP does not claim that the recommended practices and artifacts described herein are the only acceptable ones. They are, however, used widely today, and merit serious consideration of potential usage where applicable in the military and space hardware. This ARP does not supersede any contracts or legal agreements between contractual parties
CE-12 Solid State Devices
MOSA (Modular Open System Approach) provides a framework for efficient and sustainable design of complex integrated systems. In domain of embedded technology, the MOSA as-is does a good job in identifying modular software and hardware frameworks required to establish a common baseline for generic open architecture. On the other hand, it does not cover physical aircraft integration, integration methodology and other constituent elements essential for design of robust interfaces and integrated embedded systems, which are owned by OEMs and their suppliers. The definition of open interfaces is a key constituent in definition of MOSA-compliant architectures. An efficient system integration lifecycle requires unambiguous interfacing among hosted functions. Open interfaces and Ethernet are core system integration technologies and should be integrated and configured with other software/hardware framework elements, to enable hard RT, real-time and soft-time application hosting. The system
Jakovljevic, MirkoFinnegan, DanielZischka, WolframSoares, Alvaro
This document establishes dimensional, structural, and environmental requirements for Type II/2 interline pallet nets. Type II/2 covers NAS3610/AS36100 code sizes
AGE-2 Air Cargo
Gasoline compression ignition (GCI) is a promising combustion technology that can help the commercial transportation sector achieve operational flexibility and meet upcoming criteria pollutant regulations. However, high-pressure fuel injection systems (>1000 bar) are needed to enable GCI and fully realize its benefits compared to conventional diesel combustion. This work is a continuation of previous durability studies that identified three key technical risks after running gasoline-like fuel through a heavy-duty, common rail injection system: (i) cavitation damage to the inlet check valve of the high-pressure pump, (ii) loss of injector fueling capacity, (iii) cavitation erosion of the injector nozzle holes. Upgraded hardware solutions were tested on a consistent 400- to 800-hour NATO durability cycle with the same gasoline-like fuel as previous studies. The upgraded pump showed no signs of abnormal wear or cavitation damage to the inlet check valve. In contrast to previous studies
Tzanetakis, TomMedina, RobertoGarg, RajeshPeng, QianMoon, Chi YoungSforzo, Brandon A.Powell , Christopher F.
The purpose of this SAE Aerospace Standard (AS) is to standardize the basic design, performance, and testing requirements for “Cargo Stoppers” cargo tie-down accessories to be used in conjunction with approved restraint straps meeting AS5385C (TSO C-172) requirements
AGE-2 Air Cargo
With the current developments in emission and safety norms in the Indian motor vehicle segment, there is always a challenge for engineers to design the components without hampering the existing performance of the vehicle and meet the legal requirements of the market. The challenge is to reach the optimum point of iterative modifications where the overall vehicle efficacy is increased. The Pass by noise (PBN) target is one such parameter that need to be assured to certify new vehicles/variants for their Noise emissions. PBN requirements are an important aspect of NVH development of a vehicle. The vehicles running on the Indian roads must comply with the PBN requirements defined by standard IS: 3028. Tipper is a vehicle used in mainly mining areas and on hilly terrains having high gear ratios and thereby producing more noise. This paper discuss the approach used to reduce the noise in this worst case. The hardware changes done in this worst case vehicle can be universally adopted in
Gupta, MohitKumar, PardeepSingh, Vijay
Items per page:
1 – 50 of 2529