Browse Topic: Hardware

Items (2,359)
Tool management remains a persistent challenge in manufacturing, where misplaced or poorly calibrated tools such as torque guns and screwdrivers cause downtime, quality defects, and compliance risks. The Internet of Things (IoT) is transforming tool management from manual entries in spreadsheets and logs to real-time, data-driven solutions that enhance operational efficiency. With ongoing advancements in IoT architecture, a range of cost-effective tracking approaches is now available, including Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), Wi-Fi, RFID, and LoRaWAN. This paper evaluates these technologies, comparing their trade-offs in accuracy, scalability, and cost for tool-management scenarios such as high-precision station tracking, zonal monitoring, and wide-area yard visibility. Unlike prior work that focuses on asset tracking in general, this study provides an ROI-driven, scenario-based comparison and offers recommendations for selecting appropriate technologies based on
Patel, Shravani Prashant
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
Singh, BhuvaneshwarTirumala, BhaskarBadgujar, SwapnilHK, Shashikiran
In the agricultural industry, the logistics of transporting and storing bales, used as cattle feed, pose significant challenges for large scale farms. Traditional storage of bales in barns is labor-intensive, high in capital expenditure and requires multiple trips of transport vehicle on and off the field. Improper handling during this transition can lead to substantial losses in time, resources and loss of hay. This development aims to eliminate the last-mile transportation step, by enabling year-round storage of bales directly in the field. A patented wrapping material, along with strategic orientation of wrapped bales, enhances their resistance to weather conditions. Field experiments demonstrated that this innovative material not only protects the bales from adverse environmental factors but also effectively retains their nutrient and moisture content. A critical aspect of this solution is ensuring the correct orientation of the wrap seams, as the bales are continuously rotated
Kadam, Pankaj
Widespread adoption of electric vehicles (EVs) is hindered by "range anxiety," a major concern for consumers. A primary contributor to this issue is the significant energy consumption of the Heating, Ventilation, and Air Conditioning (HVAC) system, which can account for 15-40% of a vehicle's total energy demand, directly reducing its practical driving range. Using the 1D simulation tool GT-SUITE, this research provides a comparative analysis of two distinct HVAC architectures: a conventional air-cooled condenser (ACC) and a proposed liquid-cooled condenser (LCC). The performance of both hardware systems was evaluated under two control strategies a Proportional-Integral (PI) controller and a basic On/Off controller—to identify the optimal configuration. The results advocate that optimizing the system's architecture and control logic yields a substantial improvement in the Coefficient of Performance (COP) ranging from 47% to 128% compared to the baseline ACC/On-Off configuration, with a
T R, RakshithYadav, Ankit
As mission-critical systems demand more processing power, real-time data movement, and multi-domain interoperability, rugged embedded systems are being transformed. Today's military and aerospace applications increasingly demand the merging of AI computing, enhanced sensor interfaces, and cybersecurity - all under harsh environmental conditions. At the heart of this evolution is the 3U OpenVPX form factor, a modular, compact, and ruggedized hardware standard and increasingly the SOSA aligned subset of the architecture. However, next-generation systems need to go further: supporting higher bandwidth, better thermal efficiency, improved security, while maintaining multi-vendor interoperability and long-term sustainability. We'll discuss some of today's enclosure solutions as well as emerging technologies.
We develop a set of communications-aware behaviors that enable formations of robotic agents to travel through communications-deprived environments while remaining in contact with a central base station. These behaviors enable the agents to operate in environments common in dismounted and search and rescue operations. By operating as a mobile ad-hoc network (MANET), robotic agents can respond to environmental changes and react to the loss of any agent. We demonstrate in simulation and on custom robotic hardware a methodology that constructs a communications network by “peeling-off” individual agents from a formation to act as communication relays. We then present a behavior that reconfigures the team’s network topology to reach different locations within an environment while maintaining communications. Finally, we introduce a recovery behavior that enables agents to reestablish communications if a link in the network is lost. Our hardware trials demonstrate the systems capability to
Noren, CharlesChaudhary, SahilShirose, BurhanuddinVundurthy, BhaskarTravers, Matthew
Object detection has many different uses in Command and Control (C2) systems such as autonomous control, target tracking, threat detection, and general surveillance. Graphics Processing Units (GPUs) are the de-facto standard hardware for these types of workloads in datacenter environments. Still, when deploying to an edge environment many considerations are required to ensure an optimized deployment. This paper provides a general overview of how to utilize GPUs for AI inference for object detection at the edge using NVIDIA® HoloScan as well as an overview of the many considerations to account for when selecting the most optimal GPU for any specific ground vehicle solution.
Whitlock, Nick
The motion control system, as the core executive component of the automatic hierarchical framework, directly determines whether autonomous vehicles can reliably and stably follow planned trajectories, making it crucial for driving safety. This article focuses on steering lock faults and proposes a cross-system fault-tolerant control (C-FTC) algorithm based on dynamic model reconstruction. The algorithm uses a classic hierarchical collaborative architecture: the upper-level controller employs an MPC algorithm to solve lateral velocity and yaw rate reference values in real-time, while the lower-level controller, designed based on the reconstructed dynamic model, uses an MPC algorithm to adaptively adjust actuator control quantities. In cases where four-wheel steering vehicles lose steering ability due to locked steering axles, the locked axle’s steering angle is treated as a state variable, and healthy actuator outputs are used as control variables to dynamically reconstruct the vehicle
Hu, HongyuTang, MinghongChen, GuoyingGao, ZhenhaiWang, XinyuGao, Fei
As SAE standard J3400 (also known as NACS, or North American Charging Standard) is being adopted by automakers and deployed on the latest EVs, the standard itself is still evolving. That latest evolution is SAE J3400/2. That extra 2 will make charging quicker, thanks to hardware updates to the port and inlet. As standards are announced, there are elements that result in a standard within the standard. Essentially, J3400 is more of a family of standards that handle everything from the internal technology that allows for compatibility, the hardware specs and testing of adapters that have and will be deployed and, in the case of J3400/2, the hardware itself.
Baldwin, Roberto
Bearings are fundamental components in automotive systems, ensuring smooth operation, efficiency, and longevity. They are widely used in various automotive systems such as wheel hubs, transmissions, engines, steering systems etc. Early detection of bearing defects during End-of-Line (EOL) testing and operational phases is crucial for preventive maintenance, thereby preventing system malfunctions. In the era of Industry 4.0, vibrational, accelerometer, and other IoT sensors are actively engaged in capturing performance data and identifying defects. These sensors generate vast amounts of data, enabling the development of advanced data-driven applications and leveraging deep learning models. While deep learning approaches have shown promising results in bearing fault diagnosis, they often require extensive data, complex model architectures, and specialized hardware. This study proposes a novel method leveraging the capabilities of Vision Language Models (VLMs) and Large Language Models
Chandrasekaran, BalajiCury, Rudoniel
This SAE Aerospace Standard (AS) establishes minimum requirements for eddy current inspection of circular holes in nonferrous, metallic, low conductivity (less than 5% IACS) aircraft engine hardware with fasteners removed. The inspection is intended to be performed at maintenance and overhaul facilities on engine run hardware.
AMS K Non Destructive Methods and Processes Committee
Artificial intelligence (AI) systems promise transformative advancements, yet their growth has been limited by energy inefficiencies and bottlenecks in data transfer. Researchers at Columbia Engineering have unveiled a groundbreaking solution: a 3D photonic-electronic platform that achieves unprecedented energy efficiency and bandwidth density, paving the way for next-generation AI hardware.
While numerous advancements have been made in autonomous navigation for structured indoor and outdoor environments, these solutions often do not generalize well to off-road settings. There are unique challenges in such settings such as unreliable GPS, limited computational and memory resources, and sparse environmental features, making navigation particularly difficult. In our work, we propose a novel data structure called Hierarchical Dynamic Scene Graphs (HDSG) to address these challenges. HDSG captures environmental information at different resolutions, integrating both geometric and semantic features. It enables various navigation tasks such as localization, loop closure, and human interaction through the visualization of environmental features for remote operators. We evaluated the performance of localizing a robot’s position within the world frame by comparing compact spatial descriptors extracted from semi-consecutive scene graphs, derived from 3D LiDAR point clouds. Compared to
Alam, Fardifa FathmiulLuricich, FedericoLi, NianyiJia, YunyiLi, Bing
Automotive industry is growing rapidly with innovations leading to increase in new features and improving the Quality of vehicles. These new components are developed with the available design standards across global OEMs. This Quality research paper aims to address the need of revision of design standards due to environmental factors prevailing in India. With the increase towards autonomous mobility, the number of electronics is also increasing, and this involves hardware & software evaluation. The hardware testing is a point of concern due to increase in the failure rate from the markets. Environment changes are very much evident with the growing economies and OEMs are developing the components with innovation, but if the basic design standards are not revised in parallel with the changing environment, the issues will continue to trouble the end customers. The failed cases data received from across the country was analyzed and observed that the cases are majorly reported from urban
Marwah, RamnikPyasi, PraveenBindra, RiteshGarg, Vipin
This paper proposes a structured safety framework tailored for the concept phase of Level 2 and Level 3 automated vehicles, addressing the unique challenges posed by these advanced systems. The framework integrates key principles from ISO 26262 and ISO 21448 to create a safety approach that spans hardware reliability, functional safety, and system performance. Central to the framework is a broad analysis that combines methodologies from System-Theoretic Process Analysis (STPA) and Hazard Analysis and Risk Assessment (HARA). This dual approach enables the identification of potential risks arising from both hardware failures and the intended functionalities of the system. The framework further details a combined specification and design process that aligns the strengths of each standard, ensuring robust sensor architectures and reliable decision-making processes. A case study on Adaptive Cruise Control with Lane Keeping is presented to demonstrate the practical implementation of the
Sari, Ayse AysuSoleimani, Morteza
Camera-based mirror systems (CBMS) are being adopted by commercial fleets based on the potential improvements to operational efficiency through improved aerodynamics, resulting in better fuel economy, improved maneuverability, and the potential improvement for overall safety. Until CBMS are widely adopted it will be expected that drivers will be required to adapt to both conventional glass mirrors and CBMS which could have potential impact on the safety and performance of the driver when moving between vehicles with and without CBMS. To understand the potential impact to driver perception and safety, along with other human factors related to CBMS, laboratory testing was performed to understand the impact of CBMS and conventional glass mirrors. Drivers were subjected to various, nominal driving scenarios using a truck equipped with conventional glass mirrors, CBMS, and both glass mirrors and CBMS, to observe the differences in metrics such as head and eye movement, reaction time, and
Siekmann, AdamPrikhodko, VitalySujan, Vivek
In a three-phase voltage source inverter, in order to prevent the direct short circuit of the upper and lower tubes of the bridge arm and ensure the normal operation of the inverter, microsecond-level dead time needs to be added when the power devices are turned on and off. However, due to the dead-time effect, slight distortion may occur in the inverter within the modulation period, and this distortion will eventually lead to harmonic components in the output current after accumulation, thereby generating torque ripple. Against the above background, implementing dead-time compensation strategies is very important. To compensate for the voltage error caused by the dead-time effect, current polarity determination is required first. Then, the dead time is compensated, thereby indirectly compensating for the voltage error caused by the dead-time effect. Regarding the dead-time compensation time, without changing the hardware, this paper proposes a solution to turn off the dead-time
Jing, JunchaoZhang, JunzhiZuo, BotaoLiu, YiqiangYang, TianyuZhu, Lulong
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
Gu, EmilyParenteau, Chantal
The propulsion system design of GM-Cadillac’s first electric vehicle Lyriq uses an optimized drive unit comprising interior permanent magnet (IPM) motors and silicon traction inverters. The main objective behind the drive unit design was to minimize energy losses and cost while maximizing hardware consolidation, range, performance, power density, and scalability. Two IPM motors with different length and number of stator turns are designed, while their rotor design and stator-conductor profile are kept the same. A high-speed rotor is designed to achieve higher power density. AC winding effect at higher speeds is mitigated by using a bar-conductor with much smaller cross section. The rotor surface has a special notch design to minimize acoustic noise, without use of rotor or stator skew. Also, the traction inverters in the Lyriq EV are engineered with a significant emphasis on being scalable and adaptable for various vehicle architectures while considering a broad range of requirements.
Momen, FaizulJensen, WilliamHe, SongChowdhury, MazharulZahid, AhsanForsyth, AlexanderAlam, KhorshedAnwar, MohammadKim, Young
Apple’s mobile phone LiDAR capabilities can be used with multiple software applications to capture the geometry of vehicles and smaller objects. The results from different software have been previously researched and compared to traditional ground-based LiDAR. However, results were inconsistent across software applications, with some software being more accurate and others being less accurate. (Technical Paper 2023-01-0614. Miller, Hashemian, Gillihan, Benes.) This paper builds upon existing research by utilizing the updated LiDAR hardware that Apple has added to its iPhone 15 smartphone lineup. This new hardware, in combination with the software application PolyCam, was used to scan a variety of crashed vehicles. These crashed vehicles were also scanned using a FARO 3D scanners and Leica RTC 360 scanners, which have been researched extensively for their accuracy. The PolyCam scans were compared to FARO and Leica scans to determine accuracy for point location and scaling. Previous
Miller, Seth HigginsStogsdill, MichaelMcWhirter, Seth
Researchers have combined miniaturized hardware and intelligent algorithms to create a cost-effective, compact powerful tool capable of solving real-world problems in areas like healthcare.
To meet the requirements of high-precision and stable positioning for autonomous driving vehicles in complex urban environments, this paper designs and develops a multi-sensor fusion intelligent driving hardware and software system based on BDS, IMU, and LiDAR. This system aims to fill the current gap in hardware platform construction and practical verification within multi-sensor fusion technology. Although multi-sensor fusion positioning algorithms have made significant progress in recent years, their application and validation on real hardware platforms remain limited. To address this issue, the system integrates BDS dual antennas, IMU, and LiDAR sensors, enhancing signal reception stability through an optimized layout design and improving hardware structure to accommodate real-time data acquisition and processing in complex environments. The system’s software design is based on factor graph optimization algorithms, which use the global positioning data provided by BDS to constrain
Zhan, KaiDiGao, ChengfaXu, DaweiLan, MinyiDing, Rongjing
This study presents a novel reinforcement learning (RL)-based control framework aimed at enhancing the safety and robustness of the quadcopter, with a specific focus on resilience to in-flight one propeller failure. This study addresses the critical need of a robust control strategy for maintaining a desired altitude for the quadcopter to save the hardware and the payload in physical applications. The proposed framework investigates two RL methodologies, dynamic programming (DP) and deep deterministic policy gradient (DDPG), to overcome the challenges posed by the rotor failure mechanism of the quadcopter. DP, a model-based approach, is leveraged for its convergence guarantees, despite high computational demands, whereas DDPG, a model-free technique, facilitates rapid computation but with constraints on solution duration. The research challenge arises from training RL algorithms on large dimension and action domains. With modifications to the existing DP and DDPG algorithms, the
Qureshi, Muzaffar HabibMaqsood, AdnanFayyaz ud Din, Adnan
In an era where technological advancements are rapid and constant, the U.S. Army will need a more agile and efficient approach to modernizing systems on succeeding generations of Army vehicles. Legacy platforms like Abrams, Stryker, and Bradley vehicles use multiple mission computers tied to individual sensors that often required the addition of “boxes” to accommodate new capabilities, which could take years to deploy and drove sustainment costs up due to vendor lock. In addition, this antiquated approach doesn’t leverage data to converge effects across the formation in a multi-domain environment. Centralized, common computing as detailed in GCIA would help solve this problem, potentially linking all major subsystems and providing higher-speed processing to assess large datasets in real time with AI and ML algorithms. By using a common, open architecture computer, the Army will be able to rapidly integrate new capabilities inside one box, versus adding multiple boxes. This pivotal
In an era where technological advancements are rapid and constant, the U.S. Army will need a more agile and efficient approach to modernizing systems on succeeding generations of Army vehicles. Legacy platforms like Abrams, Stryker, and Bradley vehicles use multiple mission computers tied to individual sensors that often required the addition of “boxes” to accommodate new capabilities, which could take years to deploy and drove sustainment costs up due to vendor lock. In addition, this antiquated approach doesn't leverage data to converge effects across the formation in a multi-domain environment. Centralized, common computing as detailed in GCIA would help solve this problem, potentially linking all major subsystems and providing higher-speed processing to assess large datasets in real time with AI and ML algorithms. By using a common, open architecture computer, the Army will be able to rapidly integrate new capabilities inside one box, versus adding multiple boxes. This pivotal
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
Feroz Ali, L.Madhankumar, S.Hariush, V.C.Jahath Pranav, R.Jayadeep, J.Jeffrey, S.
This study meticulously examines the ignition coil (IG), a pivotal component in engine operation, which transforms the low voltage from the battery into the high voltage necessary for spark plug electrode flashover, initiating the combustion cycle. Considering the importance of IG coils in engine operation which has a direct impact on the engine performance. Any failure in the IG coils is judged as a critical failure and encompasses severe repercussions. The paper details an investigation into the issue of ‘White Deposition’ on IG coils. White deposit was observed in IG Coils during new model development in bench level durability test. A comprehensive failure analysis was conducted, employing vibration analysis, thermal analysis, and chemical analysis of the white deposits to ascertain the root cause. Subsequent to identifying the root cause, the study elaborated on hardware design enhancements as a solution. These design changes were rigorously tested on engine benches, confirmed for
Patel, Hardik ManubhaiGupta, VineetChand, SubhashKumar, Nitish
The next-gen 15-liter diesel engine meets all 2027 EPA emissions regulations while boosting fuel efficiency. Cummins provided extensive details of the design and engineering efforts involved in developing the new HELM version of its X15 diesel engine. The company says its new engine will offer up to a 7% improvement in fuel economy compared to the current EPA 2024-certified X15 while also meeting all 2027 emissions targets. Truck & Off-Highway Engineering was invited to tour the company's headquarters in Columbus, Indiana, where journalists were given a comprehensive update on the hardware powering the latest X15.
Wolfe, Matt
This paper proposes a novel approach to the design of a Hardware Abstraction Layer (HAL) specifically tailored to embedded systems, placing a significant emphasis on time-controlled hardware access. The general concept and utilization of a HAL in industrial projects are widespread, serving as a well-established method in embedded systems development. HALs enhance application software portability, simplify underlying hardware usage by abstracting its inherent complexity and reduce overall development costs through software reusability. Beyond these established advantages, this paper introduces a conceptual framework that addresses critical challenges related to debugging and mitigates input-related problems often encountered in embedded systems. This becomes particularly pertinent in the automotive context, where the intricate operational environment of embedded systems demands robust solutions. The HAL design presented in this paper mitigates these issues. The design is structured as a
Simmann, GabrielVeeranna, VinayKriesten, Reiner
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, gas temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin. The approach is cheap in terms of computational effort (likewise ICE order
Sues, MichaNojavan, AidinKirchhof, JanSchirmacher, Rolf
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements. This paper shows a method to
Haspl, AndreasUnterweger, MichaelaKuruc, JanPlettenberg, MirkoAkasapu, Uday Venkateswar
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this
Svensson, KenthFitzgerald, RussellMartin, Glen
The paper introduces two methods for controlling motor voltage. One method requires the implementation of boost hardware, while the other allows for voltage control in battery failure mode without any additional hardware requirements. The boost voltage strategy for the hybrid system is based on managing boost modes, determining target voltages, and implementing PI control. The boost mode control includes different modes such as initial mode, normal mode, shutdown mode, and fault mode. Determining the boost target voltage involves regulating the boost converter with variable voltages depending on the operating states of the motor and generator. The second voltage control method without boost hardware is proposed in order to ensure that the vehicle can still function like a traditional car even under abnormal conditions of high-voltage battery failure in micro-mixing systems. In this mode, instead of conventional torque control, the generator operates in a voltage control mode where
Jing, JunchaoSun, XudongLiu, YiqiangHuang, Weishan
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost. This becomes even more critical when introducing new damper technology on
Rasal, ShraddheshAsthana, ShivamVellandi, VikramanArconada, Verónica SantosTosolin, Guido
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current. A feedforward harmonic current generation module is developed, which allows the application of harmonic current commands to a motor control system with adjustable magnitude
He, SongPeddi, VinodChang, Le
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test. Also fatigue life predictions are shown to correlate well with validation tests carried out on a full-scale axle
DeJack, Michael A.Tichy, Richard
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit. With XiLS evaluation environment as the foundation
Lim, TaewoongBaek, JunhoDongmyeong, LeeJeon, Jee HwanLee, HyeonseobPark, JunhyeongMyeong, HanseungKim, MyeongwooChoi, Seockhwan
Through real-time online optimization, the full potential of the performance and energy efficiency of multi-gear, multi-mode, series–parallel hybrid powertrains can be realized. The framework allows for the powertrain to be in its most efficient configuration amidst the constantly changing hardware constraints and performance objectives. Typically, the different gears and hybrid/electric modes are defined as discrete states, and for a given vehicle speed and driver power demand, a formulation of optimization costs, usually in terms of power, are assigned to each discrete states and the state which has the lowest cost is naturally selected as the desired of optimum state. However, the optimization results would be sensitive to numerical exactitude and would typically lead to a very noisy raw optimum state. The generic approach to stabilization includes adding hysteresis costs to state-transitions and time-debouncing. These added costs could result in systems remaining in sub-optimal
Kudupley, HarshalMawardi, AndryasPatel, Nadirsh
Dramatic video of the first flight of the Space Launch System (SLS), from the initial blastoff to rocket-booster separation, gave NASA essential information about the performance of the Artemis I flight. It also proved the capabilities of a new rugged video camera mounted on the exterior of the core rocket stage. The camera, developed using patented NASA hardware and agency expertise, survived the heat of blastoff and the cold of space, and it’s now ready for extreme conditions on Earth.
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase. The
Hol, PranavPrasad, Tej
Sustainability has evolved from being just a niche engagement to a fundamental necessity. The reduction of carbon emissions from aspects of human activity has become desirable for its ability to mitigate the impact of climate change. The Transportation industry is a critical part of the global economy – any effort to curb emissions will have a significant impact on CO2 reduction. Engine lubricant can play an efficient and key role to enhance powertrain performance that have undergone significant hardware changes to reduce emissions. As part of a significant collaborative programme between Tata Motors and Infineum, a new engine oil formulation SAE 5W-30 API FA-4 has been developed and commercially introduced for use in the modern Bharat Stage 6 Phase 2 engines. Introduction of SAE 5W-30 API FA-4 engine oil for Tata Commercial Vehicle application is a step towards delivering a sustainable option beyond improved fuel economy, longer drain interval and enhanced engine wear protection
Tyagarajan, SethuramalingamSingh, SamsherThanapathy, Saravana RajaBondre, SushilPollington, MarkLim, Pei YiMadan, Lalit
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF. Additional for BS 6 (phase 2) PM sensor becomes an important part to keep the
Sharma, PrashantHareesh, SangarajuV, SuryanarayananPalanisamy, KrishnarajP, JagdesanRathiya, Akash
In the Philippines, air pollution is a serious environmental issue that calls for the creation of efficient air quality monitoring systems for source-receptor analyses. This paper describes the creation of a system for monitoring air quality that was created with this objective in mind. The system uses a variety of sensors to assess important air contaminants and includes low-cost IoT-based data gathering technologies. In order to facilitate source-receptor analysis, it also uses data processing and analytic methods. The analysis of linked literature demonstrates the importance of IoT-based, crowd-sourced, and low-cost air quality data gathering systems in expanding air quality monitoring capabilities. As crucial approaches for comprehending pollution patterns and causes, spatiotemporal analysis of air pollution data and receptor modeling of particulate matter are addressed. Furthermore, the comparison of fuel economy estimates from various approaches highlights the need of precise and
Corpus, Robert Michael Baria
Items per page:
1 – 50 of 2359