Browse Topic: Alloys

Items (20,029)
In new energy vehicles, aluminum alloy has gained prominence for its ability to achieve superior lightweight properties. During the automotive design phase, accurately predicting and simulating structural performance can effectively reduce costs and enhance efficiency. Nevertheless, the acquisition of accurate material parameters for precise predictive simulations presents a substantial challenge. The Johnson-Cook model is widely utilized in the automotive industry for impact and molding applications due to its simplicity and effectiveness. However, variations in material composition, processing techniques, and manufacturing methods of aluminum alloy can lead to differences in material properties. Additionally, components are constantly subjected to complex stress states during actual service. Conventional parameter calibration methods primarily rely on quasi-static and dynamic tensile tests, offering limited scope in addressing compression scenarios. This paper proposes an inversion
Kong, DeyuGao, Yunkai
Solid state joining processes are attractive for magnesium alloys as they can offer robust joints without the porosity issue typically associated with welding of magnesium and dissimilar materials. Among these techniques, Self-Piercing Riveting (SPR) is a clean, fast and cost-effective method widely employed in automotive industry for aluminum alloys. While SPR has been proven effective for joining aluminum and steel, it has yet to be successfully adapted for magnesium alloy castings. The primary challenge in developing magnesium SPR technology is the cracking of the magnesium button, which occurs due to magnesium's low formability at room temperature. Researchers and engineers approached this issue with several techniques, such as pre-heating, applying rotation to rivets, using a sacrificial layer and padded SPR. However, all these methods involve the employment of new equipment or introduction of extra processing steps. The aim of this work is to develop a SPR technique which adapts
Tabatabaei, YousefWang, GerryWeiler, Jonathan
The significant mechanical features of aluminum alloy, including cost-effectiveness, lightweight, durability, high reliability, and easy maintenance, have made it an essential component of the automobile industry. Automobile parts including fuel tanks, cylinder heads, intake manifolds, brake elements, and engine blocks are made of aluminum alloy. The primary causes of its engineering failure are fatigue and fracture. Aluminum alloys' fatigue resistance is frequently increased by surface strengthening methods like ultrasonic shot peening (USP). This article discusses the shot peening dynamics analysis and the influence of ultrasonic shot peening parameters on material surface modification using the DEM-FEM coupling method. Firstly, the projectile motion characteristics under different processes are simulated and analyzed by EDEM. The projectile dynamics characteristics are imported into Ansys software to realize DEM-FEM coupling analysis, and the surface modification characteristics of
Adeel, MuhammadAzeem, NaqashXue, HongqianHussain, Muzammil
The mechanical properties of materials play a crucial role in real life. However, methods to measure these properties are usually time-consuming and labour intensive. Small Punch Through (SPT) has non-destructive characteristics and can obtain load-displacement curves of specimens, but it cannot visually extract the mechanical properties of materials. Therefore, we designed a proprietary SPT experiment and fixture, built a finite element method (FEM) model and developed a multi-fidelity model capable of predicting the mechanical properties of steel and aluminium alloys. It makes use of multi-fidelity datasets obtained from SPT and FEM simulation experiments, and this integration allows us to support and optimize the predictive accuracy of the study, thus ensuring a comprehensive and reliable characterization of the mechanical properties of the materials. The model also takes into account variations in material thickness and can effectively predict the mechanical properties of materials
Zou, JieChen, YechaoLi, ShanshanHuayang, Xiang
Given the strategic importance of aluminum cast materials in producing lightweight, high-performance products across industries, it is fundamental to assess their mechanical and cyclic fatigue properties thoroughly. This investigation is primarily for optimizing material utilization and enhancing the efficiency and reliability of aluminum cast components, contributing to significant conservation of raw materials and energy throughout both the manufacturing process and the product's lifecycle. In this study, a systematic material investigation was conducted to establish a reliable estimation of the fatigue behavior of different aluminum cast materials under different loading ratios and elevated temperatures. This paper presents an analysis of the statistical and geometrical influences on various aluminum alloys, including AlSi10MnMg, AlSi7Mg0.3, and AlSi8Cu3Fe, produced via pressure die casting and gravity die casting (permanent mold casting), and subjected to different heat treatment
Qaralleh, AhmadNiewiadomski, JanBleicher, Christoph
Reduction of frictional losses by changing the surface roughness in the form of surface textures has been reported as an effective method in reducing friction in the boundary regime of lubrication. Laser-based micro texturing has been mostly used to create these texture patterns and it is reported that it can reduce the frictional resistance by ~20-50%. However, the use of laser-based techniques for texture preparation led to residual thermal stress and micro cracks on the surfaces. Hence, the current study emphasizes using conventional micromachining on piston material (Al alloy Al4032) to overcome this limitation. Three variations of semi-hemispherical geometries were prepared on the surface of Al alloy with dimple depths of 15, 20 and 40 μm and dimple diameters of 90, 120 and 240 μm. Prepared textured surfaces with untextured surfaces are compared in terms of wear, wettability, and friction characteristics based on Stribeck curve behaviors. Results of this investigation demonstrated
Sahu, Vikas KumarShukla, Pravesh ChandraGangopadhyay, Soumya
The rapid expansion of the global electric vehicle (EV) market has significantly increased the demand for advanced thermal management solutions. Among these, the battery cold plate is a critical component, essential for maintaining optimal battery temperatures and ensuring efficient operation. As EV batteries increase in size, the thermal management requirements become more complex, necessitating the development of new alloys with enhanced strength and thermal conductivity. These advancements are crucial for the effective dissipation of heat and the ability to withstand the mechanical stresses associated with larger and more powerful batteries. The evolving performance demands of EVs are driving material innovation within the thermal management sector. This study aims to explore the global heat exchanger market trends from a material perspective, focusing on the evolution of the mechanical and thermal properties. Specifically, we investigated the transition from the traditional AA3003
Jalili, MehdiWang, XuRazm-poosh, Hadi
The metal inert-gas (MIG) welding technique employed for aluminum alloy automotive bumpers involve a complex thermo-mechanical coupling process at elevated temperatures. Attaining a globally optimal set of model parameters continues to represent a pivotal objective in the pursuit of reliable constitutive models that can facilitate precise simulation of the welding process. In this study, a novel piecewise modified Johnson-Cook (MJ-C) constitutive model that incorporates the strain-temperature coupling has been proposed and developed. A quasi-static uniaxial tensile model of the specimen is constructed based on ABAQUS and its secondary development, with model parameters calibrated via the second-generation non-dominated sorting genetic algorithm (NSGA-II) method. A finite element simulation model for T-joint welding is subsequently established, upon which numerical simulation analyses of both the welding temperature field and post-welding deformation can be conducted. The results
Yi, XiaolongMeng, DejianGao, Yunkai
CNTs play an important role in modern engineering projects, especially in engine pistons design for the next-generation of motorcycles. This work presents a comprehensive analyses proposed project using finite element method under actual operating conditions purpose performance evaluation of a motorcycle engine piston design, investigating the suitability of four distinct materials. Precise material properties adhering to linear elastic isotropic behavior were defined within the software environment and proposed advanced nanomaterial ensuring accurate representations of the proposed under the prescribed loading scenarios. The primary objective was to identify the optimal material choice for the piston, ensuring superior strength, minimal deformation, and lightweight characteristics essential for high-performance engine applications. Moreover interpreting and understanding the dynamic behavior of common and advanced engineering materials. Through a comprehensive evaluation of the
Ali, Salah H. R.Ahmed, Youssef G. A.Ali, Amr S.H.R.
Since aluminum alloys (AA) are widely used as structural components across various industries, higher requirements for shape-design, load-bearing, and energy-absorption capacity have been put forward. In this paper, we present the development of a numerical model, integrated with a compensation method, that effectively predicts processing defects in the bumper beam of a vehicle, resulting in a marked improvement in its forming quality. Specifically, different constitutive models are investigated for their applicability to the beam, enabling a precise evaluation of its structural performance under large deformation. The Johnson-Cook failure model is introduced to better characterize the fracture behavior of the beam under severe structural damage. The three-point bending experiment served as a rigorous examination, demonstrating good consistency between the experimental and simulation results. Furthermore, a prediction model for assessing the forming quality during the bending process
Zhang, ShizhenMeng, DejianGao, Yunkai
This specification covers the requirements of uncoated aluminum alloy foil for core materials required for structural sandwich construction.
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of hand forgings 11.000 inches (280 mm) and under in nominal thickness and of forging stock of any size (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of bars and rods 0.750 to 3.500 inches (19.05 to 88.90 mm), inclusive, in nominal diameter or least distance between parallel sides (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of bars, wire, forgings, flash-welded rings 4.000 inches (101.60 mm) and under in nominal diameter or least distance between parallel sides, and stock for forging and flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a tantalum alloy in the form of sheet, strip, and plate from 0.010 through 0.250 inch (0.25 through 6.35 mm), inclusive (see 8.5).
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of plate 4.001 to 7.000 inches (101.62 to 177.80 mm), inclusive, in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 1.000 to 6.000 inches (25.40 to 152.40 mm), inclusive, in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
Primarily to provide recommendations concerning minimizing stress-corrosion cracking in wrought titanium alloy products.
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of die and hand forgings 4 inches (102 mm) and under in thickness, rolled or forged rings 2.50 inches (63.5 mm) and under in radial thickness, and stock of any size for forging or rings (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy procured in the form of extruded profiles (shapes) with nominal thickness of over 0.040 to 0.375 inch (over 1.00 to 9.5 mm), inclusive, and cross sections up to 7.75 square inches (5000 mm2) and circle sizes as indicated (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of seamless, drawn tubing having a nominal wall thickness of 0.120 to 0.400 inch (3.00 to 10.00 mm), inclusive (see 8.5).
AMS D Nonferrous Alloys Committee
The tensile and low-cycle fatigue (LCF) properties of Ti6Al4V specimens, manufactured using the selective laser melting (SLM) additive manufacturing (AM) process and subsequently heat-treated in argon, were investigated at elevated temperatures. Specifically, fully reversed strain-controlled tests were performed at 400°C to determine the strain-life response of the material over a range of strain amplitudes of industrial interest. Fatigue test results from this work are compared to those found in the literature for both AM and wrought Ti6Al4V. The LCF response of the material tested here is in-family with the AM data found in the literature. Scanning electron microscopy performed on the fracture surfaces indicate a marked increase in secondary cracking (crack branching) as a function of increased plastic deformation and demonstrating equivalent performance when compared to the wrought Ti6AL4V at RT (room temperature) at 1.4% strain amplitude and better performance when compared to the
Gadwal, Narendra KumarBarkey, Mark E.Hagan, ZachAmaro, RobertMcDuffie, Jason G.
Abrasive water jet (AWJ) machining is the most effective technology for processing various engineering materials particularly difficult-to-cut materials such as aluminum alloys, steels, brass, ceramics, composites, and the like. The present study focuses on the experimental study on surface roughness and kerf taper is carried out during AWJ machining of Al 6061-T6 alloy with 40 mm thickness, and the influence of process parameters includes water jet pressure, standoff distance, and abrasive flow rate on the kerf taper and surface roughness is analyzed. The number of experiments is designed using Taguchi’s L9 orthogonal array. Experimental results are statistically analyzed using ANOVA. Also gray relational analysis (GRA) coupled with principal component analysis (PCA) hybrid approach was implemented to optimize the performance parameters. From the results it is found that standoff distance and hydraulic jet pressure are the most influencing parameters on surface roughness and kerf
Kolluri, Siva PrasadSrikanth, V.Ismail, Sk.Bhanu, C.H.
In an attempt to improve its mechanical characteristics in the as-fasted conditions, the AZ31 Mg alloy was investigated herein from being reinforced with diverse SiC weight percentages (3, 6, and 9 wt.%). To develop lightweight AZ31-SiC composites, a simple and inexpensive technique, the stir casting process, was used. Microstructural analysis of the as-cast samples showed that the SiC particles were distributed rather uniformly, were firmly bonded to the matrix, and had very little porosity. The substantial improvement in tensile, compressive, and hardness characteristics was caused by fragmentation and spreading of the Mg17Al12 phase, while the addition of SiC had only a slight effect on the microstructure in the as-cast state. Surfaces of AZ31-SiC composites were analyzed using scanning electron microscopy. A study identified the AZ31-SiC composite as a unique material for applications involving a high compressive strength, such as those found in the aviation and automobile
Thillikkani, S.Kumar, N. MathanFrancis Luther King, M.Soundararajan, R.Kannan, S.
This specification covers a titanium alloy in the form of seamless tubing (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of sheet 0.011 to 0.126 inch (0.28 to 3.20 mm), inclusive, in nominal thickness, with a grain size of ASTM No. 6 or finer (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 3.000 to 7.000 inches (76.20 to 177.80 mm) in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy procured in the form of extruded profiles (shapes) with cross sections up to 0.750 inch (19.05 mm) (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, and tubing produced with cross-sectional area of 32 square inches (206 cm2), maximum (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers established manufacturing tolerances applicable to sheet, strip, and plate of nickel, nickel alloys, and cobalt alloys ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of a specified range.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the form of seamless tubing (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of seamless tubing (see 8.7).
AMS G Titanium and Refractory Metals Committee
This specification covers a cast tin bronze in the form of sealing rings (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of die forgings and hand forgings up to 6.000 inches (152.40 mm) in nominal thickness at the time of heat treatment (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers the requirements for electrodeposited zinc-nickel on metal parts, including fasteners and other standard parts.
AMS B Finishes Processes and Fluids Committee
The experimental investigation analyzed the performance of three machining conditions: dry machining, cryogenic machining, and cryogenic machining with minimum quantity lubrication (MQL) on tool wear, cutting forces, material removal rate, and microhardness. The outcome of this study presents valuable knowledge regarding optimizing conditions of turning operations for Ti6Al4V and understanding the machinability under cryogenic-based cooling strategies. Based on the experimentation, cryogenic machining with MQL is the most beneficial approach, as it reduces cutting force and flank wear with a required material removal rate. This strategy significantly enhances the machining efficiency and quality of Ti6Al4V under variable feed rates (0.05 mm/rev, 0.1 mm/rev, 0.15 mm/rev, 0.2 mm/rev, 0.25 mm/rev) where cutting velocity (120 m/min) and depth of cut (1 mm) are constant. The effects of the main cutting force, feed force, thrust force, material removal mechanism, flank wear, and
Misra, SutanuKumar, YogeshPaul, GoutamForouhandeh, Fariborz
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inch: a Wrenching Nuts: i.e., hexagon, double hexagon, and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion- and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers an aluminum alloy in the form of hand forgings 12 inches (305 mm), inclusive, and under in nominal thickness and forging stock of any size (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of forgings 4.00 inches (101.6 mm) and under in nominal cross-sectional thickness and of forging stock of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 20029