Browse Topic: Alloys

Items (19,994)
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
The purpose of the study is to present the validation stages of the transmission bearing housings in a Formula SAE prototype and the redesign of the components to reduce mass. The objective was to design and implement bearing housings that are lightweight while withstanding the loads they are subjected to. A numerical simulation using the Finite Element Method (FEM) was conducted to analyze the behavior of the bearing housings, made of 7075 aluminum alloy, under the same boundary conditions as in the test bench. This simulation provided information on deformation and stresses and was used to determine optimal locations for strain gauge placement. Experimental bench tests were performed, applying forces ranging from 100 N to 600 N. With an application of a 600 N load, an experimental deformation of 1.77E-04 mm/mm was obtained, while FEM indicated 1.71E-04 mm/mm, demonstrating significant correlation, with a 3.4% margin of error. This pattern was observed for all loads, highlighting
Kopp, Amanda FontouraHausen, Roberto BegnisMartins, Mario Eduardo Santos
The application of Thermal Barrier Coatings (TBC) has been widely utilized in aerospace turbines to enhance the operational temperature and thermal efficiency of titanium alloys, while preserving their properties such as low density, creep resistance, and corrosion resistance. TBC systems typically consist of a metallic substrate, a metallic coating (Bond Coat), a thermally grown oxide (TGO), and a ceramic topcoat (TC). This study investigated the fracture surface characteristics of Ti-6Al-4V with TBC after a creep test at a constant temperature of 600 °C, under stress levels of 125, 222, and 319 MPa, in order to understand the mechanisms involved. The TBC was composed of a NiCrAlY (BC) and a zirconia co-doped with yttria and nióbia (TC). The fracture characterization of the alloy after the creep test was conducted through stereoscopy and scanning electron microscopy. The fracture mechanism at 600 °C and 222 MPa was predominantly ductile, as evidenced by the presence of dimples and
Takahashi, Renata Jesuinade Assis, João Marcos KruszynskiRodrigues, Bianca Costade Andrade Acevedo Jimenez, Laila RibeiroReis, Danieli Aparecida Pereira
In view of the complex intertidal terrain challenges faced by offshore wind power maintenance, this paper optimizes the lightweight design of multi-terrain tracked vehicles. The structure was optimized by finite element analysis, and the maximum stress was 211.68 MPa ( lower than the safety limit of 230 MPa), and the maximum deformation was 5.25 mm, which ensured the stability and stiffness. Titanium alloy has the advantages of high strength, low density and corrosion resistance, which improves the durability of the frame while reducing the weight of the frame. Advanced manufacturing technologies such as phase transformation superplastic diffusion welding optimize the connection between TC4 titanium alloy and stainless steel. Modal analysis and optimization techniques refine the structural parameters and improve the complex load performance. The research promotes the lightweight of the frame and provides theoretical and technical support for the design of multi-terrain vehicles.
Xu, HanXu, ShilinMa, WenboZhu, Wei
Compared to steel, aluminum alloy has the advantages of light weight, high specific strength, corrosion resistance, and easy processing, and is widely used in structures such as aviation, construction, bridges, and offshore oil platforms. All along, Chinese construction aluminum profiles have been produced according to the GB/T5237-XXXX standard, which is determined based on the mechanical performance requirements of doors and windows and the actual processing of aluminum profiles. There are many problems. The author of this article has developed a new product 6063-T56, which has a tensile strength of 240-260Mpa and an elongation rate of not less than 8%, surpassing the latest technology level in Europe. It has been promoted and applied to the aluminum profile production industry in China, improving product performance, reducing production costs, improving production efficiency, and meeting the requirements of the "Aluminum Alloy Doors and Windows Standard" GB/T8478-2020, making
Qiao, Zhou
This specification covers an aluminum alloy in the form of plate from 0.250 to 1.500 inches (6.35 to 38.10 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes the requirements for anodic coatings on aluminum alloys.
AMS B Finishes Processes and Fluids Committee
This AIR is limited to the testing of an extra-high strength copper alloy and benchmark conductors utilizing the test protocol of AS6324. All samples are 19 strand unilay conductors per AS29606 at 24 or 26 AWG, either nickel or silver coated. At 24 AWG, extra-high strength copper alloy is compared to high strength copper alloy conductors. At 26 AWG, extra-high strength copper alloy is compared to high strength copper alloy and ultrahigh strength copper alloy conductors.
AE-8D Wire and Cable Committee
This specification covers a titanium alloy in the form of forgings, 6.000 inches (152.40 mm) and under in cross-sectional thickness and forging stock of any size.
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers established manufacturing tolerances applicable to titanium and titanium alloy extruded bars, rods, and shapes. These tolerances apply to all conditions, unless otherwise noted. The term “excl” applies only to the higher figure of the specified range.
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of castings (see 8.11).
AMS D Nonferrous Alloys Committee
Aluminum-lithium alloys are extensively used across various industries due to their exceptional strength-to-weight ratio, excellent fatigue/corrosion resistance and good thermal stability. These attributes, combined with improved weldability and ease of fabrication, make them ideal for lightweight engineering applications in sectors such as aerospace, automotive, and defense. Additive manufacturing (AM) offers unique opportunities to fully leverage the potential of aluminum-lithium alloys by enabling the fabrication of complex geometries, minimizing material waste, and supporting on-demand production. This paper explores the significance of lightweight materials, traces the evolution of aluminum-lithium alloys and provides a comprehensive overview of their AM. It discusses the properties and real-world applications of these alloys and examines various AM techniques employed in their processing. Key advancements in the AM of aluminum-lithium alloys are reviewed, including novel alloy
Santhana Babu, A.V.Antony Benson, B.Danusha, M.
This specification covers a titanium alloy in the form of wire, forgings, flash-welded rings 4.000 inches (101.60 mm), inclusive, and under in nominal diameter or distance between parallel sides, bars up through 10.000 inches (254 mm), inclusive, and under in nominal diameter with a maximum cross-sectional area for bars over 4.000 to 10.000 inches (101.60 to 254 mm) in diameter of 79 square inches (509.7 cm2), and stock for forging or flash-welded rings of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a copper-nickel-tin alloy in the form of plate over 0.188 to 4.50 inches (4.77 to 114.3 mm) in nominal thickness (see 8.8).
AMS D Nonferrous Alloys Committee
This specification covers the engineering requirements for producing an anodic coating on aluminum and aluminum alloys which are subsequently sealed with an organic resin.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant nickel-iron alloy in the form of bars and forgings 5 inches (127 mm) and under in nominal diameter or least distance between parallel sides and forging stock of any size.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable material specification requirements of wrought corrosion- and heat-resistant steel and alloy products and of forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification describes the engineering requirements for producing a non-powdery anodic coating on titanium and titanium alloys and the properties of such coatings.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition (see 8.4) and stock of any size for forging, flash-welded rings, or extrusions.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized, solution, and precipitation heat treated to 150 ksi (1034 MPa) minimum tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
In an attempt to reduce CO2 release from alloy wheel production, we have developed an aluminum alloy for casting that satisfies necessary property requirements using recycled aluminum, but without heat treatment. The wheel is a critical safety feature of any vehicle, and it should have toughness and strength .In many wheels, virgin aluminum containing small amounts of impurities is used to maintain toughness, and heat treatment (T6), which is post-casting quick heating and quenching, is applied to provide strength. At the start of this project, we focused on two wheel-manufacturing processes, production of virgin aluminum and heat treatment, from which a large amount of CO2 is released. By switching to recycled aluminum, CO2 was reduced to one-ninth the original amount. The issue with recycled material is that impurities grow in the metal structures as intermetallic compounds and this reduces toughness. To deal with this issue, we have chosen high-pressure die casting (HPDC), in which
Suzuki, Noritaka
The present study examines the influence of process parameters on the effect of strength and crystalline properties of AlSi10Mg alloy with laser sintered process. A detailed work was carried out with the effects of varying the laser power, scan speed, and hatch distance on crystalline structure, hardness, and surface roughness. From the analysis, the improved surface quality and mechanical performance were achieved with a scan speed of 1200 mm/s, a laser power of 370 W, and a hatch distance of 0.1 mm. An increase in hardness, improved surface finish, and reduced porosity was observed with decreased hatch distance. However, the balanced results were obtained for scanning speed of 1200 mm/s and laser power of 370 W. The ideal processing conditions decreased the crystalline size, increasing the overall material strength, when crystalline analysis was carried out. The higher scanning speeds supported improved grain refinement and heat diffusion, with the poor hardness value. With the lower
Shailesh Rao, A.
This specification covers an acrylonitrile-butadiene rubber in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
AMS CE Elastomers Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.008 to 1.000 inch (0.203 to 25.4 mm) thick, supplied in the annealed (O) temper (see 8.5). When specified, product shall be supplied in the “as fabricated” (F) temper (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, wire, forgings, flash-welded rings, and extrusions 4 inches (102 mm) and under in nominal diameter or least distance between parallel sides and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum-lithium alloy in the form of sheet and plate 0.032 to 0.500 inch (0.81 to 12.70 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip 0.080 inch (2.03 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
NiCoCrAlY powders were thermally sprayed by combustion flame spray (CFS) and high-velocity oxygen fuel (HVOF) processes on IN 718 alloy substrates. Experimental parameters were fixed to manufacture coatings with a thickness about 200 μm. Microscopy and X-ray diffraction analyses were performed to reveal microstructural characteristics of both developed CFS and HVOF coatings, and it was observed that they were formed by a lamellar morphology composed of β and γ phases. The analyses also revealed lower porosity in the coatings produced by HVOF process while was compared with CFS process. While a microstructure composed of like-deformed powder was developed in HVOF process, in the case of CFS a building layer-by-layer was characteristic. Vickers hardness tests were also performed, and it was found that coating developed by HVOF process showed quite higher hardness values compared with those measured on the coatings developed with the CFS process, nonetheless this difference was small
Juarez-Lopez, FernandoMendoza, Melquisedec VicenteMeléndez, Rubén CuamatziRamírez, Ángel de Jesús Morales
This specification covers established manufacturing tolerances applicable to sheet, strip, and plate of corrosion- and heat-resistant steels, iron alloys, titanium, and titanium alloys. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of the specified range.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a free-machining, corrosion-resistant steel in the form of bars, wire, forgings, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant iron alloy in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of laminated sheet.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of bars, rods, and wire, in the sizes shown in 3.3.3, in the “as-fabricated (F) temper.” When specified, product shall be supplied in the annealed (O) condition (see 8.6).
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 19994