Browse Topic: Titanium
This specification covers procedures for identifying wrought products of titanium and titanium alloys
The Electroimpact Automatic Fan Cowl Riveter exhibits new and unique design features and automated process capabilities that address and overcome three primary technical challenges. The first challenge is satisfying the customer-driven requirement to access the entire fastening area of the fan cowl doors. This necessitates a unique machine design which is capable of fitting ‘inside’ a fan cowl door radius. The second challenge is determining drill geometry and drill process parameters which can produce consistent and high-quality countersunk holes in varying mixed-metal stack-up combinations consisting of aluminum, titanium, and stainless steel. The third challenge is providing the capability of fully automatic wet installation of hollow-ended titanium rivets. This requires an IML-side countersinking operation, depositing sealant throughout the OML and IML countersinks and the hole, automatically feeding and inserting a rivet which is only 5mm long and 6mm in head diameter and flaring
Researchers have created electrostatic materials that function even with extremely weak ultrasound, heralding the era of permanent implantable electronic devices in biomedicine. Recent research explores implantable medical devices that operate wirelessly, yet finding a safe energy source and protective materials remains challenging. Presently, titanium (Ti) is used due to its biocompatibility and durability. However, radio waves cannot pass through this metal, necessitating a separate antenna for wireless power transmission. Consequently, this enlarges the device size, creating more discomfort for patients
This document defines the requirements for weld fittings and machine weldments using an orbiting welding head suitable for use on cold worked 3AL-2.5V titanium, 21Cr-6Ni-9Mn CRES, and 718 nickel alloy tubing. Fitting standards covered by this specification include non-separable welded elbow, tee, and reducer fittings, and reconnectable 24-degree cone fittings, such as sleeves and unions
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks
This specification covers one grade of commercially pure titanium in the form of welded tubing
This specification covers one grade of commercially pure titanium in the form of sheet, strip, and plate 1.000 inch (25.40 mm) and under in nominal thickness (see 8.5
This specification covers an aluminum alloy in the form of sheet and plate 0.032 to 0.310 inch (0.81 to 7.87 mm), inclusive, in thickness, clad on both sides (see 8.5
This specification covers an aluminum alloy in the form of Alclad sheet and plate 0.010 to 0.499 inch (0.254 to 12.67 mm), inclusive, in thickness, supplied in the -T81/-T851 temper (see 8.5
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) inclusive, in nominal diameter or least distance between parallel sides, forgings of thickness up through 4.000 inches (101.60 mm), inclusive, and stock for forging of any size (see 8.6
This specification covers a titanium alloy in the form of bars and rods 1.00 inch (25.4 mm) and under in nominal diameter
This research paper determines the vibrational response of different weight percentages of titanium dioxide (TiO2) nanoparticles on carbon/epoxy composite tubes. The modal analysis was performed using Ansys Composite PrepPost (ACP) with fixed-fixed and cantilever boundary conditions. The models were analyzed with a winding angle of ±55° and compared with winding angles ±65° and ±75°. Modal analysis was also performed by embracing flax fibers on Carbon Fiber-Reinforced Polymers (CFRP) nanocomposite tubes with different layering sequences such as Carbon/Carbon/Carbon/Flax (C/C/C/F), Carbon/Flax/Carbon/Flax (C/F/C/F), and Carbon/Flax/Flax/Flax (C/F/F/F). The results indicated that, by the addition of TiO2 nanoparticles, the natural frequency of CFRP nanocomposite tubes gets increased. The natural frequencies were found to be higher in the fixed-fixed case than in cantilever conditions. The natural frequency of nanocomposite tubes with a winding angle of ±55° had shown approximately 4% and
This specification covers a titanium alloy in the form of forgings up through 4.0 inches (102 mm) and under in nominal diameter or least distance between parallel sides and 16 square inches (103 cm2) and under in cross-sectional area and stock of any size for forging (see 8.6
This specification covers established manufacturing tolerances applicable to corrosion- and heat-resistant steel, iron alloy, titanium, and titanium alloy bars and wire. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of the specified range
An ultrathin display for holographic images consists of a thin film of titanium filled with tiny holes that precisely correspond with each pixel in a liquid crystal display (LCD) panel. This film acts as a “photon sieve” — each pinhole widely diffracts light emerging from them, resulting in a high-definition 3D image observable from a wide angle
This specification defines limits of variation for determining acceptability of the composition of cast or wrought nickel, nickel alloy, and cobalt alloy parts and material acquired from a producer
The purpose of this document is to provide the aerospace industry with standards for minimum stock removal allowances for bars and mechanical tubing to provide surfaces which are free from decarburization, seams, laps, tears, cracks, pits, and other injurious surface imperfections
The element niobium (Nb), a transition metal, stands ready to improve the performance of one of the lithium-ion (Li-ion) battery’s confusing array of possible electrode chemistries — the LTO (lithium titanium oxide) anode, which after graphite is the second most-produced. During battery charging, lithium ions leave the positive cathode and move through the battery’s electrolyte to take up positions of higher energy in the anode. During discharge, this process reverses and drives electrons through an external circuit to power the load
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm), inclusive, in nominal diameter or least distance between parallel sides, forgings of thickness up through 4.000 inches (101.60 mm), inclusive, and stock for forging of any size (see 8.6
This specification covers a titanium alloy in the form of round, hexagon and square bars and forgings up through 3.000 inches (76.20 mm), inclusive, rectangular bar and forgings of thickness up through 4.000 inches (101.60 mm), inclusive, and forging stock of any size (see 8.6
This SAE Aerospace Report (AIR) provides a cross reference for SAE material standards to other similar standards. The SAE Committee G-3 invites comments and recommendations for the addition of materials and information for inclusion into this informational report. No attempt has been made to obtain samples of the materials or conduct physical and chemical analyses to determine if they are equivalent. Anyone using this AIR, therefore, is cautioned to verify for themselves the interchangeabillity of the specific materials. Additional contributions of missing or supplemental data should be directed to SAE marked for the attention of Committee G-3
This specification covers an aluminum alloy in the form of sheet clad on both sides with a different alloy for sheet thicknesses of 0.020 to 0.128 inches (0.51 to 3.25 mm), inclusive, in nominal thickness (see 8.5
This specification covers one grade of commercially pure titanium in the form of seamless tubing
Items per page:
50
1 – 50 of 1669