Browse Topic: Copper

Items (3,564)
The AA2024 aluminum alloy is a precipitate-hardening material renowned for its exceptional strength and corrosion resistance, making it a preferred choice for various applications in industries such as aircraft and automobile manufacturing. However, it is challenging to weld using fusion welding processes due to differences in melting points between the aluminum base material and its oxide layer. Consequently, this often results in issues such as partially melted zones, alloy segregation, and hot cracking. In this investigation, electron beam welding was employed to minimize heat input and prevent the formation of coarse grains in the heat-affected zone. Observations revealed that the joint achieved a maximum strength of 285 MPa, representing 62% of the base material's strength. This improvement in strength can be ascribed to the establishment of fine and recrystallized grains at the weld interface, along with the presence of copper aluminide strengthening precipitates
Rajesh, A.Karthick, S.Mallieswaran, K.Shanmugam, Rajasekaran
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials
AE-8D Wire and Cable Committee
This specification covers one type of copper in the form of wire (see 8.5
AMS D Nonferrous Alloys Committee
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7
AE-8D Wire and Cable Committee
This specification covers unalloyed copper in the form of sheet, strip, and plate at least 0.015 inch (0.38 mm) in nominal thickness
AMS D Nonferrous Alloys Committee
Options for CNVII emission legislation are being widely investigated in a national program organized by China Vehicle Emission Control Center (VECC) since early 2020. It is foreseen that this possibly last legislation in China will have more stringent emission requirements compared to CNVI, including among other changes especially a further reduction of nitrogen oxide (NOx), inclusion of nitrous oxide (N2O) and sub-23 nm particle number (PN). This study investigates the technical feasibility to fulfill a CNVII emission legislation scenario, based on a modified CNVI 8 L engine operating under both cold and hot World Harmonized Transient Cycle (WHTC) and Low Load Cycle (LLC). Methods to address the challenges are discussed and validated, including application of a twin dosing system, electric heater, hybrid concepts of combining Copper (Cu-), Iron (Fe-) and Vanadium (V-) SCR technologies, filters with ultra-high filtration efficiency and optimization of engine calibration and urea dosing
Wang, YanChen, ShuyueZhang, JunChen, JunyinLong, LucasGeisselmann, AndreasBender, MichaelTao, ZeminZhu, Minlin
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper. The primary objective of this study was to join 0.8 mm thick aluminum
Ko, Byung MinGryguc, AndrewChen, JimHunt, JustinGuo, MingchaoZhang, WenshengJahed, HamidGerlich, Adrian
A University of Bristol-led study, published in The Proceedings of the National Academy of Sciences, demonstrates how to make conductive, biodegradable wires from designed proteins. These could be compatible with conventional electronic components made from copper or iron, as well as the biological machinery responsible for generating energy in all living organisms
Inconel 718 is a nickel-rich superalloy that can function in cryogenic to high-temperature applications. It has excellent mechanical and corrosion-resistant properties. This research focuses on developing Cu and Cu–alloy–tungsten disulfide (WS2) tools developed through a stir casting route, and the machining behaviour of Inconel 718 alloy in the EDM Process is investigated. The influence of output responses of Removal rate of material (RRM), surface roughness (SR), and tool wear loss rate (TWR) on input constraints pulse time-on, peak discharge current, and type of tool. The optimal parameters are studied with the aid of the Response Surface Methodology (RSM) and Analysis of Variance (ANOVA) combination, in response to maximize and decrease the RRM, TWR, and SR, respectively. It is found that using the Cu-WS2 tool provides an optimum finding with a peak discharge current of 18 Amps, and pulse on time of 8 μs yields the best value for RRM, TWR, and SR. In addition, a three-dimensional
Dinesh, D.Sangaravadivel, P.Jeevith, R.Kishore, M.Deepith, N.Srikanth, M.
The microstructure of the alloy and the manner in which it responds to heat treatment has been investigated. The alloy was aged at 550OC when it was initially spray-formed, or when its thickness was decreased by 38%. Before further aging of some specimens, a four-hour solution treatment at 1015OC was performed. The subsequent phase was a cold deformation that was barely 60% of the sample's initial thickness. The alloys' electrical conductivity and hardness may be evaluated based on how long they had been created. Following solution treatment and cold rolling, the alloy's peak hardness was around 380 kgf/mm2. In samples aged immediately under spray-produced conditions, the maximum peak hardness of 255 kgf/mm2 was attained. Conductivities in freshly cold-rolled samples could reach up to 75% of the standard for annealed copper internationally. It looks at the microstructural features of this alloy in this context, paying close attention to how various processing conditions affect them
Srinivasan, V.P.Anandan, R.Bharani Kumar, S.Sasidharan, R.Santhosh, S.
Li-ion batteries face challenges that are not usually present with other chemistries is cell balancing. If a high imbalance occurs within a parallel circuit, possibly because of poor cell - grading or due to temperature localization, the adjacent cells will charge the unbalanced cell and it may be possible that the imbalance never completely fades away and the other cells also end up unbalanced. One of the key solutions to maintaining cell balance is to ensure that all cells within a battery pack are kept at a uniform temperature. This requires careful thermal management, which can be achieved through a combination of conduction and convection circuits. In this paper, a 1D-3D simulation study has been performed on a 12V 4s-4p pack by varying the thickness of HV busbars and temperature localization effects and temperature uniformity has been observed. The holder has 16 cells with a 4×4 grid pattern, each cell has a diameter of 18 mm and a length of 65 mm. The cells are connected in
Jagtap, AdityaKhan, FaizShah, HarshMalani, Shekhar
The AS81824 specification covers environment resistant, permanent crimp type, splices having heat shrinkable insulating sleeve and meltable environmental seals or heatless sealing sleeves. The splices may be used with tin, nickel, and silver-plated conductors in applications where the total temperature of the splice application does not exceed 200 °C or as specified in the detail specification
AE-8C2 Terminating Devices and Tooling Committee
This specification covers established inch/pound manufacturing tolerances applicable to copper and copper alloy seamless tubing ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “exclusive” is used to apply only to the higher figure of a specified range
AMS D Nonferrous Alloys Committee
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis methods. The
Kumar, YB KishoreYB, KiranTarigonda, HariprasadDoddipalli, Raghurami Reddy
This specification covers elemental copper in the form of powder (see 8.5
AMS D Nonferrous Alloys Committee
An EESM (Externally Excited Synchronous Motor) consists of a rotor with wound copper wires. One of its benefits is the ability to control the rotor electromagnetically with the rotor current, which is an advantage over an IPMSM (Internal Permanent Magnet Synchronous Motor). To practically use it and achieve optimal NVH quietness performance, the air- gap shape was redesigned to generate a sinusoidal curved magnetic flux density distribution. This differs from the standard design, in which the air gap has the same circumference as the rotor and stator. There was a significant reduction in the high-order magnetic flux density, which did not affect the torque. In addition, there was a reduction in the excitation force and minimal iron loss. Unlike an IPMSM, which only uses magnets and produces less heat, the copper wires of the EESM rotor generate heat as current flows through them. To maintain power density, it is important to ensure optimal cooling performance. A new cooling structure
Fan, XuWada, Hiroki
The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century. Driveline lubricants have always been required to protect hardware, and
Hunt, Gregory J.Choo, LindseyNewcomb, Timothy
In an embedded world gone SOSA sensational, one might believe that centralized ATR-style OpenVPX systems are the best way to architect your next rugged system. While these chassis are routinely and successfully deployed on airborne, shipboard, and vetronics platforms, they are big, heavy, costly, and a real challenge to cool and connect. An alternate but equivalent rugged, deployable approach uses one or more small form factor chassis modules, distributed into any available space in the vehicle, interconnected via Apple® and Intel's® 40Gbps Thunderbolt™ 4, a commercial open standard that uses USB Type-C connectors with a single, thin bi-directional copper or fiber cable. With 4, 8, even 16 3U or 6U LRU (line replacement unit) boards inside an ATR chassis, 600 watts is on the low end of systems that can push well over 2,000 watts in a 200 square inch footprint or less. Assuming one can find the space for such a chassis in the vehicle or platform, there's also the issue of cooling it
In an embedded world gone SOSA sensational, one might believe that centralized ATR-style OpenVPX systems are the best way to architect your next rugged system. While these chassis are routinely and successfully deployed on airborne, shipboard, and vetronics platforms, they are big, heavy, costly, and a real challenge to cool and connect. An alternate but equivalent rugged, deployable approach uses one or more small form factor chassis modules, distributed into any available space in the vehicle, interconnected via Apple® and Intel’s® 40Gbps Thunderbolt™ 4, a commercial open standard that uses USB Type-C connectors with a single, thin bi-directional copper or fiber cable
This specification covers established inch/pound manufacturing tolerances applicable to copper and copper alloy wire ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.006 to 3.000 inches (0.15 to 76.20 mm), inclusive, in nominal thickness (see 8.5
AMS D Nonferrous Alloys Committee
Industrial startup and mechatronic pioneer Mirmex Motor has developed a new method of manufacturing high-power density electric micromotor windings. Constructed from flexible printed circuits and developed using artificial intelligence (AI), the micromotors can be up to 50 percent more compact and 70 percent more dynamic than traditional micromotors. They have three times fewer heat losses and are assembled 10 times faster than most existing motors that use conventional windings made from copper wire
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock
AMS E Carbon and Low Alloy Steels Committee
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc. The purpose for applying an electroplate and the metals used for various
Metals Technical Committee
This specification covers established inch/pound manufacturing tolerances applicable to copper and copper alloy sheet, strip, and plate ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted
AMS D Nonferrous Alloys Committee
Since the 1970s, scientists have known that copper has a special ability to transform carbon dioxide into valuable chemicals and fuels. But for many years, scientists have struggled to understand how this common metal works as an electrocatalyst, a mechanism that uses energy from electrons to chemically transform molecules into different products
In recent years, the removal of lead (Pb), which is an environmentally hazardous material often used in bearings for automotive engines, has been continuously promoted. Bismuth (Bi) is attracting attention as a substitute for lead, and it is currently being used mainly for passenger cars and trucks as a lead replacement. However, lead has not been replaced for motorcycles where the bearings are exposed to high temperatures at high rotation speeds, and trucks and generators where high loading capacity, long lifetime and good corrosion resistance are required. It has been difficult to achieve both high load and corrosion resistant for a bearing overlay material. The purpose of this development is to improve the corrosion resistance and fatigue resistance of bismuth overlay by developing a bismuth- antimony alloy overlay in which antimony (Sb) is added to the bismuth matrix. However, concern arises that antimony may form a compound with copper (Cu) in the bearing alloy underneath the
Ando, AkiraKanaya, RyujiHaneda, Yuma
Items per page:
1 – 50 of 3564