Browse Topic: Nickel

Items (2,405)
This specification covers the requirements for electroless nickel with phosphorus deposited on various materials
AMS B Finishes Processes and Fluids Committee
A collaboration co-led by an Oregon State University chemistry researcher is hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries
A Columbia Engineering team has published a paper in the journal Joule that details how nuclear magnetic resonance spectroscopy techniques can be leveraged to design the anode surface in lithium metal batteries. The researchers also present new data and interpretations for how this method can be used to gain unique insight into the structure of these surfaces
While Daimler Truck and Paccar are pursuing LFP battery cells, Volvo Trucks employs lithium-ion batteries in which lithium nickel cobalt aluminum oxide (NCA) is used as the cathode — for now anyway. The Swedish truck maker is continuously exploring other battery technologies
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new lithium metal battery that can be charged and discharged at least 6,000 times — more than any other pouch battery cell — and can be recharged in a matter of minutes
This specification covers a nickel in the form of round wire and rectangular ribbon
AMS F Corrosion and Heat Resistant Alloys Committee
This procurement specification covers tubular-shaped, coiled spring pins made of a corrosion resistant nickel base alloy of the type identified under the Unified Numbering System as UNS N07718
E-25 General Standards for Aerospace and Propulsion Systems
Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis. Corrosion modeling is done using the COMSOL
Kumar, SujeetKumar, YogeshE. K., Vimal K.
This document defines the requirements for weld fittings and machine weldments using an orbiting welding head suitable for use on cold worked 3AL-2.5V titanium, 21Cr-6Ni-9Mn CRES, and 718 nickel alloy tubing. Fitting standards covered by this specification include non-separable welded elbow, tee, and reducer fittings, and reconnectable 24-degree cone fittings, such as sleeves and unions
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Fly ash is a light byproduct produced when pulverized coal is burnt in suspension-fueled furnaces in power plants. Separating the recovered fly ash from the exhaust gases. Due to its distinct physical and chemical properties, it is utilized in a wide variety of industrial and building applications. These applications include the production of cement and concrete, the stabilization of liquid waste, and hydraulic mining backfill. Fly ash has the potential to enhance the physical and mechanical properties of aluminum castings, as well as reduce their costs and increase their densities, all while lowering their prices. This research investigated the effect of fly ash incorporation on the mechanical properties of the aluminum casting alloy ZA8. Investigated were the cast and heat-treated varieties of unreinforced ZA8 and its metal matrix composite of 15% ferrous, 20% nickel, 10% fly ash, and 10% magnesium carbide. According to the results, the quantity of fly ash in the melt affected the
Dinesh Krishnaa, S.Pandiyan, ManikandaprabuBen Ruben, R.Dhiyaneswaran, J.Sanjay Kumar, S.
The ferrous deuteroporphyrin cast Fe alloy and nickel-coated steel were lap welded successfully using the mechanical stir welding process. It was able to weld junctions with full strength and fracture on the base metal side of nickel-coated steel during the welding process, but ferrous alloy and nickel steel could not be welded together. It was proposed that the joining technique and function of the Ni coating be used in the friction stir lap welding of Ni-coated steel and aluminum alloy. The Ni coating improved both the weldability of iron and steel, resulting in the production of a Fe-Ni eutectic structure with a low melting point at the interface of the two materials. It is possible to successfully fuse steel and ferrous metals together
Sambath, S.Francis Xavier, J.Jayabalakrishnan, D.Suthan, R.Zahir Hussain, M.
The study will involve conducting analyses on microstructures consisting of 40% aluminium and 10% nickel, with variations in the rate of hardening. The aluminium and nickel, both of commercial grade, were subjected to a crucible furnace where they were heated to a temperature of 1600 degrees Celsius until they reached a molten state. The utilization of permanent moulds was necessary for casting the metal at temperatures of 20, 60, and 100 degrees Celsius. In order to document the freezing curvature of the castings, a centralized data collection technique was implemented. The microstructure and mechanical properties of this alloy were examined by researchers. The rate of solidification was observed to increase and the duration of the process was observed to decrease as the temperature of the mould was reduced. The microstructure has been modified due to disparities in solidification rates. An increase in the rate of solidification leads to a reduction in the spacing between secondary
Srinivasan, V.P.Selvarajan, L.Balu Mahandiran, S.Venkataramanan, K.Sasikumar, R.Shanthi, C.
A team from Chalmers University of Technology has succeeded in observing how the lithium metal in the cell behaves as it charges and discharges. The new method may contribute to batteries with higher capacity and increased safety in our future cars and devices
Li-ion batteries face challenges that are not usually present with other chemistries is cell balancing. If a high imbalance occurs within a parallel circuit, possibly because of poor cell - grading or due to temperature localization, the adjacent cells will charge the unbalanced cell and it may be possible that the imbalance never completely fades away and the other cells also end up unbalanced. One of the key solutions to maintaining cell balance is to ensure that all cells within a battery pack are kept at a uniform temperature. This requires careful thermal management, which can be achieved through a combination of conduction and convection circuits. In this paper, a 1D-3D simulation study has been performed on a 12V 4s-4p pack by varying the thickness of HV busbars and temperature localization effects and temperature uniformity has been observed. The holder has 16 cells with a 4×4 grid pattern, each cell has a diameter of 18 mm and a length of 65 mm. The cells are connected in
Jagtap, AdityaKhan, FaizShah, HarshMalani, Shekhar
Researchers at Chalmers University of Technology, Sweden, have created a new and efficient way to recycle metals from spent electric vehicle (EV) batteries. The method allows recovery of 100 percent of the aluminum and 98 percent of the lithium in EV batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt, and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid – an organic acid that can be found in the plant kingdom
Surface integrity is an important factor in the effective functioning of a component. For this reason, the surface finish is given as meticulous attention as possible, while quality checks are rigorous. The process parameters affecting surface roughness are carefully controlled, with many preventive measures enforced to avoid deviation from the tolerance limits. Surface finish is an important part of the load-bearing properties of a surface as the asperities on its surface first come into contact with the mating surfaces. On contact, the asperities are flattened, and there is debris formation. These asperities are critical in joint replacements where Titanium is a material of choice, as the debris can react with bones and even cause necrosis of bone. The surface finish of Titanium is important as the asperities can function as points of stress when subjected to loads. Stress concentrators are detrimental to a material’s life; therefore, a part’s surface finish becomes critical. This
Stephen, Deborah SerenadeV, PraveenaAv, RamanathanS, Sujith
In addition to traditional methods, there are also non-traditional techniques that can be used to overcome the challenges of conventional metal working. One such technique is wire electrical discharge (WEDM). This type of advanced manufacturing process involves making complex shapes using materials. Utilizing intelligent tools can help a company meet its goals. Nickel is a hard metal to machine for various applications such as nuclear, automobile and aerospace. Due its high thermal conductivity and strength, traditional methods are not ideal when it comes to producing components using this material. This paper aims to provide a comprehensive analysis of the various steps in the development of a neural network model for the manufacturing of Inconel 625 alloy which is used for specific applications such as exhaust couplings in sports motor vehicle engines. The study was conducted using a combination of computational and experimental methods. It was then used to develop an index that
Natarajan, ManikandanPasupuleti, ThejasreeKatta, Lakshmi NarasimhamuKiruthika, JothiSilambarasan, RKotapati, Gowthami
Engineers have made progress toward lithium-metal batteries that charge as fast as an hour. This fast charging is thanks to lithium metal crystals that can be seeded and grown — quickly and uniformly — on a surprising surface. This new approach, led by University of California San Diego engineers, enables charging of lithium-metal batteries in about an hour, a speed that is competitive against today’s lithium-ion batteries
“Adjacent” strategies such as improving vehicle efficiency and advancing promising chemistries can mitigate the risks associated with today's favored battery materials. Battery electric vehicle (BEV) adoption is taking off for a variety of reasons. Battery cost per kWh of energy stored has dropped 10-fold since 2010. Driving range has increased, making range anxiety less of a concern, particularly for households having Level 2 charging and several vehicles. Government regulations in key vehicle markets and automakers rethinking the electrical architecture to support software-defined vehicles also are stimulating an expanding choice of consumer EVs. With increased EV adoption comes concern for the environmental and human rights impact associated with battery materials mining and processing as well as national-security concerns. Supply volatility, given the huge investments and long-term return, make battery production susceptible to price spikes, as seen in 2022 with lithium and nickel
Borroni-Bird, Chris
The clean nature of hydrogen as an energy source is propelling the rapid development of applications and infrastructure for its production, storage, and distribution. One of the challenges for the widespread adoption of hydrogen as a fuel is identifying materials that can safely handle high pressures of hydrogen. Hydrogen Embrittlement is a well-known but not very well-understood mechanism of material failure in such applications. This paper gives a literature review of hydrogen embrittlement and the test methods that can be employed for measuring and qualifying materials for hydrogen applications. Slow Strain Rate Testing (SSRT) and fractography results for three austenitic steel grades performed at 85-87.5 MPa hydrogen pressure are described. Grade Alleima HP160 showed good resistance against hydrogen embrittlement despite its low Ni content compared to the two UNS 31603 alloys with different Ni contents. The results are interpreted in light of the Nickel equivalent of the alloys
Kivisäkk, UlfBosbach, BjörnCederberg, EmilBorggren, UlrikaZhou, NianOjha, Rohit
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock
AMS E Carbon and Low Alloy Steels Committee
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc. The purpose for applying an electroplate and the metals used for various
Metals Technical Committee
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy, heat-resistant steel in the form of bars, forgings, and forging stock
AMS E Carbon and Low Alloy Steels Committee
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening. The study showed technical feasibility in the replacement of Ni for Nb, therefore it should be continued for
Nunes, EduardoColosio, MarcoGaldino, RafaelFreese, SamuelCarlos Zambon, Antonio
This specification defines limits of variation for determining acceptability of the composition of wrought low-alloy and carbon steel parts and material acquired from a producer
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant steel in the form of bars, forgings, flash welded rings, and stock for forging or flash welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
Among the limitations of electric vehicles (EVs) is the lack of a long-lasting, high-energy-density battery that reduces the need to fuel up on long-haul trips. The same is true for houses during blackouts and power grid failures — small, efficient batteries able to power a home for more than one night without electricity don’t yet exist. A major issue is that while rechargeable lithium metal anodes play a key role in how well this new wave of lithium batteries functions, during battery operation, they are highly susceptible to the growth of dendrites — microstructures that can lead to dangerous short-circuiting, catching on fire, and even exploding
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion-resistant nickel-copper alloy in the form of wire 0.002 inch (0.05 mm) in diameter and larger
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant nickel-copper alloy in the form of bars 0.093 to 4.000 inches (2.35 to 100.00 mm) in diameter or distance between parallel sides, and forgings and forging stock of any size
AMS F Corrosion and Heat Resistant Alloys Committee
To achieve decarbonization through means such as energy-efficient vehicles, active travel, and electrified road freight, solutions must reduce upstream demands on supply chains. However, even taking such a path, the energy transition will massively increase demand for raw materials such as cobalt, nickel, platinum group metals, and rare earth elements. Many of the metals can be largely substituted if required, so they are not truly critical to decarbonization. Critical Metals, Sourcing, and Long Supply Chains: Constraints on Transport Decarbonization discusses how lithium, silver, and copper are much more difficult to replace, and the energy transition is highly likely to depend on them. Greatly increased and more geographically dispersed investments in mineral extraction are vital. Governments must support this by giving investors clear signals about the rate of the transition, geological survey data, accelerated permits, and government backed finance. Public support for sustainable
Muelaner, Jody E.
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate
AMS E Carbon and Low Alloy Steels Committee
Inconel 718 is a superalloy made from nickel that has exceptional mechanical properties. It has been widely used in the manufacturing of various components such as nuclear and aerospace aircraft. Due to its exceptional corrosion resistance, this material can be utilized in various environments. Due to the increasing number of challenges that come with conventional methods of welding, the use of advanced techniques has been developed to produce better and sound quality joints. One of these is Laser Beam Welding (LBW) technique. This method utilizes a high-intensity beam to create a better and more quality weld joints with improved mechanical properties. This study aims to develop multiple regression models that can be used to analyze the performance of laser beam welding on Inconel 718 alloy joints. Aside from the Laser Power (LP), Weld Speed (WS) and Pulse Duration (PD), the response factors such as the top width, bottom width and penetration are also taken into account to improve the
Pasupuleti, ThejasreeNatarajan, ManikandanSilambarasan, RR, Ramesh
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers a special aircraft-quality, low-alloy steel in the form of bars
AMS E Carbon and Low Alloy Steels Committee
This specification defines limits of variation for determining acceptability of the composition of cast or wrought nickel, nickel alloy, and cobalt alloy parts and material acquired from a producer
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an iron-nickel alloy in the form of bars, forgings, flash welded rings, and stock for forging, flash welded rings, or heading
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 2405