Browse Topic: Ferrous metals

Items (12,887)
Additive Manufacturing is currently being utilized to improve military readiness by transforming maintenance operations and the supply chain associated with repairing or replacing parts or components on legacy vehicles. The National Institute for Aviation Research at Wichita State University is collaborating with the Army Ground Vehicle Systems Center in the creation of a rapid qualification framework for various additive manufacturing materials and processes to support the modernization and sustainment of ground vehicles. Currently, a rapid qualification 17-4PH stainless steel material is being executed utilizing Laser Powder Bed Fusion and Direct Energy Deposition additive manufacturing processes. Prior to entering the rapid qualification, pre-qualification screening studies are performed to select the feedstock and develop process control to limit risk within the qualification. An overview of the pre-qualification screening studies performed in selecting the feedstock and heat
Tomblin, JohnAndrulonis, RachaelSaathoff, BrandonThomas, AnnikaDaharsh, ColeLowney, MatthewWalker, Eric
Advanced ferritic nitrocarburizing process combined with a specialized post-oxidation treatment described as FNC + Smart ONC® [1] is developed for brake rotor applications. The process can be applied to standard grey cast iron brake rotors, significantly reducing PM 10 emissions to levels below the Euro 7 limits for most vehicles equipped with at least some recuperative braking capabilities, all without compromising performance. Finished grey iron brake rotors, ferritic nitrocarburized and post oxidized were evaluated according to several industry standards. The standards include SAE J2707B (Block Wear Test including Highway) [2], GRPE-90-24 Rev.1 Emission Test (Full WLTP Brake Cycle 6 Times) [3], and SAE J2522 (AK-Master Performance) [4]. Nitrocarburized post oxidized brake rotors were compared to untreated grey iron rotors exposed to several friction materials. Ferritic nitrocarburizing and post oxidation addresses the issue of corrosion, which is particularly relevant for brake
Winter, Karl-MichaelHolly, Mike
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a free-machining, corrosion-resistant steel in the form of bars, forgings, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings up to 8.0 inches (203 mm) in diameter or least distance between parallel sides in the solution heat-treated condition (see 8.4), and stock of any size for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
The rapid development of electric mobility leads to improve the performance of all the powertrain components. There is still a high need to maximize their efficiency for autonomy reasons, but weight and volume are critical parameters for automotive, aeronautic or train applications. This paper focuses on electrical machines, especially the permanent magnet synchronous axial flux motors (PMSAFM) which offer advantages in terms of power density and volumetric electromagnetic torque. The paper proposes a panorama of solutions for designing such a motor, with an application case to 100 kW – 10000 rpm, and an objective of 12 kW/kg at steady state. Obtaining such a power density can be obtained by optimizing the design, by boosting the current, using a high DC voltage, choosing a high-performance electrical steel and adapted permanent magnets, etc). For the PMSAFM topologies several configurations can be considered, and the authors show that a double rotor PMSAFM surface-mounted magnets
Lecointe, Jean-PhilippeHebri, MohamedBauw, GrégoryFawaz, SaraDuchesne, StéphaneZito, GianlucaABDELLI, AbdenourARSLANE, Idir
The multinational EPIIC programme, involving Airbus Defence and Space, is exploring multiple exciting innovations to strengthen Europe's defense capabilities and technological sovereignty. Airbus, Toulouse, France Imagine Tony Stark soaring through the skies in his iconic Iron Man suit, each command answered with a seamless blend of futuristic technology. Now imagine the cockpit of tomorrow's fighter jet.
This specification covers a carbon steel in the form of bars up through 3.000 inches (76.20 mm) and forgings and forging stock of any size.
AMS E Carbon and Low Alloy Steels Committee
Compressive residual stresses are very important at fatigue life, therefore this work has an objective to determine compressive residual stresses longitudinally, along a surface, with three levels of deflection causing tensile prestresses on the surface fibers, of 750 MPa, 1100 MPa and 1500 MPa, supported in one support position on the compression side, 150 mm, equidistant from the longitudinal center of the samples, which are made of EN 47 steel (DIN 51CrV4), with dimensions of 15 mm thick, 70 mm width and 1500 mm long. The samples are submitted to quenching, tempering, surface polishing and stress relief processes, with radius of 2500 mm and concavity downwards, and after they are immersed in a tank with mineral and conventional quenching oil compound, then the samples are tempered and the concave surfaces are polished to remove decarburization and took into the furnace to relieve stress caused by the surface polishing process. Next step, the samples are peened, with deflections of
Chiqueti, Cleber Michelde Almeida Benassi, AdrianoGomes, Bárbara Mirandados Santos, Marcosde Lima, Alexandre SantanaRolim, José Ronaldo Agostinhoda Silva, Fernando Vilanova
This specification covers a premium aircraft-quality alloy steel in the form of bars, forgings, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
A Rear Underrun Protection Device (RUPD) is a safety feature installed on the rear end of chassis of trailers, designed to prevent smaller vehicles from sliding underneath the rear of the trailer in the event of a collision. Therefore, it plays a critical role in reducing the risk of serious injuries or fatalities. The RUPD standard is updated aiming to improve the strength and resistance of these devices, therefore improving the road safety. This paper shares the author’s experience with the latest standards and regulations for Rear Underrun Protection Devices (RUPD), with a focus on the use of Advanced High Strength Steel (AHSS). It provides a general overview of RUPD standard requirements and suggests several AHSS steel tube sizes suitable for the main longitudinal member, serving as a starting point for design. Key design parameters and potential failure points in RUPD structures are discussed, along with possible solutions. Finite Element Modeling (FEM) is commonly used in the
Rad, Nima Asadi
The continuous improvement of validation methodologies for mobility industry components is essential to ensure vehicle quality, safety, and performance. In the context of mechanical suspensions, leaf springs play a crucial role in vehicle dynamics, comfort, and durability. Material validation is based on steel production data, complemented by laboratory analyses such as tensile testing, hardness measurements, metallography, and residual stress analysis, ensuring that mechanical properties meet fatigue resistance requirements and expected durability. For performance evaluation, fatigue tests are conducted under vertical loads, with the possibility of including "windup" simulations when necessary. To enhance correlation accuracy, original suspension components are used during testing, allowing for a more precise validation of the entire system. Additionally, dynamic stiffness measurements provide valuable input for vehicle dynamics and suspension geometry analysis software, aiding in
Zahn, André N.Graebin, MatheusMalacarne, RodrigoToniolo, Juliano C.
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification, in conjunction with the general requirements for steel heat treatment in AMS2759, establishes requirements for thermal stress-relief treatments of parts manufactured from the following materials: a Carbon and low-alloy steels b Tool steels c Precipitation-hardening, corrosion-resistant, and maraging steels d Austenitic corrosion-resistant steels e Martensitic corrosion-resistant steels
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and foil.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
Metallic Tubing Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip 0.005 inch (0.13 mm) and over in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
Friction stir surfacing is an advance surface modification technique, which is functionally evolved from the friction stir welding process. However, the fundamental reason behind the joining of Al/steel is difficult due to the formation of hard and brittle intermetallic compounds (IMC). To address the problem of IMC formation, the current study suggested an alternate production technique with solid-state friction surfacing deposition. In this work, the adhesion mechanism and metallurgical properties of solution-treated AA6061-T6 aluminum alloy cladding over a low-carbon steel IS2062 substrate were investigated. Impact procedural factors (axial frictional force, spindle speed, table traverse speed, consumable rod diameter, and substrate roughness) were examined. Push-off and hardness tests were used to inspect the mechanical properties of cladded samples. 67–77± HV hardness is observed at the interface of the cladded cross-section. A push-off strength of 9 kN was achieved, indicating
Badheka, Kedar HiteshkumarSharma, Daulat KumarBadheka, Vishvesh
This research examined maraging steel (C300), which is widely used in the automotive industry. The study investigated how various 3D printing parameters—laser power (P), scanning speed (V), and layer spacing (H)—as well as post-processing heat treatment factors such as time (t) and temperature (T) affect the properties of C300 steel produced via selective laser melting (SLM). The primary properties assessed included relative density, porosity, hardness, and microstructure. The first part of the analysis focused on how processing parameters, time, and temperature influenced porosity types and manufacturing defects. Subsequently, ANOVA was employed to explore the sensitivity of relative density and microhardness to these parameters. The results revealed an optimal combination of parameters that improved both microstructural and mechanical properties. Additionally, the post-processing heat treatment was found to impact microhardness by modifying the microstructure and martensite lath size
Jaballah, OlaOmidi, NargesIltaf, AsimBarka, NoureddineEl Ouafi, Abderrazak
When a train passes continuously over a section of the track, the track gradually moves away from the intended vertical and horizontal alignment with time and repeated use. Regular maintenance on the track, such as leveling, lifting, lining, and tamping, is necessary to maintain the optimal geometry of the track. Ballast is leveled and squeezed by hydraulic rams in tamping machines. The tamping is a process of ballast packing under railway tracks. In current system a set of tungsten carbide chips are attached either by welding or by coating on tamping tool tip made of EN24 steels. These tungsten carbide chips directly come in contact with the ballasts. After few tamping works, gradually these chips torn out and need to be replaced after certain period. Tungsten carbide is a costly material, therefore this research deals with replacement of tungsten carbide with silicon carbide (easily available cheaper) coating used for tamping tools tip. The study consists of microstructural
Mishra, MamtaPandey, ManasSingh, ShrutiSrivastava, SanjayKumar, Jitendra
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys by use of silver alloy filler metals and the properties of such joints.
AMS B Finishes Processes and Fluids Committee
For the team at SmartCap, building top-notch gear for outdoor adventurers isn’t just a business — it’s a passion driven by their own love for the wild. But as demand for their rugged, modular truck caps soared after their move to North America in 2022, they hit a snag: How do you ramp up production without sacrificing the meticulous quality you are known for, all while navigating a tough labor market? Their answer? A bold step into the world of intelligent automation, teaming up with GrayMatter Robotics, and employing the company’s innovative Scan&Sand™ system.
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of welded tubing.
AMS E Carbon and Low Alloy Steels Committee
This specification covers the requirements for a process to assure removal of free iron or other less noble contaminants from the surfaces of corrosion-resistant steel parts.
AMS B Finishes Processes and Fluids Committee
Due to the increasing precision requirements for stainless steel castings in the current industrial field, we take stainless steel as the object, use numerical simulation to analyze the manufacturing process of castings, and explore the mechanism of related defects and preventive measures. The results indicate that in the process optimization of small castings, the maximum shrinkage and porosity of the conventional scheme, the optimization scheme with the addition of cold iron and insulation riser, and the optimization scheme with the improved pouring system combined with the optimal parameters are 1.83%, 1.64%, and 1.42%, respectively. The optimal pouring temperature, pouring speed, and shell preheating temperature of medium- and large-sized castings are: 1620°C, 1.5 kg/s, and 1100°C, respectively. According to the aforementioned findings, the study raises the standard of precision production for stainless steel, and fuel the growth of the precision casting sector.
Huang, JieZhang, Hongshan
This paper investigates the performance of a dissipative material compared to conventional acoustic materials under conditions that simulate real-world vehicle applications with acoustic leakage. Various acoustic materials were evaluated through laboratory experiments, which included acoustic leakage in both the steel panel and the acoustic materials. Acoustic leakages commonly occur in actual vehicle conditions at pass-throughs or fastener mounting locations. The study also presents in-vehicle test results to demonstrate the effectiveness of the dissipative material in managing acoustic leakage.
Yoo, TaewookMaeda, HirotsuguSawamoto, KeisukeAnderson, BrianGan, KimTongHerdtle, Thomas
Basic structures of vehicle frames、aircraft fuselages and ship hulls are made of beams、columns and trusses. If Acoustic Black Holes(ABH) are carefully arranged alongside with the wave propagation paths in those structures, the wave propagation paths could be changed at NVH engineers’ will and the structure vibrations can be reduced. Two kinds of ABHs are used in this paper: one is ABH made of Polyurethane(PU), other one is ABH composed of several steel plate 1D ABH stacked up in parallel. Three structures are used to test the effectiveness of ABHs for vibration reductions: a squared hollow sectional steel commonly used in motorcoach/bus chassis and frame structures, a simple frame for motorcoach airbag suspension and a 12m chassis structure. The attached ABHs show a great vibration attenuation in terms of transfer functions on the basic structure element for a motorcoach. The lateral, vertical and longitudinal transfer functions for steel ABHs were greatly reduced from 13.2~14.7 dB
Xu, ChuanyanWang, JianjunXing, QisenChen, HengbinHuang, Xianli
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a free-machining, corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides (see 8.4).
AMS F Corrosion and Heat Resistant Alloys Committee
The Electroimpact Automatic Fan Cowl Riveter uses two novel drill processes to control exit burr height and achieve the required hole quality in CRES (Corrosion-Resistant Steel, also called stainless steel) material stacks. Both processes use piloted cutters on the OML (Outer Mold Line, referring to the exterior surface of an airframe) side, and two different tools are used in a backside spindle on the IML (Inner Mold Line, referring to the inside surface of an airframe) side of the component. The first process uses a shallow-angle shave tool in the IML spindle to directly control the exit burr height after it is produced by the OML spindle and is called the “burr shave” technique. The second process uses a countersink tool in the IML spindle and produces an “intermediate countersink” after the pilot hole is drilled by the OML spindle, but before the final hole diameter is drilled. These drill processes were able to achieve the required hole quality in a challenging CRES material stack
Schultz, RichPeterman, RandyLuker, ZacharyMurakonda, Sai KrishnaMerluzzi, James
Performing highly representative tests of aircraft equipment is a critical feature for gaining utmost confidence on their ability to perform flawlessly in flight under the entire spectrum of operating conditions. This can also contribute to accelerate the certification process of a new equipment. A research project (E-LISA) was performed in recent years, as part of the European funded Clean Sky 2 framework, with the objective of building an innovative facility for testing an electrically actuated landing gear and brake for a small air transport. The project eventually led to the development and construction of an Iron Bird able to reproduce in a realistic and comprehensive way a full variety of landing test cases consistent with certification specifications and landing histories available in the repository of the airframer. The Iron Bird that was eventually developed is a multi-functional intelligent and easy reconfigurable facility integrating hardware and software allowing to perform
De Martin, AndreaBertolino, AntonioJacazio, Giovanni
Items per page:
1 – 50 of 12887