Browse Topic: Ferrous metals
In this paper, a systematic and in-depth study is carried out on the key engineering problem of the accurate calculation of the flexural capacity of L-shaped concrete-filled steel tubular columns. Based on the basic framework of mechanics theory, the basic design principle of reinforced concrete members is integrated, and the nonlinear characteristics of steel and concrete materials in the process of stress are mainly considered, such as steel yield strengthening, concrete compression damage, etc., and the ultimate bending moment calculation model which is more suitable for the actual stress state is constructed. Through rigorous theoretical derivation and multi-parameter comparative analysis, the final formula for calculating the bearing capacity of special-shaped columns not only has clear mechanical concept support, but also systematically defines the scope of application of the calculation method. The verification results show that the established calculation method not only meets
2
This SAE Standard covers cold drawn and annealed seamless low-carbon steel pressure tubing intended for use as hydraulic lines and in other applications requiring tubing of a quality suitable for flaring and bending. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable material specification requirements of wrought corrosion- and heat-resistant steel and alloy products and of forging stock.
Puddling is a crucial process in rice cultivation, involving the preparation of the soil in a flooded field to create a soft, muddy seedbed. There are two classifications for puddling: full cage and half cage. Full cage puddling involves replacing the rear wheels of the tractor with steel paddle wheels, which are used to till the rice paddies directly without any additional implement. In the half cage puddling, the rear wheels remain on the tractor, and a smaller cage or paddle wheel is attached to the outside. Considering the field size, the operator often releases the clutch very quickly after a speed or direction change. This generates torque spikes, which are harmful to Transmission Gears and Clutches. This can lead to gear teeth bending fatigue failure due to repeated higher bending stresses. In this paper, a study related to how to reduce overall product development time by simulating bending fatigue failure of gear in lab environment is presented. A systematic approach is used
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition (see 8.4) and stock of any size for forging, flash-welded rings, or extrusions.
This specification covers a corrosion-resistant steel in the form of investment castings homogenized, solution, and precipitation heat treated to 150 ksi (1034 MPa) minimum tensile strength.
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
This specification covers a premium aircraft-quality alloy steel in the form of welding wire.
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate.
This specification covers established manufacturing tolerances applicable to sheet, strip, and plate of corrosion- and heat-resistant steels, iron alloys, titanium, and titanium alloys. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of the specified range.
This specification covers a corrosion- and heat-resistant iron alloy in the form of welding wire.
This specification covers a free-machining, corrosion-resistant steel in the form of bars, wire, forgings, and forging stock.
This specification covers a corrosion-resistant steel in the form of laminated sheet.
“Big iron” instruments, aka diagnostic radiology equipment such as x-ray, ultrasound, and CT scanners, are indispensable for diagnosing and guiding treatment for an array of conditions from tumors to arthritis to fractures. While a tremendous asset for hospitals, these instruments are traditionally large, heavy, power hungry, and expensive. They are also difficult to acquire, install, and use.
Like those in many other industries, truck and off-highway vehicle manufacturers face the challenge of producing quality components and maintaining productive processes while also generating a better bottom line. Improving employee training, simplifying complex operations and implementing better workflows can all help generate efficiencies. While not a new concept, lightweighting - in this case, reducing the weight of parts through the substitution of traditional steel with high-strength, thinner steels - can also be a viable answer to a better vehicle. As a rule of thumb, when manufacturers double the strength of the material through lightweighting, it is possible to reduce the weight of the part by one-third. That weight reduction can then lower the cost per part for greater profitability per piece of equipment and greater annual savings.
This specification covers a corrosion- and heat-resistant steel in the form of bars, forgings, and forging stock.
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock.
This specification covers a corrosion-resistant steel product 12 inches (305 mm) and under in nominal diameter, thickness, or for hexagons, least distance between parallel sides in the solution and precipitation heat treated (H950) condition.
This specification covers a corrosion-resistant steel product in the solution and precipitation heat-treated (H950) condition, 12 inches (305 mm) and under in nominal diameter, thickness, or, for hexagons, least distance between parallel sides.
Items per page:
50
1 – 50 of 12915