Browse Topic: Ferrous metals

Items (13,147)
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
Electrical discharge machining (EDM) technology is one of the unconventional machining processes with an ability to machine intricate geometrics with micro finishing. Powder-mixed EDM (PMEDM) extends the EDM process by adding conductive powder to the dielectric fluid to improve performance. This set of experiments summarizes the effect of brass and copper electrode on HcHcr D2 tool steel in chromium powder-mixed dielectric fluid. Powder concentration (PC), peak current (I), and pulse on-time (Ton) are considered as variable process parameters. General full factorial design of experiment (DOE) and ANOVA has been used to plan and analyze the experiments where powder concentration is observed as the most significant process parameter. The results also reveal that a brass electrode offers a high material removal rate (MRR). Whereas, the copper electrode has reported noteworthy improvement in surface roughness (Ra). Moreover, teaching–learning-based optimization (TLBO) algorithm has been
Sonawane, Gaurav DinkarSulakhe, VishalDalu, RajendraKaware, KiranMotwani, Amit
The usage of Electric Vehicles (EVs) and the annual production rate have increased significantly over the years. This is due to the development of rechargeable electrical energy storage system (battery pack), which is the main power source for EVs. Lithium-ion batteries (LIBs) pack is predominantly used across all major vehicle categories such as 2-wheelers, 3-wheelers and light commercial vehicle. LIB is one of the high energy-dense sources of volume. However, LIBs have a challenge to pose a risk of short circuits and battery pack explosions, when exposed to damage scenarios. In the present study, the controlled crash analysis is performed for various velocities ranging from 50 kmph to 72 kmph against an obstruction directly and at an offset from the wheel, so as to mimic the real-world crash of high-speed two-wheelers. The behavior of the battery enclosure is examined through evaluating the structural integrity of the battery enclosure used in a realistic two-wheeler after crash at
Venkatesan Sr, AiyappanNelson, N RinoHariharan Nair, Adarsh
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
Alloy steel possesses high strength, hardenability, fatigue strength, and good impact toughness. It is widely used for making various machine parts, automobile components, shafts, gears, connecting rods, and more. Hardening and tempering develop the optimum combination of hardness, strength, and toughness in engineering steel, thereby providing components with high mechanical properties. Hardening and tempering temperatures are crucial factors that affect the mechanical and metallurgical properties of 42Cr4Mo steel. In this research work, 42Cr4Mo alloy steel samples were subjected to hardening and tempering processes. The hardening temperatures were set at 830°C, 850°C, and 870°C, while the tempering temperatures were maintained at 590°C and 650°C. The test results show that hardening at 830°C and tempering at 590°C achieve high tensile strength, which decreases as the temperature increases. Different hardening temperatures and constant tempering temperatures will be optimized to
Murugesan, VenkatasudhaharGanesan, DharmalingamTarigonda, Hariprasad
The advancement of wire-arc additive manufacturing (WAAM) presents a significant opportunity to revolutionize the production of automotive components through the fabrication of complex, high-performance structures. This study specifically investigates the metallurgical, mechanical, and corrosion properties of WAAM-fabricated ER 2209 duplex stainless steel structures, known for their superior mechanical properties, excellent corrosion resistance, and favorable tribological behavior. The research aims to optimize WAAM process parameters to achieve high-quality deposition of ER 2209, ensuring structural integrity and performance suitable for both marine and various automotive applications. Microstructural analysis of the produced samples revealed the alloy’s dual-phase nature, with roughly equal amounts of ferrite and austenite phases uniformly mixed across the layers of deposition. This balanced microstructure contributes to the alloy’s excellent mechanical properties. Yield strength
A, AravindS, JeromeKumar, Ravi
Wire Electrical Discharge Machining (WEDM) is a sophisticated machining technique that offers significant advantages for processing materials with elevated hardness and complex geometries. Invar 36, a nickel-iron alloy characterized by a reduced coefficient of thermal expansion, is extensively used in the aerospace, automotive, and electronic sectors due to its superior dimensional stability across a wide temperature range. The primary goals are to improve machining settings and develop regression models that can precisely predict critical performance metrics. Experimental experiments were conducted using a WEDM system to mill Invar 36 under diverse machining parameters, including pulse-on time, pulse-off time, and current setting percentage (%). The machining performance was assessed by quantifying the material removal rate (MRR) and surface roughness (Ra). The design of experiments (DOE) methodology was used to systematically explore the parameter space and identify the optimal
Pasupuleti, ThejasreeNatarajan, ManikandanRaju, DhanasekarKrishnamachary, PCSilambarasan, R
This paper designs a low-budget yokeless and segmented armature (YASA) axial flux permanent magnet synchronous machine, which replaces some of the PMs attached to the rotor with silicon steel plates. For the purpose of checking the effectiveness of the proposed machine, the equivalent magnetic circuits of the typical and proposed YASA machines are first compared and analyzed, and then the models of the two machines are constructed and simulated. The results prove that the proposed YASA machine significantly reduces the quantity of permanent magnets compared to the typical machine. In addition, the thickness of the machine rotor disc has been reduced by optimizing the machine, which both enhances the power density and reduces the volume of the machine. Finally, the rotor-stator magnetic pulling force of the machine is simulated and analyzed, and the results prove that the proposed machine can operate stably.
Li, TaoWang, BitanDiao, ChengwuZhao, Wenliang
Intermetallic Zn-Mo to steel induction brazing was performed in an induction furnace at 1260 degrees Celsius for 0.8 thousand seconds utilising Ni-Cr-Zn filler metal. Base metal atoms such as zinc, molybdenum, and nickel are stated to diffuse to the contact and aggressively react with the filler metal during brazing. This is backed by microstructural research. The reaction layer near Zn-Mo, which is composed of Ni-Cr-Zn compounds and Ni-based solid solutions; the interface's centre zone, which is composed of Ni-based solid solutions with distributed Ni-Cr eutectic phases; and the NiC reaction layer near the steel. The interface is made up of all of these components. The best values for the induction brazing parameters may be calculated by analysing the association between the brazing parameters and the tensile strength of the joints. The joint has a tensile strength of 348 MPa after being brazed at a temperature of 1260 degrees Celsius for 0.8 thousand seconds.
Babu Chellam, B Ashok KumarVimal Raja, M.Dhiyaneswaran, J.Selvaraj, MalathiSangeeth Kumar, M.
This research was conducted with the aim of exploring the usage of advanced lightweight materials such as aluminum matrix composite and aramid fiber reinforcement polymer for increased structural integrity of the hood of an automotive vehicle. The automotive sector is moving toward lightweight materials because of the need to enhance fuel efficiency, the importance of reducing environmental impact, and the need to ensure safety of new-generation automobiles. While traditional materials such as steel and aluminum might be very rigid and durable, they also add huge weight to the overall vehicle design. Consequently, these vehicles become more fuel inefficient, which could lead to higher emissions and pollution. The two materials chosen for this research are very promising, considering that both are characterized by high specific strength and impact resistance capabilities. The low weight of the materials is also an added bonus. While AMC is manufactured by consolidating aluminum with
Arvinda Pandian, C.K.Balaji, N.Seeniappan, KaliappanNatrayan, L.Maranan, RamyaRavi, D.
The intended upper bound of this specification is that the particle size distribution (PSD) of powders supplied shall be <60 mesh (250 µm) and that no powder (0.0 wt.%) greater than 40 mesh (425 µm) is allowed.
AMS AM Additive Manufacturing Metals
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
Additive manufacturing technologies, particularly wire arc additive manufacturing (WAAM), have gained recognition for their ability to produce large metallic components efficiently and cost-effectively. This study investigates both the mechanical properties and microstructure of 304L austenitic stainless steel produced via WAAM, focusing on orientation-dependent behavior. Tensile specimens were prepared in transversal, diagonal, and longitudinal orientations according to ASTM E8 standards, and their mechanical properties were evaluated. The results show that the diagonal sample exhibited the highest tensile strength of 555 MPa with an elongation of 47.9%, while the longitudinal sample demonstrated the highest ductility with a notable elongation of 61.4%. Microstructural analysis, including scanning electron microscopy (SEM), revealed refined grain structures and alignment that influenced mechanical properties and stress distribution. Hardness measurements showed an increase across all
Navaneethasanthakumar, S.Suresh, R.Santhosh, V.Godwin Raja Ebenezer, N.Sankarapandian, S.
Austenitic stainless steel (AISI 316L) is highly valued in various industries for its properties, especially related to wear and corrosion resistances. There are several applications of austenitic stainless steel in the automotive industry. This study investigates the effects of porosity of SS316L samples fabricated using powder metallurgy (uniaxial pressure). Two different compaction pressures, 300 MPa, and 600 MPa, were applied to analyze their influence on the material’s density, porosity, microstructure, hardness, and abrasion responses. The SS316L samples were sintered at 1120 °C for 30 min. The microstructural analysis revealed that the sample pressed at 600 MPa exhibited higher density and lower porosity (18.9%) compared to the sample pressed at 300 MPa (29.2%). This increased compaction pressure led to a more uniform microstructure with smaller grain sizes and a more consistent distribution of circular pores. Consequently, the hardness of the 600 MPa sample was significantly
Tahanzadeh, SamiraSeriacopi, VanessaRodrigues, DanielMachado, Izabel Fernanda
The development of advanced high-strength steels has become essential in the production of lightweight, safe, and more economical vehicles within the context of the automotive industry. Among the advanced high-strength steels, complex phase steels stand out, characterized by their high formability and high energy absorption and deformation capacity. Laser welding is a technique that applies laser using high energy density as a heat source. It has the advantages that the high welding speed and low heat input compared to other welding methods cause a decrease in deformation, and the narrow width of the weld bead and heat-affected zone allows for the welding of complex parts that would be difficult for other welding methods. Based on a study of a complex phase steel, an analysis was made of the microstructures observed by optical microscopy, the grain boundaries and certain phases contained in this microstructure, as well as the microstructures of each area in the laser welding region
Dias, Erica XimenesReis de Faria Neto, AntonioCastro, Thais SantosMartins, Marcelo SampaioSantos Pereira, Marcelo
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of heat-treated bars and forgings.
AMS E Carbon and Low Alloy Steels Committee
Items per page:
1 – 50 of 13147