Browse Topic: Ferrous metals

Items (12,915)
To address the escalating traffic demands and tackle the complex mechanical challenges inherent in in-situ tunnel expansion, this study, grounded in the Huangtuling Tunnel project in Zhejiang Province, China, focuses on the stability evolution of surrounding rock and the mechanical characteristics of structures during the in-situ expansion of existing tunnels under weak surrounding rock conditions. By systematically comparing core post-excavation features—such as surrounding rock displacement fields, ground pressure distribution pat-terns, and mechanical responses of support structures—between newly constructed tunnels and in-situ expanded tunnels, the research reveals key mechanical principles governing the construction of large-section tunnels in weak rock formations. Specifically, the findings are as follows: (1) Both newly constructed and in-situ expanded large-section tunnels exhibit significant spatial heterogeneity in surrounding rock deformation. The vault-spandrel zones serve
Zheng, XiaoqingKang, XiaoyueXu, KaiChen, TaoHuo, XinwangChen, Chuan
This paper investigates the seismic performance of the prefabricated concrete-filled steel tubular (CFST) bridge pier in the bridge system-level. The proposed prefabricated CFST bridge pier is composed of circular thin-walled CFST double-column, precast I-shaped tie beams, and precast RC cap beam, which are assembled by simply on-stie assembly connections, with advantages in good seismic performance, convenient construction, and comparable material cost. A total of 12 two-span continuous beam bridge cases are designed, including 2 typical bridges with reinforced concrete (RC) piers and 10 bridges with CFST piers. Numerical research on the hysteretic performance of piers in bridge cases, dynamic responses of all bridge cases, and their seismic fragility. The results demonstrate that prefabricated CFST piers outperform RC piers in both load-bearing capacity and energy dissipation, and these piers exhibit reduced transversal displacement at the top and decreased maximum curvature when
Gu, ChaoWang, Xuanding
In this paper, a systematic and in-depth study is carried out on the key engineering problem of the accurate calculation of the flexural capacity of L-shaped concrete-filled steel tubular columns. Based on the basic framework of mechanics theory, the basic design principle of reinforced concrete members is integrated, and the nonlinear characteristics of steel and concrete materials in the process of stress are mainly considered, such as steel yield strengthening, concrete compression damage, etc., and the ultimate bending moment calculation model which is more suitable for the actual stress state is constructed. Through rigorous theoretical derivation and multi-parameter comparative analysis, the final formula for calculating the bearing capacity of special-shaped columns not only has clear mechanical concept support, but also systematically defines the scope of application of the calculation method. The verification results show that the established calculation method not only meets
Wang, CuicuiBai, ShouyanWei, HongxianLv, ShuangXu, Yafeng
The need to reduce vehicle weight without compromising safety drives the use of advanced high-strength steels (AHSS) in the automotive industry. Laser welding is a widely employed technique for joining dissimilar materials due to its high precision and small heat-affected zone (HAZ). However, differences in the chemical composition and thermomechanical properties of the materials can create heterogeneous microstructures in the fusion zone (FZ) and HAZ, directly impacting the mechanical properties of the welded joint. This study aims to evaluate the relationship between microstructure and mechanical properties in laser-welded joints of dissimilar automotive steels. The objective is to understand how microstructural transformations affect weld strength, ductility, and toughness, contributing to process parameter optimization and improved structural performance. Microstructural analysis will be performed using optical microscopy, and mechanical tests, such as tensile testing and
Santos, dos Flávio NunesReis de Faria Neto, dos AntonioDias, Erica XimenesMartins, Marcelo SampaioSantos Pereira, dos Marcelo
2
Santana, JessicaCurti, GustavoLima, TiagoSarmento, MatheusCallegari, BrunaFolle, Luis
The demand for lightweight and cost-effective materials in rail transportation is increasing. Low nickel nitrogen austenitic stainless steel is considered a promising alternative for stainless steel car body structures because of its excellent mechanical properties and corrosion resistance. Due to the complexity and large scale of such structures, the structural reliability of car bodies made from this material is regarded as a critical concern. This issue is also addressed in the present study. Finite element analysis (FEA) is employed using ABAQUS to evaluate the structural performance of a low nickel stainless steel car body under various operational conditions. Based on the material specifications outlined in GB/T 7928-2003 “Stainless Steel for Urban Rail Transit Vehicles,” the structural design requirements of EN 12663-2010 “Railway Applications - Structural Requirements of Railway Vehicle Bodies,” and the experimental requirements of TB/T 3502-2018 “Modal Test Method and
Jiang, LongXie, KunAn, ZiliangZuo, Yiwen
Compared to steel, aluminum alloy has the advantages of light weight, high specific strength, corrosion resistance, and easy processing, and is widely used in structures such as aviation, construction, bridges, and offshore oil platforms. All along, Chinese construction aluminum profiles have been produced according to the GB/T5237-XXXX standard, which is determined based on the mechanical performance requirements of doors and windows and the actual processing of aluminum profiles. There are many problems. The author of this article has developed a new product 6063-T56, which has a tensile strength of 240-260Mpa and an elongation rate of not less than 8%, surpassing the latest technology level in Europe. It has been promoted and applied to the aluminum profile production industry in China, improving product performance, reducing production costs, improving production efficiency, and meeting the requirements of the "Aluminum Alloy Doors and Windows Standard" GB/T8478-2020, making
Qiao, Zhou
The study focuses on the management of deep foundation pit excavation, influenced by temporal and spatial factors, in the context of the challenging environmental circumstances posed by the high-water-level silty soft clay along the Yellow River's northern shore, as part of the Jinan urban rail transit initiative. The subsequent inferences have been made: (1) Throughout the digging phase, issues such as excessive digging and delays in installing steel reinforcements occur, while the subterranean diaphragm wall tends to shift significantly inward within the excavation area due to the disparity in pressure between the water and soil inside and outside. (2) During the building phase, managing wall distortion is imperative, and an enhanced preliminary force should be applied to the support's axial component at points of significant deformation, guaranteeing an excess coefficient for both the support rigidity and the continuous subterranean wall rigidity. (3) In the process of diaphragm
Gao, TiangangZhang, XuPan, FuyongZhang, Wenjun
To assess the structural response of the steel-concrete composite joint in a long-span half-through spatial double-arch steel box arch bridge throughout its construction and service life, a comprehensive analytical approach was implemented. Initially, a global beam-element model was constructed using Midas Civil software to determine the structural response during critical phases, including the primary construction stage (Stage 1) and operational conditions. Subsequently, a refined local finite element model focusing specifically on the arch foot's steel-concrete interface was developed in Ansys. The modeling methodology incorporated experimental validation through field instrumentation data, enabling detailed examination of both stress distribution patterns within the composite zone and the fundamental force transfer principles at this critical structural transition. Key findings from this investigation demonstrate: When subjected to the combined effects of permanent and transient
Dong, Huili
This SAE Standard covers cold drawn and annealed seamless low-carbon steel pressure tubing intended for use as hydraulic lines and in other applications requiring tubing of a quality suitable for flaring and bending. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Metallic Tubing Committee
When a tunnel passes through the transition zone between two faults, different support schemes have varying impacts on the deformation of the surrounding rock. This study, based on the Zhangzhuang Tunnel's double-fault area, establishes a numerical simulation model using Midas GTS NX to compare and analyze the effects of an enhanced support scheme versus a standard reinforcement scheme. The results indicate that when the non-reinforced support scheme is applied throughout the tunnel, the settlement of the transition zone's crown is 5.7 mm, only 0.27 mm greater than that of the reinforced scheme. Additionally, the variation in support stress in the transition zone between the two schemes is minimal. This demonstrates the feasibility of adopting the non-reinforced scheme, which reduces the number of steel arch frames, enhances construction efficiency, and provides a reference for future construction of small-section tunnels in double-fault conditions.
Wu, JianminNiu, ShuoZhang, TeMeng, Xianghua
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Metallic Tubing Committee
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable material specification requirements of wrought corrosion- and heat-resistant steel and alloy products and of forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
Puddling is a crucial process in rice cultivation, involving the preparation of the soil in a flooded field to create a soft, muddy seedbed. There are two classifications for puddling: full cage and half cage. Full cage puddling involves replacing the rear wheels of the tractor with steel paddle wheels, which are used to till the rice paddies directly without any additional implement. In the half cage puddling, the rear wheels remain on the tractor, and a smaller cage or paddle wheel is attached to the outside. Considering the field size, the operator often releases the clutch very quickly after a speed or direction change. This generates torque spikes, which are harmful to Transmission Gears and Clutches. This can lead to gear teeth bending fatigue failure due to repeated higher bending stresses. In this paper, a study related to how to reduce overall product development time by simulating bending fatigue failure of gear in lab environment is presented. A systematic approach is used
Pathan, Irfan HamidullaBardia, Prashant
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition (see 8.4) and stock of any size for forging, flash-welded rings, or extrusions.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized, solution, and precipitation heat treated to 150 ksi (1034 MPa) minimum tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
In this study, the optimization of robotic gas metal arc welding (GMAW) parameters for joining hot-rolled ferritic-bainitic FB590 steel sheets with a thickness of 2.5 mm was investigated. The main objective was to evaluate the effect of wire feed speed and welding speed on the penetration depth, throat thickness, and mechanical performance of the welded joint. A series of welding experiments were carried out with wire feed speeds ranging from 50 cm/min to 100 cm/min and welding speeds ranging from 5 cm/min to 15 cm/min. Tensile and microhardness tests were carried out to evaluate the structural integrity of the welded joints. The results show that increasing the wire feed speed significantly improves the weld penetration and throat thickness, especially at constant welding speeds. The most suitable combination was found to be 70 cm/min wire feed at 8 cm/min travel speed and 100 cm/min wire feed at 12 cm/min and 15 cm/min travel speeds. The microhardness in the heat-affected zone
Babir, NaimeÜzel, Uğur
Measurement plays a crucial role in the precise and accurate management of automotive subsystems to enhance efficiency and performance. Sensors are essential for achieving high levels of accuracy and precision in control applications. Rapid technical advancements have transformed the automobile industry in recent years, and a wide range of novel sensor devices are being released to the market to speed up the development of autonomous vehicle technology. Nonetheless, stricter regulations for reliable pressure sensors in automobiles have resulted from growing legal pressures from regulatory bodies. This work proposes and investigates a tribo electric nano sensor that is affected by a changing parameter of the separation distance between the device's primary electrode and dielectric layers. The system is being modeled using the COMSOL multiphysics of electrostatics and the tribo-electric effect. Open circuit electric potential and short circuit surface charge density are two of the
P, GeethaK, NeelimaSudarmani, RC, VenkataramananSatyam, SatyamNagarajan, Sudarson
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a premium aircraft-quality alloy steel in the form of welding wire.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers established manufacturing tolerances applicable to sheet, strip, and plate of corrosion- and heat-resistant steels, iron alloys, titanium, and titanium alloys. These tolerances apply to all conditions, unless otherwise noted. The term “excl” is used to apply only to the higher figure of the specified range.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant iron alloy in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a free-machining, corrosion-resistant steel in the form of bars, wire, forgings, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of laminated sheet.
AMS F Corrosion and Heat Resistant Alloys Committee
“Big iron” instruments, aka diagnostic radiology equipment such as x-ray, ultrasound, and CT scanners, are indispensable for diagnosing and guiding treatment for an array of conditions from tumors to arthritis to fractures. While a tremendous asset for hospitals, these instruments are traditionally large, heavy, power hungry, and expensive. They are also difficult to acquire, install, and use.
Like those in many other industries, truck and off-highway vehicle manufacturers face the challenge of producing quality components and maintaining productive processes while also generating a better bottom line. Improving employee training, simplifying complex operations and implementing better workflows can all help generate efficiencies. While not a new concept, lightweighting - in this case, reducing the weight of parts through the substitution of traditional steel with high-strength, thinner steels - can also be a viable answer to a better vehicle. As a rule of thumb, when manufacturers double the strength of the material through lightweighting, it is possible to reduce the weight of the part by one-third. That weight reduction can then lower the cost per part for greater profitability per piece of equipment and greater annual savings.
Gugel, Mick
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of bars, forgings, and forging stock.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers flash welded rings made of ferritic and martensitic corrosion-resistant steels.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel product 12 inches (305 mm) and under in nominal diameter, thickness, or for hexagons, least distance between parallel sides in the solution and precipitation heat treated (H950) condition.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel product in the solution and precipitation heat-treated (H950) condition, 12 inches (305 mm) and under in nominal diameter, thickness, or, for hexagons, least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification, in conjunction with the general requirements for steel heat treatment covered in AMS2759, establishes the requirements for annealing of austenitic corrosion-resistant steel parts. Parts are defined in AMS2759. General ordering instructions are specified in AMS2759.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 12915