Browse Topic: Aluminum

Items (4,403)
Grain refinement of aluminium and its alloys is a common industrial practice, particularly for automobile casting. The grain refines with titanium agent influence better mechanical behaviour such as higher yield and ultimate tensile strength rather than monolithic alloy. Present study, the halide salt method has been used to produce the Al-Ti-B grain refiners with different Ti/B ratios. The prepared grain refiner is added in A356 alloy and observed its grain refining efficiency. The addition of grain refiner to A356 aluminium alloy at different holding times, such as 10, 20, and 30 min, allowed it to solidify. It is found that 30 min of holding time with 5Ti1B improves the hardness (40%) and ultimate tensile strength (UTS) value (63.56%). A high degree of grain refinement was observed in a 30-minute holding time with 5Ti1B with improved grain refining efficiency of 3 %. Its microstructural observation and tensile properties helped us understand this grain refinement
Venkatesh, R.Manivannan, S.Das, A. DanielMohanavel, VinayagamSoudagar, Manzoore Elahi Mohammad
The AA2024 aluminum alloy is a precipitate-hardening material renowned for its exceptional strength and corrosion resistance, making it a preferred choice for various applications in industries such as aircraft and automobile manufacturing. However, it is challenging to weld using fusion welding processes due to differences in melting points between the aluminum base material and its oxide layer. Consequently, this often results in issues such as partially melted zones, alloy segregation, and hot cracking. In this investigation, electron beam welding was employed to minimize heat input and prevent the formation of coarse grains in the heat-affected zone. Observations revealed that the joint achieved a maximum strength of 285 MPa, representing 62% of the base material's strength. This improvement in strength can be ascribed to the establishment of fine and recrystallized grains at the weld interface, along with the presence of copper aluminide strengthening precipitates
Rajesh, A.Karthick, S.Mallieswaran, K.Shanmugam, Rajasekaran
Growing demand for fuel-efficient vehicles and lower CO2 emissions has led to the development of lightweight materials. Aluminum composites are being used to achieve lightweighting to improve performance, efficiency, and sustainability across various industries. The unique properties of aluminum composites make them an attractive choice for researchers and designers looking to optimize their products. Reinforcement materials play a vital role in the development of these composites, acting as barriers to dislocation movement within the aluminum matrix. This effectively strengthens the material and prevents deformation under load, resulting in increased tensile strength and fatigue resistance. Additionally, aluminum composites exhibit improved thermal and electrical conductivity, making them suitable for automotive applications. In this study, metal matrix composites (MMCs) of aluminum 7075 alloys were developed using silicon carbide (SiC) and flyash as reinforcements. Three different
Manwatkar, Asmita AshokSantosh Jambhale, MedhaMahagaonkar, NitinSharma, Dipesh
To meet light-weighting and safety target of automotive vehicles, different Aluminium alloys are used in various body parts. Apart from conventional manufacturing process of gravity die casting (GDC), advanced manufacturing process such as low pressure die casting (LPDC), high pressure die casting (HPDC) and extrusion processes are also used to form complex automotive body parts. Steel parts are majorly used in automotive applications across world. However, steel has limitations with respect to light-weighting. To achieve light-weighting, now a days, there is trend to use these complex Aluminium parts in automotive industry to replace steel and integrate multiple parts into a single one. Aluminium has emerged as great potential for light-weighting and reducing complexity of handling multiple parts at an automotive plant. There is a challenge to identify suitable etchant for microstructural characterization of Aluminium alloy parts that can be made through various manufacturing
Deshmukh, MansiJain, VikasMisal, SwapnaliPaliwal, Lokesh
ABSTRACT Barriers to the introduction of composite materials for ground vehicle applications include material property selection and cost effective material processing. Advancements in processing of thermoplastic composites for use in applications for semi structural and structural applications have created opportunities in “Out of Autoclave” processing utilizing preconsolidated unidirectional reinforced tapes. Traditional tooling for the bending formation of high temperature reinforced structural thermoplastic laminates typically involves matched metal tooling consisting of steel or aluminum and are costly and heavy. In this research, a comparative analysis was performed to evaluate the use of a large scale 3D printed forming tool in comparison to a traditional metallic mold. Material processing considerations included the development of a technique for localized laminate heating to achieve optimized energy input in the forming process. Considerations in tooling development included
Erb, DavidDwyer, BenjaminRoy, JonathanYori, WilliamLopez-Anido, Roberto A.Smail, AndrewHart, Robert
ABSTRACT Two relevant materials found in ground vehicle underbody armor/hull designs are Aluminum 2139-T8 and RHA Steel (Class I). These are 2 very important materials that need a thorough understanding of their high-strain rate behavior. The Johnson-Cook Deformation (JC-D) model at this time is the most preferred constitutive material model to utilize for high-strain (large deformation) blast simulations. The JC-D Model contains five empirically-based input parameters which can be determined traditionally through a series of uniaxial laboratory tests where each target parameter is isolated, while the remaining parameters are held constant. There are many criticisms and problems with this approach. The objective of this two part paper is to present and adopt a more accurate approach with less criticism to the determination of these five input parameters through both a sensitivity study to determine which input parameters are the most sensitive to a particular chosen response which in
Hause, TerrySheng, Jianping
ABSTRACT FeMnAlC alloys exhibit lower density (6.5-7.2 g/cm3) than traditional military steels (7.9 g/cm3) while maintaining similar energy absorption capabilities. Material substitutions in legacy systems must meet existing form/fit/function requirements, limiting opportunities for lightweighting of existing designs. This study examines production and material properties of thick plate with a nominal chemistry of 30% Mn, 9%Al and 1%C, in the wrought condition. Due to the high aluminum and carbon content, there are unique challenges to large scale (45+ ton heat) production versus typical armor steel chemistries. Lab-scale wrought and production material are characterized, comparing microstructure, and mechanical properties. Processing practices including teeming flux and rolling temperature are discussed. The high manganese content of this alloy presents challenges for welding and machining practices, such as limited compatibility of weld wires and substantial work hardening during
Sebeck, KatherineToppler, IanRogers, MattLimmer, KristaCheeseman, BryanHowell, RyanHerman, William
ABSTRACT A newly developed structural adhesive demonstrates a unique combination of high strength (43 ± 2 MPa) and displacement (4.7 ± 1.2 mm) in aluminum lap joint testing. Bulk material characterization of the prototype adhesive reveals its extreme ductility, with nearly 80% shear strain before failure and a 2.5-fold increase in strain energy density as compared to commercial structural adhesives. The prototype adhesive is found to maintain 67 to 82% of its initial strength under extreme environmental conditions, including at high temperatures (71°C), after high humidity (63°C hot water soak, 2 weeks), and after corrosive conditions (B117 salt spray, 1000 hours). The prototype structural adhesive is shown to also generate high strength bonds with multiple substrates, including steel, carbon fiber, and mixed material joints, while also providing galvanic isolation
Pollum, MarvinKriley, JosephNakajima, MasaTan, Kar TeanStalker, JeffreyFleischauer, RichardRearick, Brian
ABSTRACT This paper addresses candidate technologies for attaching steels to selected lightweight materials. Materials of interest here include aluminum and titanium alloys. Metallurgical challenges for the aluminum-to-steel and titanium-to-steel combinations are first described, as well as paths to overcome these challenges. Specific joining approaches incorporating these paths are then outlined with examples for specific processes. For aluminum-to-steel joining, inertia, linear, and friction stir welding are investigated. Key elements of success included rapid thermal cycles and an appropriate topography on the steel surface. For titanium-to-steel joining, successful approaches incorporated thin refractory metal interlayers that prevented intimate contact of the parent metal species. Specific welding methods employed included resistance mash seam and upset welding. In both cases, the process provided both heat for joining and a relatively simple strain path that allowed significant
Gould, Jerry E.Eff, MichaelNamola, Kate
ABSTRACT In order to defeat under body blast events and improve crew survivability, a monocoque aluminum cab structure has been designed as a drop on solution based on the current M1151A1 (HMMWV) chassis. The structure is comprised of all 5083-H131 Aluminum alloy armor plates with various thicknesses. The structure design consists of the following new features: (1) Robust joining design utilizing interlocking ballistic joints and mechanical interlocking features, (2) unique B-pillar gusset design connects roof & floor with B-pillar & tunnel, and (3) “Double V” underbody shaping design. The TARDEC designed, integrated & built vehicle achieved no crew core body injuries for a vehicle of this weight class and demonstrated meeting the crew survivability objective when subjected to a 2X blast during the live fire underbody blast tests. These efforts help to not only baseline light tactical vehicle capabilities, but also validate the possibility of meeting aggressive blast objectives for
Lee, Chu-HwaLacap, Demetrio M.Keller, Shawn J.
ABSTRACT Friction stir welding is a solid state joining technique in which no melting of the metals is involved. The technique is very attractive for aluminum alloys due to the low heat input involved in the process, which leads to improved mechanical properties as compared to conventional fusion welds. In this work, different aluminum series alloys were friction stir welded together. The aluminum alloys consisted of a solid solution/strain hardened aluminum alloy 5083-H131, and precipitation strengthened aluminum alloys 2139-T8 and aluminum 7085-T721. The joint combinations were aluminum alloys 5083-H131 to 7085-T721, aluminum alloys 2139-T8 to 7085-T721, and aluminum alloys 5083-H131 to 2139-T8. Their mechanical properties were analyzed and compared to base metal properties. Optical microscopy was used to analyze the grains in the welds. Good mixing of the different aluminum alloys was optically observed in all of the welds, which lead to good joint properties, opening the
Martinez, NelsonMcDonnell, Martin
ABSTRACT The open-cell metal foams have an internal structure is a web of connected ligaments. Foams are made from pure or alloys of aluminum, nickel, steel, magnesium, titanium and copper. In addition to being light weight, the foams exhibit excellent stiffness-to-weight ratios. Some foams can be resilient materials in harsh environments and have high impact resistance. The foams have high conductivities and large surface area per unit volume. All of these attributes make metal foam an attractive core for heat exchange. For example, cooling of power electronics and for thermal management of ground vehicles can employ metal-foam designs. Numerical simulation of convection heat transfer due to airflow inside commercial aluminum foam is conducted in a commercial numerical package. For validation, actual air temperatures were locally measured inside heated commercial aluminum foam, and cooled by forced air flow using a specially-developed technique. Good agreement between the modeling and
Dukhan, NihadSULEIMAN, AHMED S.AL-RAMMAHI, MUNTADHER A.
Aluminum alloys serve a critical role in the aerospace industry, accounting for a significant amount of commercial aircraft weight. Despite the growing use of composite materials, aluminum remains important in airframe construction due to its lightweight, cost-effectiveness, and high strength potential. Structural integrity is critical in modern engineering, necessitating early diagnosis and localization of damage. To detect the flaws, cracks, and cut-out in the structures, structural health monitoring (SHM) systems are essential, with non-destructive testing (NDT) methodologies playing critical roles. Among these technologies, ultrasonic guided wave testing (UGWT) has gained popularity because of its capacity to propagate over long distances and detect subsurface faults. This article investigates the use of UGWs to identify cut-outs in aluminum plates. The numerical investigation has been carried out using commercially available finite element software Abaqus. The ultrasonic lamb
Rajput, ArunPatil, Vaibhav KailasBhosale, AniketYadav, RiteshGhatge, AdityarajPandey, Anand Ji
Recent developments in manufacturing techniques and the development of Al7075 metal matrix composites (MMCs) with reinforcements derived from industrial waste have been steadily gaining popularity for aerospace and automobile applications due to their outstanding properties. However, there are still a lot of limitations with these composite materials. A great deal of research has been done to create new Al7075 MMC materials with the use of economic fly ash (FA) that possesses superior mechanical properties, corrosion resistance, density, and cycle cost. This review outlines different synthesis techniques used in the development of Al7075 MMCs using stir casting. Effects of FA along with other reinforcements on the mechanical, wear, machining, and microstructural properties of the composite are also discussed. Finally, a summary of the application of FA-based MMCs and a recap of the previous discoveries and challenges are reported. Future scope and potential areas of application are
Kumar, RandhirMondal, Sharifuddin
This specification covers aluminum and aluminum alloy foil in the form of laminated sheet (see 8.6
AMS D Nonferrous Alloys Committee
In the fall of 2023, NASA hot fire tested an aluminum-based, 3D-printed rocket engine nozzle. What made the event remarkable is that aluminum isn’t typically used for additive manufacturing because the process causes it to crack, and it isn’t used in rocket engines due to its low melting point. Yet the test was a success
Eight arguments for these resins, compounds and composites. Weight reduction in EV battery components is an important factor in optimizing battery energy density, which in turn is critical to extending vehicle range and boosting power and performance. Although traditional metals such as steel and aluminum are widely used in EV batteries, the ongoing push for higher energy density is opening new opportunities for thermoplastic resins, compounds, and composites. The main advantage of these materials vs. metals is their inherent lighter weight - particularly in the case of lower-density polymers. Thermoplastics can be 30-50 percent lighter than metals. They also increase design freedom, which permits further weight-out through part consolidation and thin walls
Bobba, Somasekhar
The essential aspect of an automobile is its braking system. Brakes absorb the kinetic energy of the rotating parts, i.e., wheels, and dissipate this energy into the surroundings in the form of heat. This entire process is quite complex, and the brake disc is subjected to extreme thermal and structural stresses along with deformation, which might damage the disc. This paper presents a structural and thermal analysis of an Audi Q3 brake disc using an ANSYS 2021-R1. The present brake disc is designed using SOLIDWORKS software. Composite materials are added in the ansys material library by adding their respective characteristics. The thermal analysis mainly focused on temperature variation and directional heat flux. The structural study was conducted to understand the stresses developed during braking and the deformations observed. Along with a comprehensive structural and thermal analysis, this work has also estimated the life of the brake disc, the factor of safety, and the real-time
Bahulekar, AtharvShiralkar, ShaunakJomde, AmitShamkuwar, SonalPatane, PrashantShinde, TarangDandin, Shahbaz
This SAE Aerospace Recommended Practice establishes the requirements and procedures for eddy current inspection of open fastener holes in aluminum aircraft structures
AMS K Non Destructive Methods and Processes Committee
This specification covers an aluminum bronze alloy in the form of sand castings (see 8.5
AMS D Nonferrous Alloys Committee
While Daimler Truck and Paccar are pursuing LFP battery cells, Volvo Trucks employs lithium-ion batteries in which lithium nickel cobalt aluminum oxide (NCA) is used as the cathode — for now anyway. The Swedish truck maker is continuously exploring other battery technologies
Military performance requirements for adhesives have been traditionally derived to fulfill niche defense needs in harsh operational environments with little consideration for dual-use commercial potential. U.S. Army Research Laboratory, Aberdeen, MD The term “military-grade” can have a variety of meanings that are perspective dependent. In 2014, Ford Motor Company emphasized the term heavily in advertising campaigns to garner consumer acceptance for the transition from steel to aluminum in the body of their flagship F150 model. As cited by Ford, “Engineers selected these high-strength, military-grade aluminum alloys because of the metals' unique ability to withstand tough customer demands.” From this point-of-view, military-grade implies superior performance. However, the bureaucratic and logistical barriers required for certification to military-grade acceptance levels per DoD performance requirements can also be perceived as impediments to innovation and the transition of fundamental
The term “military-grade” can have a variety of meanings that are perspective dependent. In 2014, Ford Motor Company emphasized the term heavily in advertising campaigns to garner consumer acceptance for the transition from steel to aluminum in the body of their flagship F150 model. As cited by Ford, “Engineers selected these high-strength, military-grade aluminum alloys because of the metals’ unique ability to withstand tough customer demands.” From this point-of-view, military-grade implies superior performance. However, the bureaucratic and logistical barriers required for certification to military-grade acceptance levels per DoD performance requirements can also be perceived as impediments to innovation and the transition of fundamental science into tangible product. This is in-part due to the legacy age of many DoD performance standards dating to the 1950s and 1960s when the US military peaked in technology market share and was responsible for approximately two-thirds of domestic
Demands for new materials with superior properties are rising as technological advancement is speeding up globally. Composite materials are gaining popularity due to their enhanced mechanical properties over metal and alloys. Aluminum metal matrix composites (MMCs) are becoming popular in several areas of application such as aerospace, automobile, armed forces, and other commercial applications due to their lightweight, increased strength, better fracture toughness, stiffness, corrosion resistance, and cost-effectiveness. The present study reviews the effects of different reinforcements on MMC materials. The main aim of the present work is to give a clear idea to the readers about the role of individual reinforcement in Al7075-based MMCs. Also, the details of weight% and size of different reinforcement are provided, which will help the readers in their future works. It has been observed that inorganic reinforcements give better mechanical and wear properties to composite materials. For
Kumar, RandhirMondal, Sharifuddin
The use of aluminum to manufacture injection molds aims to maximize the productivity of plastic parts, as its alloys present higher heat conductivity than tool steel alloys. However, it is essential to accurately control the injection molding parameters to assure that the design tolerances are achieved in the final molded plastic part. The purpose of this research is to evaluate the use of aluminum alloys in high-volume production processes. It delves into the correlation between the type of material used for mold production (steel or aluminum) and the thickness of the injected part, and how these variables affect the efficiency of the process in terms of the quantity and quality of the produced parts. The findings suggest that replacing steel molds with aluminum alloys significantly reduces injection molding cycle time, the difference ranging from 57.1% to 72.5%. Additionally, the dimensional accuracy and less distortion provided by aluminum have improved product quality. In case of
Marconi, PedroAmarante, EvandroFerreira, CristianoBeal, ValterRibeiro Júnior, Armando
This SAE Aerospace Information Report (AIR) is intended to be used as a process verification guide for evaluating implementation of key factors in repair of metal bond parts or assemblies in a repair shop environment. This guide is to be used in conjunction with a regulatory approved and substantiated repair and is intended to promote consistency and reliability
AMS CACRC Commercial Aircraft Composite Repair Committee
This specification establishes the requirements for a hard anodic coating on aluminum and aluminum alloys
AMS B Finishes Processes and Fluids Committee
This article presents a strategy for the virtual calibration of a large-scale model representing a self-piercing rivet (SPR) connection. The connection is formed between a stack of three AA6016-T4 aluminum sheets and one SPR. The calibration process involves material characterization, a detailed riveting process simulation, virtual joint unit tests, and the final large-scale model calibration. The virtual tests were simulated by detailed solid element FE models of the joint unit. These detailed models were validated using experimental tests, namely peeling, single-lap joint, and cross-tests. The virtual parameter calibration was compared to the experimental calibration and finally applied to component test simulations. The article contains both experiments and numerical models to characterize the mechanical behavior of the SPR connection under large deformation and failure
André, VictorCostas, MiguelLangseth, MagnusMorin, David
As data science technologies are being widely applied on various industries, the importance of data itself increased. A typical manufacturer company has a vast data set of products as 2D&3D drawing formats, but a common problem was that building a database from the 2D&3D drawings costs much, and it is hard to update the database after it once built. Also, it is high-cost job when the new factor researched and necessary to investigate the new factors on previously fixed or uploaded drawings. As new products are developed with time, these problems are getting more difficult. In this paper, an automated database building method using CATIA introduced and future probabilities are suggested. An aluminum wheel part was used as an example. An automated logic used CATIA V5’s VBA functions and was handled by python programming language. Product database was established by using the automated logic for extracting engineering design features, and data mining process was deployed based on the
Seo, JeonginJang, YoungseokSeo, MyoungkyuYum, Kiho
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead. Comparing pulling forces during
Reinberg, NataliaMurray, RyanAscencio Barrera, SindiPineda Carranza, CristinaGolovashchenko, Sergey
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper. The primary objective of this study was to join 0.8 mm thick aluminum
Ko, Byung MinGryguc, AndrewChen, JimHunt, JustinGuo, MingchaoZhang, WenshengJahed, HamidGerlich, Adrian
The design of lightweight vehicle structures has become a common method for automotive manufacturers to increase fuel efficiency and decrease carbon emission of their products. By using aluminum instead of steel, manufacturers can reduce the weight of a vehicle while still maintaining the required strength and stiffness. Currently, Resistance Spot Welding (RSW) is used extensively to join steel body panels but presents challenges when applied to aluminum. When compared to steel, RSW of aluminum requires frequent electrode cleaning, higher energy usage, and more controlled welding parameters, which has driven up the cost of manufacturing. Due to the increased cost associated with RSW of aluminum, Refill Friction Stir Spot Welding (RFSSW) is being considered as an alternative to RSW for joining aluminum body panels. RFSSW consumes less energy, requires less maintenance, and produces more consistent welding in aluminum as compared to RSW. Research has shown that RFSSW is capable of
Gale, DamonHovanski, YuriCoyne, JeremyNamola, Kate
Electrification is the future of the automotive industry and with the rapid growth of Battery Electric Vehicle (BEV) market, battery protection becomes more and more crucial. Side pole impact is one of the most challenging safety load cases. Rocker assembly, as the first line of defense, plays a significant role during the event. This paper proposes Cleveland-Cliffs Steel Tube as Reinforcement (C-STARTM) protection as an application for rocker reinforcement. For a component level assessment, three-point bending is used as a testing method to replicate pole impact. The performance is compared with aluminum baseline with respect to peak force and energy absorption. Test and CAE simulations have been performed and a well calibrated CAE model is utilized to predict the robustness of various steel designs using different grades, gauges and geometries. It is shown that C-STARTM [1] protection is a scalable and configurable solution that offers superior performance in terms of peak force and
Yu, MiaoHu, JunZhu, FengNazari, Sobhan T.Elengikal, SajanMakrygiannis, JohnZhang, JimmyWang, Yu-WeiStubleski, DawnLuther, Isaac
The Electroimpact Automatic Fan Cowl Riveter exhibits new and unique design features and automated process capabilities that address and overcome three primary technical challenges. The first challenge is satisfying the customer-driven requirement to access the entire fastening area of the fan cowl doors. This necessitates a unique machine design which is capable of fitting ‘inside’ a fan cowl door radius. The second challenge is determining drill geometry and drill process parameters which can produce consistent and high-quality countersunk holes in varying mixed-metal stack-up combinations consisting of aluminum, titanium, and stainless steel. The third challenge is providing the capability of fully automatic wet installation of hollow-ended titanium rivets. This requires an IML-side countersinking operation, depositing sealant throughout the OML and IML countersinks and the hole, automatically feeding and inserting a rivet which is only 5mm long and 6mm in head diameter and flaring
Merluzzi, JamesSchultz, RichErnsdorff, BryanPeterman, RandyLuker, ZacharyStansbury, ErinMurakonda, Sai Krishna
Fly ash is a light byproduct produced when pulverized coal is burnt in suspension-fueled furnaces in power plants. Separating the recovered fly ash from the exhaust gases. Due to its distinct physical and chemical properties, it is utilized in a wide variety of industrial and building applications. These applications include the production of cement and concrete, the stabilization of liquid waste, and hydraulic mining backfill. Fly ash has the potential to enhance the physical and mechanical properties of aluminum castings, as well as reduce their costs and increase their densities, all while lowering their prices. This research investigated the effect of fly ash incorporation on the mechanical properties of the aluminum casting alloy ZA8. Investigated were the cast and heat-treated varieties of unreinforced ZA8 and its metal matrix composite of 15% ferrous, 20% nickel, 10% fly ash, and 10% magnesium carbide. According to the results, the quantity of fly ash in the melt affected the
Dinesh Krishnaa, S.Pandiyan, ManikandaprabuBen Ruben, R.Dhiyaneswaran, J.Sanjay Kumar, S.
The wide applications of aluminum composites in the defense, automotive and aerospace industries interest researchers in developing hybrid nanocomposites with specific properties such as high strength, hardness, and wear resistance. The aluminum was reinforced by silicon carbide (SiC) nanoparticles with a constant weight composition, and the spark plasma sintering process fabricated zirconium dioxide (ZrO2) nanoparticles with a different weight composition. The hybrid composite material’s density, porosity, and hardness were assessed using the SEM images of composites and hybrid nanocomposites that were effectively created by the sintering process without particle agglomeration. A pin-on-disc device was used for the wear test, with different input parameters such as weight (20, 25, 30, and 35 N), varying sliding distance (300, 500, 700 and 900m) and diverse sliding speeds (1, 1.5, 2 and 2.5 m/sec). The hybrid nanocomposite hardness increased to 52% of the S4 sample due to the 15% ZrO2
Kalaimani, M.Tajudeen, Shaafi
Metal Matrix Composites (MMC) made of the aluminium as base metal is now being used in diversed applications due to its extended properties. The physical, chemical, mechanical and structural properties make it as irresistible in the engineering applications. Metal Matrix Composites (MMCs) based on aluminium have increased in popular in various applications including aerospace, car, space, transportation, and undersea applications.. In this study, Al LM25/SiCp MMC was fabricated using a low-cost stir casting technique, and the weight percentage of SiCp was varied from 4% to 8% to prepare the MMC plates. The aim of the research was to investigate the mechanical properties of the specimen, including hardness, tensile, and impact tests. The microstructure of the specimens is investigated which shows the bonding between the particles which is fabricated by Stir casting method. The sample 2 has better mechanical properties when it is compared with other specimens. With the increase in the
Ram Kumar, S.Armstrong, M.Sivaneswaran, M.Surya Prakash, V.Sathya Prasad, S.Vishnu Sankar, B.P.
The microstructure of the alloy and the manner in which it responds to heat treatment has been investigated. The alloy was aged at 550OC when it was initially spray-formed, or when its thickness was decreased by 38%. Before further aging of some specimens, a four-hour solution treatment at 1015OC was performed. The subsequent phase was a cold deformation that was barely 60% of the sample's initial thickness. The alloys' electrical conductivity and hardness may be evaluated based on how long they had been created. Following solution treatment and cold rolling, the alloy's peak hardness was around 380 kgf/mm2. In samples aged immediately under spray-produced conditions, the maximum peak hardness of 255 kgf/mm2 was attained. Conductivities in freshly cold-rolled samples could reach up to 75% of the standard for annealed copper internationally. It looks at the microstructural features of this alloy in this context, paying close attention to how various processing conditions affect them
Srinivasan, V.P.Anandan, R.Bharani Kumar, S.Sasidharan, R.Santhosh, S.
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bare AZ91D magnesium alloy exhibited a microhardness value
Kishore Kanna, K.Mohamed Thariq, R.Marimuthu, S.Daniel Das, A.Suresh Balaji, R.Manivannan, S.
The increased adoption of AA2014 Aluminum alloy within the manufacturing sector can be attributed to its lightweight properties and other attributes that position it as an appealing substitute for steel. Notably, AA2014 Aluminum alloy is employed in the production of components and frameworks for aircraft engines. However, conventional welding techniques do not always seamlessly apply to aluminum alloys due to aluminum's high thermal conductivity, pronounced susceptibility to oxidation, and comparatively low melting point. These characteristics can give rise to challenges such as burn-through and porosity during welding. To tackle these issues, the application of friction stir welding (FSW), a solid-state welding method, has been embraced. In the creation of lap joints, five distinct tools, each featuring a different ratio of tool shoulder diameter (D) to pin diameter (d), ranging from 2 to 4, were employed. An exhaustive evaluation of the mechanical and metallurgical properties of
Sandeep, ChVijaya Prakash, B.Amarnath, V.Balu Mahandiran, S.Shanthi, C.
Metal matrix composite processing allows the possibility of improving both mechanical and damping properties by selecting reinforcements which have high damping characteristics, hardness and strength. In this work, the effect of disperse SiC as passive agents on the dynamic properties such as damping ratio, loss factor and effect of damping factor on Al7075/Al2O3/SiC composite machinability was studied. The composite samples were fabricated as Al7075/5%Al2O3, Al7075/5%Al2O3/5%SiC, Al7075/5%Al2O3/10%SiC and Al7075/5%Al2O3/15%SiC as well subsequently experimented. The dynamic properties were found using free vibration test approach and the hysteresis loop method. Further, the machinability in end milling operation was accessed by experimentation with the surface finish as the parameter under scrutiny. The composite Al7075/5%Al2O3/5%SiC has better damping ratio comparing to others, also the composite with the best damping capacity produces a fine surface finish during machining. Due to
Rajeswari, B.Manikandan, C.Soundararajan, R.Amirthagadeswaran, K.S.
In pursuing enhanced bio-composite properties, filler materials play a pivotal role. This study delves into the impact of ceramic additives on the chemical resistance and moisture durability of flax fiber-reinforced polymers. Utilizing the hand lay-up technique, we developed polyester composites reinforced with flax fibers. Silicon carbide (SiC) and aluminum oxide (Al2O3) were chosen as filler components. One batch of flax fibers underwent an alkaline treatment to enhance their properties further using a 5% NaOH solution. The resistance of composite samples to acetic acid and sodium hydroxide was then assessed. Additionally, the moisture absorption patterns of all models were investigated. A thorough comparative analysis was conducted among multiple composite batches. The results highlighted that integrating additives significantly bolstered the chemical and moisture resistance of the composites. Notably, the alkali-treated samples exhibited superior moisture and chemical agent
Pandian, ArvindaKaliappan, SeeniappanNatrayan, L.Reddy, Vinay
Aluminum casting parts generally have inherent internal defects such as porosity which lowers the fatigue strength of such castings. Accounting for such a fatigue strength reduction for Aluminum casted parts is the primary purpose of this paper. Authors have used Murakami et al [1] approach to calculate porosity correction factor for fatigue. The actual material S-N curve is modified using fatigue factors to account for the fatigue strength reduction due to presence of porosity. This approach was then validated on one of the fatigue failure cases on Aluminum casted housing. There was a close match between the test data and proposed approach for fatigue prediction. With this approach, engineers will be able to do fatigue predictions in presence of material defects like porosity with simple porosity correction factor, rather than using complex modeling of porosity in FEA or using detailed fracture mechanics methods. Engineers can also be able to provide acceptable levels of porosity in
Kumar, RohitGawture, Majnoo M
Items per page:
1 – 50 of 4403