Browse Topic: Engine mechanical components

Items (14,920)
In today’s fast paced and competitive automotive market, meeting the customer’s expectation is the key to any OEM. This has led to development of downsized high performance engines with refinement as an important deliverable. However developing such high output engines do come with challenges of refinement, especially higher torsional vibrations leading to transmission noise issues. Hence, it becomes important to isolate the transmission system from these high torsional vibration input. To address this, one of the most common method is to adopt Dual Mass flywheel (DMF) as this component dampens torsional vibrations and isolates the transmission unit from the same. While Dual Mass Flywheel assemblies do great job in protecting the transmission units by not allowing the oscillations to pass through them, they do have their own natural resonance frequency band close to the engine idle (low) engine speeds, which must be avoided for a continuous operation otherwise it may lead to Dual Mass
Raiker, Rajanviswanatha, Hosur CJadhav, AashishJain, OjaseJadhav, Marisha
Meeting the stringent emissions norms of CEV stage V for medium BMEP engines, CI engines present significant challenges, particularly concerning cold startability. Low ambient temperatures and pressures intensify the cold start difficulties which are characterized by prolonged cranking, incidences of misfiring, compromised transient response and overall engine performance. This paper highlights the strategies and technologies employed to enhance cold start and transient performance of medium BMEP engines under such demanding environmental conditions. Investigations were conducted up to an altitude of 4500m and ambient temperatures as low as-20°C, utilizing only air heater at intake manifold as the sole cold start aid. This cost effective approach is integrated with an optimized combustion chamber design, along with minimal pilot injection timing and quantity to facilitate smooth ignition and stable combustion during cold start. The paper also explore the techniques to improve the
Saxena, HarshitLokare, PrasadSanthosh, AjithGandhi, NareshShinde, Prashant
In this study, a novel dual-fuel combustion strategy is investigated, employing late pilot injection in diesel–methane engines to improve performance and reduce emissions. The engine was first tested with conventional diesel and methane, exploring a wide range of pilot injection timings, injection pressures, and intake boost pressures. Subsequently, experiments were repeated using a methane/hydrogen blend to assess the influence of hydrogen addition. Results show that, when using only methane, delayed pilot injections have minimal effects on engine performance. In naturally aspirated operation, unburned hydrocarbons and carbon monoxide are reduced, while in supercharged conditions, emissions increase; however, they remain within acceptable limits. Nitrogen oxides and particulate matter reach their lowest levels with delayed injection. Introducing hydrogen reduces engine performance and hydrocarbons and carbon monoxide emissions; notably, it suppresses the typical nitrogen oxides
Carlucci, Antonio PaoloStrafella, LucianoFicarella, Antonio
Internal combustion engines have been developed and widely used since the last century, and they continue to be extensively employed today. Engine development has progressed significantly, and due to the environmental impacts caused by their use, new technologies are being developed to reduce pollutant formation after the combustion process and to increase thermal efficiency. Computational modeling is a tool that has supported this development and can be categorized into three types: zero-dimensional, quasi-dimensional, and three-dimensional models. The 0D and 1D models offer a good balance between computational processing time and result uncertainty when compared to three-dimensional models. The Wiebe function is a simple analytical approach capable of describing the fuel burn rate in combustion engines. Previous studies have shown that applying this function yields results that accurately describe the apparent heat release rate in PFI engines.The present study aims to determine the
Souza Pereira, Felipe Augusto deAraújo Moreira, Thiago Augusto deFilho, Fernando Antônio Rodrigues
Growing interest in cleaner energy has spurred progress in engine technology, focusing on greater efficiency and lower emissions. Methane-based fuels, like compressed natural gas (CNG), have become an alternative for spark-ignition engines, especially in Brazil. Among performance strategies, dethrottled operation stands out by reducing intake restrictions and minimizing pumping losses, a major inefficiency in conventional spark ignition engines. This improves thermal efficiency and reduces both fuel consumption and emissions. This study experimentally examines the performance and combustion of a CNG-powered Hyundai HR 2.5 16V engine, converted from diesel to spark ignition with natural gas, comparing factory (omega) and custom (reentrant) piston geometries under both conventional and dethrottled modes. The research evaluates how piston design affects combustion stability, efficiency, and emissions across different load strategies. Tests were conducted at 7, 8, and 9 bar loads, as well
Silva, Cristian Douglas Rosa daGarlet, Roberto AntonioDapper, Jackson MayerFagundez, Jean Lucca SouzaLanzanova, Thompson Diórdinis MetzkaMartins, Mario Eduardo Santos
This study investigates a method for determining the indicated power of a combustion engine. To accomplish this, it was necessary to obtain the combustion pressure curve for each cylinder as a function of the crankshaft’s angular position, along with the geometric data of the connecting rod and crank mechanism. The combustion pressure was used to calculate the work transferred from the gas to the engine piston. Pressure measurements were obtained using a piezoelectric pressure transducer, which operates on the piezoelectric effect: a quartz crystal subjected to pressure generates an electrical signal. This signal is then converted into a proportional and linear signal that can be analyzed by a data acquisition system. Once acquired, the data were evaluated using a log P–log V diagram to verify quality and ensure the measurements accurately represented the physical phenomenon. The pressure versus volume (P–V) diagrams were generated, and the area under these curves during the
da Silva, Nerivaldo RodriguesGlauco, Caio
The objective of this work was to develop an analysis methodology for engine intake manifolds in Formula SAE prototypes, addressing the three-dimensional (3D) airflow characteristics within these complex geometries. Air flow modelling via one-dimensional (1D) computational fluid dynamics (CFD) software does not capture properly the manifold airflow characteristics and may lead to unrealistic engine performance prediction. On the other hand, the use of purely 3D-CFD simulations of intake manifold isolated from engine, without adequate boundary conditions, also does not conduct to realistic behavior. To address these issues, a 1D-CFD transient analysis model was created using GT-Suite software from Gamma Technologies, which provided boundary conditions for the engine’s airflow demand to Ansys Fluent, the 3D-CFD simulation software. Ansys Fluent, in turn, returned the actual conditions imposed by the manifold geometry to the 1D model, enabling a bidirectional simulation that enhances the
Piotto, Gustavo FernandoSantos Souza, Thiago CavalheriFoz, Tiago AlcantaraPegoraro, Bruno CoimbraZabeu, Clayton Barcelos
Fused filament fabrication (FFF) 3D printing has proven to be an affordable method for producing customized and lightweight parts and an accessible method to validate new composite materials. As a rapid prototyping method, it can be used to manufacture and replace defective and/or damaged parts in places with limited infrastructure or logistical support. However, the layer-by-layer deposition inherent to the FFF process introduces anisotropy and residual stresses, which can compromise part performance under high temperatures or vibrational loads. This article aims to analyze the failure of a 3D printed intake runner and address the problems found. The analyzed part was 3D printed in acrylonitrile butadiene styrene (ABS), which had a high volumetric contraction during the printing process. Although ABS exhibits a high heat deflection temperature (HDT) compared to other polymers, prolonged exposure to elevated temperatures during operation led to unintentional embrittlement, reducing
Oliveira, Vinícius deHoriuchi, Lucas NaoMagalhaes, GabrielAlcantara, Nathan deGonçalves, Ana PaulaSouza, MarianaPolkowski, Rodrigo
This study presents a methodology for characterizing the spray of an internal combustion engine (ICE) fuel injector, focusing on direct injection (DI) systems. It addresses the knowledge gap in academic research regarding injector spray patterns by conducting experimental tests and numerical simulations. Using a Bosch HDEV 1.1 pressure swirl injector and EXXSOL D60 test fluid, spray characteristics were captured with a high-speed camera under varying injection pressures and ambient/counterpressure conditions. These experimental data were used to calibrate a numerical model for simulating spray dynamics within the combustion chamber. The research examines the impact of parameters such as breakup length and breakup size constant on spray behavior, revealing that the breakup size constant significantly affects spray penetration. The study successfully developed and validated a methodology for characterizing and modeling fuel injector sprays, providing a valuable reference for optimizing
Paula Araújo, Gabriel HelenoAssis, Marcelo Suman SilvaMalaquias, Augusto Cesar TeixeiraCarvalho Torres Filho, MarcosBaeta, José Guilherme Coelho
The article presents self-adjusting segmented ceramic seals designed for a novel turboshaft engine operating according to the Humphrey thermodynamic cycle. The sealing system is an integral part of the developed engine concept, which features rotating isochoric combustion chambers. The seals utilize centrifugal force as the sealing force, enabling uniform sealing regardless of thermal conditions and associated deformations. The sealing consists of segments with adjustable dimensions in both circumferential and transverse directions. The sealing elements should be made of Si3N4 ceramic, characterized by high thermal resistance (1300°C) and low thermal expansion (3.2•10−6/°C). The article presents three different variants of sealing systems, differing in terms of the technological possibilities of their manufacturing. Special treatments must be applied to ensure high machining accuracy of the sealing elements. The proposed sealing system is a critical point in the design of an engine
Tarnawski, Piotr
Ammonia has emerged as a compelling carbon-free alternative fuel for applications in sectors such as power generation and heavy-duty transportation, where thermal energy conversion plays a dominant role. Its potential lies in its high hydrogen content, carbon-free combustion, and the feasibility of large-scale storage and transport. However, ammonia’s combustion behavior poses significant challenges due to its low reactivity, characterized by a low laminar burning velocity, high autoignition temperature, and narrow flammability range. These properties hinder stable and efficient operation in conventional internal combustion engines. A common strategy to mitigate these limitations involves blending ammonia with hydrogen—often generated via on-board catalytic cracking of ammonia—which improves ignition and flame speed. Despite these benefits, the presence of hydrogen increases the risk of knock, particularly in high-compression-ratio engines designed to improve thermal efficiency. This
Hurault, FlorianBrequigny, PierreFoucher, FabriceRousselle, Christine
As a zero-carbon fuel, ammonia has the potential to completely defossilize combustion engines. Due to the inert nitrogen present in the molecule, ammonia is difficult to ignite or burn. Even if the ammonia can be successfully ignited, combustion will be very slow and there is a risk of flame quenching, i.e. the flame going out before the ammonia-air mixture has been almost completely converted. Both the difficult flammability and the slow combustion result in high ammonia slip, which should be avoided at all costs. The engine efficiency is also greatly reduced. Safe ignition and burn-through can be achieved by drastically increasing the ignition energy and/or using a reaction accelerator such as hydrogen. The planned paper will use detailed 1D and 3D CFD calculations to show how high the potential of ammonia combustion in an internal combustion engine is when an active pre-chamber is used as the ignition system. As a result of the flame jets penetrating into the main combustion chamber
Sens, Marcvon Roemer, LorenzRieß, MichaelFandakov, AlexanderCasal Kulzer, Andre
As a fundamental element of measures to reduce the carbon footprint of commercial applications, carbon-neutral fuels are increasingly coming into focus for heavy installations. In addition to diesel substitute fuels, alternative energy carriers like NG, H2, MeOH and NH3 are gaining increasing attention. The energy conversion of these fuels is typically taking place on the principle of premixed combustion, which places different demands on fuel injection and mixture formation, as compared to optimized diesel-like combustion. Accordingly, the demand to layout multi-fuel capable engine designs centers to a high share on the above-mentioned design that can burn these different fuels with high efficiency and support a high degree of commonality with the in-series engine to carry over reliable operation and to maintain attractive cost figures. FEV has developed the Charge Motion Design (CMD) process, which can be applied to design the intake ports and combustion chambers for multi-fuel
Koerfer, ThomasDhongde, AvnishBoberic, AleksandarZimmer, PascalPischinger, Stefan
Hydrogen is a promising alternative to conventional fuels for decarbonizing the commercial vehicle sector due to its carbon-free nature. This study investigates the ignition and flame propagation characteristics of hydrogen in a 2-liter single-cylinder optical research engine representative of the commercial vehicle sector. The main objective was to enable high power density operation while minimizing NOx emissions. For that, ultra-lean combustion was employed to lower in-cylinder temperatures, addressing the challenge of NOx formation. To counteract delayed and unstable combustion under lean conditions, an active pre-chamber ignition system was implemented. It uses a gas-purged pre-chamber with separate hydrogen injection and spark plug ignition. Turbulent hot gas jets from the pre-chamber ignite the fresh mixture in the main combustion chamber, enabling faster and more stable ignition compared to conventional spark plugs. Additionally, the low volumetric energy density of hydrogen
Borken, PhilippBill, DanielLink, LukasDinkelacker, FriedrichHansen, Hauke
This study investigates the critical factors influencing the performance of hydro-pneumatic suspension systems (HPSS) in mining explosion-proof engineering vehicles operating in complex underground coal mine environments. To address challenges such as poor ride comfort and insufficient load-bearing capacity under harsh mining conditions, a two-stage pressure HPSS was analyzed through integrated numerical modeling and field validation. A mathematical model was established based on the structural principles of the suspension system, focusing on key parameters including cylinder bore (195–255 mm), piston area (170–210 mm), damping orifice diameter (7–8 mm), check valve flow area, and accumulator configurations (low-pressure: 1.2 MPa, high-pressure: 6 MPa). Experimental trials were conducted in active coal mines, simulating typical mining scenarios such as uneven road surfaces (120 mm obstacles), heavy-load gangue transportation, and confined-space operations in thin coal seams (<1.5 m
Song, YanLiang, Yufang
The free-piston engine represents a paradigm shift in internal combustion engine technology, with its unique structure promising efficiency gains. However, injection parameters are one of the core elements of free-piston engine performance. This study employs computational fluid dynamics analysis to optimize the spray cone angle and start of injection timing for a two-stroke dual-piston opposed free-piston engine equipped with a flat-head combustion chamber. A three-dimensional transient model incorporating dynamic adaptive mesh refinement was constructed by using CONVERGE 3.0 software. The results indicate that a spray cone angle of 25° achieves optimal fuel distribution, yielding a peak indicated thermal efficiency of 42.14% and an indicated mean effective pressure of 9.08 bar. Crucially, advancing the ignition timing to 215°CA improves mixture homogeneity but simultaneously increases peak cylinder temperatures and NOx. Conversely, delayed start of injection timings reduces NO
Xu, ZhaopingYang, ShenaoLiu, Liang
Common rail, high-pressure electronic fuel injection is one of the primary technologies enabling high-efficiency and low emissions in modern diesel engines. Most fuel injectors utilize an actively controlled solenoid valve to actuate a needle that modulates the fuel supply into the combustion chamber. The electrical drive circuit for the injector requires extensive development costs, and thus, most designs are proprietary in nature, making it difficult to perform academic studies of the fuel injection processes. This research presents an injector driver circuit to control one or more solenoid injectors simultaneously for research-based injector development efforts. The electrical circuit was computationally modeled and optimized iteratively, and then, electronic hardware was developed to demonstrate control of a Bosch CRIN3 solenoid diesel injector as proof of concept. In addition, the injector performance was quantified by the fuel rate of injection (ROI) profiles obtained in a test
Bogdanowicz, EdwardAgrawal, AjayLemmon, Andrew N.Bittle, Joshua
Engine is the prime mover of an automobile. Tractor is also equipped with engine of higher capacity to meet the power requirement. Apart from powering the wheels, engine also runs different accessories such as water pump, alternator, AC pump, Oil pump and so on. The power from the engine is transferred to accessories via chain drive or belt drive through the crankshaft pulley. During field testing, in one of the tractors, engine pulley mounting bolt failure was reported. The failure resulted in immediate seizure of the engine making the tractor standstill in the field. The root cause of the failure was unknown. Hence, there was a need to develop a component or subsystem level test methodology to address the issue quickly. In the current scope, an attempt was made to develop a subsystem level laboratory test methodology to simulate the failure mode and to validate the design modifications in an accelerated manner. The failure mode was simulated in lab and different design iterations
Chakraborty, Abhirup
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
Hard carbon steel is used for drilling deep holes, such as C19, which has dimensions of 630 mm in length, 50 mm in breadth, and 125 mm in depth. Long twist drills with a diameter of 8 mm are used. Such drills are manufactured with larger helix than the traditional drills for increasing penetration efficiency. But, Prediction of long drill & tool replacement strategies during metal cutting are mostly depend on conservative estimation given by manufacturer’s catalog. Hence, long drill while drilling cam shaft in automobile applications may be underutilized or over utilized. Now a day, Diagnostics software in advanced CNC machines are indicating hours of utilization of tools in bar chart. On the other hand, Utilization of long drill wear beyond the recommended range affects the quality of workpiece. As a result, several researchers have proposed the reliable approach of vibration-based online monitoring of drill flank wear over the past 20 years. In these works, the vibration sensor is
R. S., NakandhrakumarRaja, SelvakumarElumalai, SangeethkumarVelmurugan, RamanathanM, Ramakrishnan
Puddling is a crucial process in rice cultivation, involving the preparation of the soil in a flooded field to create a soft, muddy seedbed. There are two classifications for puddling: full cage and half cage. Full cage puddling involves replacing the rear wheels of the tractor with steel paddle wheels, which are used to till the rice paddies directly without any additional implement. In the half cage puddling, the rear wheels remain on the tractor, and a smaller cage or paddle wheel is attached to the outside. Considering the field size, the operator often releases the clutch very quickly after a speed or direction change. This generates torque spikes, which are harmful to Transmission Gears and Clutches. This can lead to gear teeth bending fatigue failure due to repeated higher bending stresses. In this paper, a study related to how to reduce overall product development time by simulating bending fatigue failure of gear in lab environment is presented. A systematic approach is used
Pathan, Irfan HamidullaBardia, Prashant
Turbocharging is a vital technology for enhancing internal combustion engine (ICE) performance and efficiency while enabling engine downsizing to reduce fuel consumption and emissions. This research analyzes turbocharger systems by examining their components—turbine, compressor, intercooler, and waste-gate—and their roles in boosting engine efficiency. It explores how exhaust energy drives the turbine to compress intake air, improving power output. The study evaluates turbocharger impact on fuel economy, emissions, and engine response under various driving conditions. It also considers wheel design, material selection, and durability under high temperatures and speeds. Advanced simulations using CFD and FEA analyze airflow, pressure, and thermal behavior to optimize performance. This research affirms turbocharging’s role in creating high-performance, fuel-efficient, and environmentally sustainable engines, offering insights that support the design of next-generation automotive
Chandrashekar, B. AdityaBhaduria, Abhishek
Alcohol is being considered as an alternative to traditional fuels for compression ignition engines due to their oxygen content and biomass origin. Although alcohol generally has lower cetane numbers, which makes them more favorable for premixed combustion, they also offer potential for lowering emissions in internal combustion engines, particularly when combined with strategies such as exhaust gas recirculation (EGR). This research focuses on enhancing the performance of a single-cylinder, four- stroke diesel engine by introducing ethanol into the intake port during the intake phase. Diesel and rubber seed biodiesel were used as primary fuels and were directly injected into the combustion chamber. The findings indicated that adding ethanol to rubber seed biodiesel, along with 10% EGR, led to improved brake thermal efficiency and a reduction in NOX emissions. The ethanol injection timing and duration were optimized for effective dual-fuel operation. At full engine load, the highest
Saminathan, SathiskumarG, ManikandanBungag, Joel QuendanganT, Karthi
This paper provides insight into the theory and the applications of the order dispersion by crankpin arrangement, especially focusing on the enhancements of the structural reliability of the crankshaft and the sound quality of the outboard motor. In previous research, we developed the crankshaft which can balance by itself for V8 outboard motor with V bank angle of 60 degrees. We specifically showed the theoretical basis of the balancing and the measurement results of actual vibration levels on boat. Meanwhile, note that the crankshaft has a distinctive structure of crankpin offset angle of 60 degrees, so that combustion interval becomes unequal. As to the combustion, however, we just mentioned the effects on the engine output, not the practicality. In this paper, we firstly clarify the following dual benefits of the combustion in terms of the structural reliability and the sound quality. One is that the order dispersion resulting from unequal interval combustion can reduce the
Takanishi, KentaroMuramatsu, HidetaKondo, TakashiNaoe, Gaku
Stringent European carbon dioxide (CO2) emission regulations have stimulated the development of alternative technologies such as Dual Fuel (DF), which involves partially replacing fossil fuel with a low-carbon alternative. Hydrogen represents an ideal candidate for DF due to its properties, including the absence of carbon, high flame propagation speed, and high diffusivity. This study analyzes the combustion and performance of a 1.0L, naturally aspirated, three-cylinder in-line compression ignition off-road engine with a 17.5:1 compression ratio, originally equipped with a conventional diesel system and modified for diesel-hydrogen dual fuel operation. Three Port Fuel Injectors (PFI) are installed in the intake manifold for hydrogen injection. Additionally, they are strategically positioned to minimize the volume between the intake valve and injector tip. Tests were conducted at a fixed engine speed of 2000 rpm, varying the engine load from 30% to 85% of maximum torque. The diesel
Rossetti, SalvatoreMancaruso, Ezio
The reduction of exhaust emissions and particulate matter from internal combustion engines remains a critical challenge, particularly under cold start and warm-up conditions, where a significant portion of total emissions is generated. In spark-ignition (SI) gasoline engines, the formation of liquid fuel films on intake ports wall, piston and cylinder wall surface significantly contributes to unburned hydrocarbon and particulate emissions. Also, the fuel film adhering to the wall can be a cause of the lubricating oil dilution. To address these issues, a novel capacitive sensor, fabricated using MEMS technology, was developed and applied to investigate the behavior of liquid fuel films formed inside the combustion chamber of a single-cylinder engine. The sensor detects changes in capacitance caused by fuel film adhesion to the sensor surface. The sensor was installed in a single-cylinder test engine along with a direct fuel injector allowing for the controlled formation of fuel films on
Kuboyama, TatsuyaNakajima, TakeruMoriyoshi, YasuoTakayama, SatoshiNakabeppu, Osamu
The application of ammonia fuel in engines can significantly reduce carbon emissions, serving as a crucial method for achieving carbon neutrality. However, its potential is hindered by the challenges of ammonia's difficulty in ignition and slow combustion rate. An effective solution to these drawbacks is to blend methane into ammonia mixtures and use a small amount of diesel for ignition. This study investigates the effects of mixture equivalence ratio and gas composition on the combustion characteristics of diesel-ignited NH3/CH4/Air mixtures. Pressure measurements and visual observations were conducted using a rapid compression expansion machine (RCEM). Experimental results reveal that the combustion process exhibits two distinct stages: initial intense diesel combustion followed by mixture combustion. Higher equivalence ratios prolong ignition delay while accelerate secondary combustion. Pure ammonia mixtures show incomplete lean combustion, while richer mixtures achieve more
Yin, ShuoDai, ZhizhuoZhou, QingxingCui, ZechuanZhang, XiaoleiYe, MingyuanRen, YifangWang, ZhanpengNishida, Keiya
This paper presents an analysis and comparison of distinct approaches for data-driven combustion parameter estimation for Diesel engines. Thereby, characteristic quantities are modelled by a set of selected regression models and via a convolutional neural network (CNN). While the former use settings from the Engine Control Unit (ECU) as input, the latter works by processing the raw crankshaft vibration signal. The central point of this study is a broad evaluation of data-driven modelling for Diesel combustion. This includes whether using a signal recorded from individual combustion cycles achieves better representation of the target values than using operational parameters from the ECU which cannot reflect unforeseeable, stochastic phenomena within the combustion chamber. This was evaluated by assessing predictions of six combustion characteristics: the crank angle of 10, 50 and 90 percent mass fraction burned, Peak-Firing-Pressure, Combustion Duration, and Ignition Delay. In two
Ofner, Andreas BenjaminSjoblom, JonasGeiger, BernhardHaghir Chehreghani, Morteza
To achieve the desired fuel switch from natural gas to hydrogen in internal combustion engines for combined heat and power units, it is necessary to make some adjustments to the fuel supply system. External gas mixers increase the probability of backfiring when natural gas is replaced by hydrogen. In addition, the low density of hydrogen results in a loss of power. Therefore, direct gas injection is preferred when using hydrogen. A drawback of direct injection is the requirement of higher injection pressures to achieve the desired fuel mass and mixture homogeneity as well as the additional access to the combustion chamber for the direct gas injector in the cylinder head. This paper proposes an alternative approach that does not necessitate the implementation of a high-pressure direct injection system nor additional access to the combustion chamber via the cylinder head. A combined injection and ignition unit, called HydroFit, was developed which uses a sleeve inside the spark plug bore
Rischette, NicHolzberger, SaschaHelms, SvenKettner, Maurice
Enhancing the performance of naturally aspirated 4-stroke engines relies heavily on improving trapping efficiency, increasing maximum engine speed, and reducing friction losses. In this regard, the valvetrain plays a critical role. Achieving high volumetric efficiency at higher engine speeds necessitates very steep valve opening and closing ramps, making this aspect pivotal in the design process. At high engine speeds, significant dynamic phenomena arise, including valve float during the lift phase and valve bounce during the closing phase. These effects not only induce substantial modifications to the valve lift curve but also increase the mechanical stress on critical components such as the valve and the rocker arm, thereby elevating the risk of failure. Moreover, the timing system substantially contributes to overall engine losses due to frictional energy dissipation, which results from the numerous interactions between moving components. The present work aims to develop a numerical
Tarchiani, MarcoPizzicori, AlessioRaspanti, SandroRomani, LucaMeli, EnricoFerrara, GiovanniTrassi, Paolo
Recently, global warming is becoming seriously. In the field of internal combustion engine, the thermal efficiency has to improve in the practical use. One of the current trends with spark ignition engine (SI engine) is “downsizing” which is equipped supercharger with the downsized displacement. The downsizing engine is popular in the field of the SI engine. However, one of the problems is the abnormal combustion so called Low Speed Pre-Ignition (LSPI) [1]. The LSPI occurs the engine operation which is low speed and high load condition. It has to be avoided, because the SI engine is broken and the improvement of thermal efficiency is obstructed. A lot of researchers have been reported about the mechanism of LSPI [2, 3]. One of the sources of LSPI would be the lubricating oil droplets in cylinder. One of the methods to avoid LSPI, it has been adjusted the ingredients of oil additive in lubricating oil. The state of the art of lubricating oil standard has been established anti-LSPI
kitano, KaitoTanaka, Junya
This study focuses on the technology for establishing design criteria for the piston pin circlip (hereinafter referred to as "circlip"), which is a component that holds the engine piston pin. During the development of high-revving engines, failure of the piston sometimes becomes a problem, and the main factors are fatigue failure of the piston and falling of the piston pin. The falling of the piston pin is caused by the circlip disengaging from the groove by the inertial force due to the vertical motion of the piston. The circlip is compressed to the size of the piston circlip groove and assembled to the piston. Therefore, in order to prevent the circlip from falling out, it is necessary to compress it more and increase the reaction force acting on the groove. However, this measure raises concerns about the deterioration of the ease of assembly of the circlip. Therefore, it is necessary to establish evaluation criteria that prevent the circlip from disengaging and deterioration of its
Ishizuka, AtsushiWatanabe, Naoto
Items per page:
1 – 50 of 14920