Browse Topic: Engine mechanical components

Items (14,773)
This research experimentally investigates the spray vaporization of high-pressure dimethyl ether (DME) using a single-hole research injector focusing on nominal operating conditions from the Engine Combustion Network (ECN). DME is a synthetic alternative to diesel fuel, offering both high reactivity and potential reductions in particulate emissions. Because DME only features half of the energy density of diesel fuel, a specifically designed fuel system with a high mass flow rate to meet the energy delivery requirements is needed. The unique physical properties of DME, including higher vapor pressure and lower viscosity, introduce challenges like cavitation and unique evaporation characteristics that deviate from typical diesel fuel. These features are likely to lead to differences in fuel mixing and combustion. This study aims to provide detailed experimental data on DME spray characteristics under engine-like conditions, helping the development of predictive CFD models for optimal
Yi, JunghwaWan, KevinPickett, LyleManin, Julien
Structural topology optimization for vehicle structures under static loading is a well-established practice. Unfortunately, extending these methods to components subjected to dynamic loading is challenged by the absence of sensitivity coefficients: analytical expressions are unavailable and numerical approximations are computationally impractical. To alleviate this problem, researchers have proposed methods such as hybrid cellular automata (HCA) and equivalent static load (ESL). This work introduces a new approach based on equivalent static displacement (ESD). The proposed ESD method uses a set of prescribed nodal displacements, simulating the resultant reaction forces of a body subjected to dynamic loading, at different simulation time steps to establish the boundary conditions for each corresponding model—one model for each simulation time. A scalarized multi-objective function is defined considering all the models. A gradient-based optimizer is incorporated to find the optimal
Gupta, AakashTovar, Andres
Reduction of frictional losses by changing the surface roughness in the form of surface textures has been reported as an effective method in reducing friction in the boundary regime of lubrication. Laser-based micro texturing has been mostly used to create these texture patterns and it is reported that it can reduce the frictional resistance by ~20-50%. However, the use of laser-based techniques for texture preparation led to residual thermal stress and micro cracks on the surfaces. Hence, the current study emphasizes using conventional micromachining on piston material (Al alloy Al4032) to overcome this limitation. Three variations of semi-hemispherical geometries were prepared on the surface of Al alloy with dimple depths of 15, 20 and 40 μm and dimple diameters of 90, 120 and 240 μm. Prepared textured surfaces with untextured surfaces are compared in terms of wear, wettability, and friction characteristics based on Stribeck curve behaviors. Results of this investigation demonstrated
Sahu, Vikas KumarShukla, Pravesh ChandraGangopadhyay, Soumya
The adoption of hydrogen as a sustainable replacement for fossil fuels is pushing the development of internal combustion engines (ICEs) to overcome the technical limitations related to its usage. Focusing on the fuel injector in a DI configuration, it must guarantee several targets such as the adequate delivery of hydrogen mass for the given operating condition and the proper mixture formation in the combustion chamber playing a primary role in reaching the target performance in H2-ICEs. Experimental campaigns and computational fluid dynamics simulations can be used as complementary tools to provide a deep understanding of the injector behaviour and to drive design modifications in a quick and effective way. In the present work an outward opening, piezo-actuated injector purposely designed to be fuelled with hydrogen is tested on several operating conditions to evaluate its performance in terms of delivered mass flow and jet morphology using the Schlieren imaging technique. To
Pavan, NicolòCicalese, GiuseppeGestri, LucaFontanesi, StefanoBreda, SebastianoMechi, MarcoVongher, SaraPostrioti, LucioBuitoni, GiacomoMartino, Manuel
This study experimentally investigates the liquid jet breakup process in a vaporizer of a microturbine combustion chamber under equivalent operating conditions, including temperature and air mass flow rate. A high-speed camera experimental system, coupled with an image processing code, was developed to analyze the jet breakup length. The fuel jet is centrally positioned in a vaporizer with an inner diameter of 8mm. Airflow enters the vaporizer at controlled pressures, while thermal conditions are maintained between 298 K and 373 K using a PID-controlled heating system. The liquid is supplied through a jet with a 0.4 mm inner diameter, with a range of Reynolds numbers (Reliq = 2300÷3400), and aerodynamic Weber numbers (Weg = 4÷10), corresponding to the membrane and/or fiber breakup modes of the liquid jet. Based on the results of jet breakup length, a new model has been developed to complement flow regimes by low Weber and Reynolds numbers. The analysis of droplet size distribution
Ha, NguyenQuan, NguyenManh, VuPham, Phuong Xuan
Cam gear is a critical component of the timing system in an internal combustion engine, ensuring the synchronized opening of the engine valves, pistons, and rotating parts, but their unavailability may result in long-term downtime or expensive replacement. Reverse engineering (RE) systems also play an important role in promoting sustainable practices projects in automotive technologies. The study focuses on presenting a proposed method for redesigning damaged parts in engines using image processing technology by creating an-accurate CAD model. In addition to clarifying of the expected causes that led to cam gear damage. The proposed method involves taking a high-resolution image of the damaged part, then applying advanced image processing algorithms to analyze and reconstruct the geometry of the part. The data is then converted into a high-resolution 3D CAD model. This approach aims to address the challenges of replicating worn or broken parts, providing a cost-effective maintenance
Ali, Salah H. R.Ehab, EslamBarakat, EbrahimYounes, AbdelrahmanAli, Amr S.H.R.
There is a need to reduce both the greenhouse gas emissions of internal combustion engines, and the reliance on traditional fossil fuels like Ultra Low Sulfur Diesel (ULSD). In this research, a synthetic paraffinic kerosene fuel, designated S8 and created from natural gas feedstocks using the Fischer-Tropsch process was investigated to determine its autoignition and combustion characteristics, emissions, and tribological properties. This fuel, S8, was found to have a Derived Cetane Number (DCN) of 62, which reflects a shorter Ignition Delay (ID), and Combustion Delay (CD) compared to ULSD, which has a DCN of 48. However, due to the chemical properties of S8, it lacks sufficient lubrication qualities in comparison to ULSD, so addition of 3% methyl oleate by mass was used to improve lubricity. The shorter ignition delay of S8, initially observed in a Constant Volume Combustion Chamber (CVCC) and confirmed in a fired Common Rail Direct Injection (CRDI) experimental engine. Investigations
Soloiu, ValentinWillis, JamesNorton, ColemanDavis, ZacharyGraham, TristanNobis, Austin
The impact of injection pressure on a split-injection energy-assisted compression-ignition (EACI) combustion strategy was studied in an optically accessible engine with a custom ribbed piston bowl design. Three injection pressures (600, 800, and 1000 bar) were investigated for three split-injection dwells (1.5, 2.0, and 2.5 ms) with a fixed second injection timing of -5.0 CAD. The Gaussian-shaped ribbed piston bowl design was employed to position hot combustion gases from the first injection near the centrally located injector to enable rapid ignition and mixing-controlled combustion of the second injection. At 600-bar injection pressure, as injection dwell was shortened, relocation of hot combustion gases near the injector became increasingly more difficult due to less available time for relocation and due to the higher in-cylinder densities at the start-of-injection (SOI) for the first injection. Increased injection pressure (800 and 1000 bar) improved the relocation of the first
Amezcua, EriStafford, JacobKim, KennethKweon, Chol-BumRothamer, David
Direct injection (DI) hydrogen internal combustion engines are gaining attention as a promising technology for a sustainable energy transition, particularly in the transport sector. A key factor in improving the performance of these engines is understanding how hydrogen jets behave within the combustion chamber, especially their interactions with the chamber walls. These jet-wall interactions are critical since they have a major influence on fuel-air mixing which directly affects combustion efficiency and emissions. This study investigates the behavior of high-velocity hydrogen jets formed after exiting the injector. These jets propagate through surrounding air and interact with wall surfaces. When they impinge on wall surfaces, they undergo various processes such as radial spreading outward along the wall surface, mixing, and diffusion. These processes are influenced by factors including pressure ratio (PR) - the ratio between injection pressure and chamber pressure - and the geometry
Gong, MiaoxinLundgren, MarcusEismark, JanAndersson, Mats
A glow plug is generally used to assist the starting of diesel engines in cold weather condition. Low ambient temperature makes the starting of diesel engine difficult because the engine block acts as a heat sink by absorbing the heat of compression. Hence, the air-fuel mixture at the combustion chamber is not capable of self-ignition based on air compression only. Diesel engines do not need any starting aid in general but in such scenarios, glow plug ensures reliable starting in all weather conditions. Glow plug is actually a heating device with high electrical resistance, which heats up rapidly when electrified. The high surface temperature of glow plug generates a heat flux and helps in igniting the fuel even when the engine is insufficiently hot for normal operation. Durability concerns have been observed in ceramic glow plugs during testing phases because of crack formation. Root cause analysis is performed in this study to understand the probable reasons behind cracking of the
Karmakar, NilankanOrban, Hatem
Two 50-hr engine dynamometer tests were conducted on 12-cylinder diesel military engines with differing piston ring sets. Engine A exhibited more than double the oil consumption over engine B. An investigation was conducted to explain why the oil consumption differed by employing several posttest analytical techniques including cylinder bore geometry measurements, surface metrology, wear characterization, and chemical analysis on the piston rings and cylinder wall coatings. The 3D colormaps of cylinder bore deformation showed uneven volumetric deformation through the piston stroke instead of 2D plane deformation. It was found that the primary reason of high oil consumption was direct loss of sealing between the piston, piston ring and cylinder bore due to predominately abrasive wear, three-body abrasive wear and bore polishing. Furthermore, the compromised sealing of the combustion chamber led to blow-by. Carbon deposits, corrosive byproducts, surface abrasives, loss of desired surface
Thrush, StevenChen, AijieFoley, MichaelSebeck, KatherineBoufakhreddine, Ziad
In direct injected engines the spray formation is important for both combustion performance and emission formation. Thus, being able to compare how the spray formation is affected by changes in nozzle design, injection pressure or fuel formulation is an important area of research for all engine sizes. This becomes especially important for the introduction of new sustainable fuels, or for fuel injection optimization to increase efficiencies and minimize the formation of emissions such as particles. High-speed imaging of the fuel spray using the schlieren technique is well established for this purpose, and the Engine Combustion Network (ECN) has developed multiple guidelines to ensure that a similar experimental approach is used in different laboratories around the world. For the initial image processing, the ECN provides a procedure based on an image-temporal-derivative approach. Many researchers however rely on intensity-based thresholding, preceded by contrast adjustment, background
Sileghem, VictorLarsson, TaraDejaegere, QuintenVerhelst, Sebastian
This paper explores the potential of leveraging methanol's knock-resistant properties to facilitate both dual fuel (DF) and spark ignition (SI) operation in retrofitted heavy-duty (HD), high-speed marine engines. The study involves retrofitting an original 6-cylinder 7.15L CI diesel engine with port fuel injection (PFI) of methanol to enable DF operation. Later, the diesel injectors were replaced with six spark plugs allowing SI operation. Notably, efforts were made to minimize adaptations to the existing diesel engine, maintaining the compression ratio (CR) at 17.6:1 and retaining the same turbocharging pressure. This research aims to assess the feasibility of retrofitting conventional HD diesel engines (high CR, large bore) for dual-fuel and SI operation on methanol, with a focus on optimizing engine performance, while preserving key characteristics for HD applications, e.g. high torque and high power density. The high CR required spark retarding to prevent knock at higher loads in
Dejaegere, QuintenBallerini, AlbertoDemiddeleer, SheldonVanderbeken, ThomasBracke, KwintenGyselinck, BenD'Errico, GianlucaVerhelst, Sebastian
Honda Motor Corporation has developed a new naturally aspirated in-line 4-cylinder direct injection gasoline engine for C segment sedans that combines high environmental performance and power output. Development time and cost were greatly reduced by utilizing basic structures and components that had previously been developed engine for hybrid vehicles. In addition to the environmental performance at which hybrid engines excel, the driving performance required from a pure gasoline engine for C segment sedans with a low environmental impact was aimed to achieve by optimizing the shape of the combustion chamber to obtain rapid combustion, adjusting intake and exhaust valve timing, employing fuel injection control and adopting a two-piece water jacket that protects the exhaust system component by lowering the exhaust gas temperature at high load. As a result, the newly developed engine achieves a maximum thermal efficiency of 40% with knock suppression effect through rapid combustion
Kondo, TakashiOhmori, TakeyukiYamamoto, JunpeiMiki, Kentaro
The hydrogen internal combustion engine technology, with its potential for almost full carbon emissions reduction and adaptability to a wide range of fossil fuel-based internal combustion engine (ICE) platforms, offers a promising future. However, as with any innovative technology, it also presents challenges, such as abnormal combustion phenomena. These challenges, including intake backfire, which is more common when using port fuel injection (PFI), and pre-ignition in the combustion chamber, which can be experienced with PFI or direct injection (DI), require detailed investigation to understand and optimize the engine’s performance and efficiencies. This study comprehensively investigates the main abnormal combustion events that could happen in a spark ignition (SI) hydrogen engine. It examines both direct and port fuel injection systems and uses high-resolution in-cylinder, intake, and exhaust pressure measurements alongside a suite of fast-response gas analyzers. The study provides
Mohamed, MohamedMirshahi, MiladWang, XinyanZhao, HuaHarrington, AnthonyHall, JonathanPeckham, Mark
Conversion to hydrogen of automobile internal combustion engines powered by fuels of petroleum origin is the most important direction for solving environmental, energy and climate problems of modern civilization. A number of researchers, based on experimental studies, note the presence of a phenomenon of a significant increase in heat losses in hydrogen engines compared to gasoline engines. This phenomenon is explained by an increase in temperature and speed of movement of the working fluid. In this paper, it is shown that the main reason for the increase in thermal losses is the ability of the hydrogen flame to penetrate into the narrow gap between the piston and the engine sleeve. This problem has not been discussed in engine theory before. D mathematical modeling of flame penetration and extinguishing processes in the specified gap of a hydrogen engine (D/S=86/86 mm/mm, Ne=60 kW, n=5500 min-1) was carried out. Critical gap sizes for various fuels have been established, heat transfer
Kavtaradze, RevazNatriashvili, TamazGladyshev, Sergey
The paper illustrates the process and steps in the development of a neural network-based economic Model Predictive Control (MPC) strategy for reducing diesel engine feed gas emissions. This MPC controller performs fuel limiting and modifies intake manifold pressure and exhaust gas recirculation (EGR) rate set-points to the inner loop air path controller to reduce engine-out oxides of nitrogen (NOx) and Soot emissions. We examine two Recurrent Neural Network (RNN) options for a control-oriented emissions model which are based on a multi-layer perception (MLP) architecture and a long short-term memory (LSTM) architecture. These RNN models are trained for use as prediction models in MPC. Both models are defined in input-output form, assuming that measurements/estimates of current values of NOx and Soot are available. We discuss and compare their training using PyTorch. The formulation of economic MPC is detailed, including the definition of the cost function and soft constraints
Zhang, JiadiLi, XiaoKolmanovsky, IlyaTsutsumi, MunecikaNakada, Hayato
Large-bore gas SI ICEs are supposed to operate under more strict conditions in terms of NOx level and potentially using new generation of fuels (e.g., hydrogen, ammonia) in the near future. Currently, the TA Luft norm is being considered while typical BMEP levels are between 22-28 bar. It is expected that NOx will have to drop significantly (down to 20% or even below 10% of the amount based on TA Luft) while engine BMEP is supposed to be increased above 30 bar. The paper is based on 0-D/1-D simulations while using the experience gained from older research projects concerning similar engines. The main goal is to study the influence of different operating conditions (e.g., NOx level, BMEP level, control means, ambient conditions) on both ICE performance and turbocharger operation while comparing classical 2-stage system with 2 electrically assisted ones (e-turbo, e-booster) – steady state performance is of the main focus while transient one is also considered. Complex optimizations were
Vitek, OldrichMacek, JanMares, BohumilKlima, JiriVacek, Martin
This study investigates the ignitability of hydrogen in an optical heavy-duty SI engine. While the ignition energy of hydrogen is exceptionally low, the high load and lean mixtures used in heavy-duty hydrogen engines lead to a high gas density, resulting in a much higher breakdown voltage than in light-duty SI engines. Spark plug wear is a concern, so there is a need to minimise the spark energy while maintaining combustion stability, even at challenging conditions for ignition. This work consists of a two-stage experimental study performed in an optical engine. In the first part, we mapped the combustion stability and frequency of misfires with two different ignition systems: a DC inductive discharge ignition system, and a closed-loop controlled capacitive AC system. The equivalence ratio and dwell time were varied for the inductive system while the capacitive system instead varied spark duration and spark current in addition to equivalence ratio. A key finding was that spark energy
Hallstadius, PeterSaha, AnupamSridhara, AravindAndersson, Öivind
Noise pollution is a significant concern for global automotive industries which propels engineers to evolve new methods to meet passenger comfort and regulatory requirements. The primary purpose of an intake manifold in an automotive vehicle is to allow the passage of clean air for combustion and reduce the noise generated due to engine pulsations. This work proposes a Design for Six Sigma (DFSS) approach to optimize the intake manifold for better acoustic performance without compromising performance for a 3.6 L four-stroke engine for a Plug-in Hybrid electric vehicle (PHEV). Conventionally, intake manifold design has been an iterative process. It involves repetitive testing to arrive at an optimum design. The intake manifold must be designed for better acoustics and engine performance, complicating the design process even more. The DFSS approach has input, output, control, and noise factors. Air-borne noise coming from the engine at different speeds is the input, and the throttle body
Dixit, Manish
The future heavy duty powertrain market is expected to be more diverse, with a gradual shift towards cleaner and more sustainable alternative fuels. Among various options, the hydrogen Internal Combustion Engine (ICE) holds the promise of significantly reducing carbon emissions while leveraging existing ICE technology. However, it also faces substantial challenges related to engine performance, fuel storage and delivery, infrastructure development, economic feasibility, safety and market acceptance. This paper focuses on performance challenges of hydrogen engine, including knock and pre-ignition, as well as low thermal efficiencies, and introduces the Opposed-Piston Two-Stroke Hydrogen ICE (OP2S-H2ICE) as a potential solution. The study demonstrates that OP2S-H2ICE can operate using direct injection, compression-ignition (CI) combustion solely with hydrogen, under various low-load to partial load conditions. Specifically, as the load increases, the combustion transitions from partial
Huo, MingEl-Hannouny, EssamLongman, Douglas
This work is part of a production-intent program at Cummins to develop a 6.7L direct injection (DI), lean burn H2 spark ignition (SI) engine for medium- and heavy-duty commercial vehicles that are intended to be compliant with global VII criteria pollutants emissions standards. The engine features a low-pressure DI fuel injection system, a tumble-based combustion system with a pent-roof combustion chamber, two-stage boosting system without EGR, and dual overhead cams (DOHC) with cam phasers. The paper focuses primarily on the performance system architecture development encompassing combustion system, air-handling system, and valve strategy. Comprehensive 3D-CFD guided design analysis has been conducted to define the tumble ports, injection spray pattern, and injection strategy to optimize charge homogeneity and turbulence kinetic energy (TKE). In addition, the boosting system architecture and the valve strategy have been thoroughly evaluated through 1-D system-level engine cycle
Liu, LeiZhang, YuQin, XiaoHui, HeMin, XuLeggott, Paul
The heat transfer processes occurring in a compression ignition engine are complex, especially considering flame-wall interaction on the piston crown from impinging jets. To study the heat flux occurring on the piston in a heavy-duty diesel engine, a piston was instrumented with fifteen thermocouples and a wireless telemetry system. Eight of the thermocouples are high speed surface thermocouples placed primarily in regions with significant flame-wall interaction, providing crank-resolved surface temperature data. This work presents the first experimental datasets collected with this instrumented piston, describing in detail the thermocouple location selection process as well as data processing and uncertainty quantification for the high-speed surface thermocouples with a particular emphasis on cyclic variability and sensor-to-sensor variability. With this methodology established, data from this piston can be used for modeling and simulation studies as well as for studying the impact of
Gainey, BrianDatar, AdityaRavikumar, AvinashBhatt, AnkurVedpathak, KunalKumar, MohitGingrich, EricTess, MichaelKorivi, VamshiLawler, Benjamin
The Tour engine is a novel split-cycle internal combustion engine (ICE) that divides the four-stroke Otto cycle of a conventional ICE between two separate cylinders, an intake and compression cylinder and a second expansion and exhaust cylinder, interconnected by an innovative charge transfer mechanism. The engine working fluid, air and fuel, is inducted into the engine and compressed by a dedicated compression cylinder, transferred with minimal pressure loss via an input port to a specifically designed combined spool shuttle transfer mechanism and combustion chamber. It is then ignited and then transferred from the combustion chamber via an exit port to a separate expansion cylinder where it is expanded and exhausted from the engine. The primary advantage of the Tour engine is that it provides the engineering freedom to independently design, control and optimize the compression, combustion, and expansion processes within a slider-crank piston engine. By decoupling the compression
Tour, OdedCho, KukwonHofman, YehoramAnderson, BradleyKemmet, RyanMorris, DanielWahl, MichaelBhanage, PratikSivan, EhudTour, GiladAtkinson, ChrisTour, Hugo
In hydrogen-fueled internal combustion engine (H2ICE), there are some ways to reduce nitrogen oxides (NOx) emissions. Using the wide flammability range of hydrogen, such as conducting lean combustion to reduce nitrogen oxides and employing exhaust gas recirculation (EGR), have been adopted. However, challenges exist in terms of load expansion, and due to the absence of high heat capacity of carbon dioxides in the exhaust, EGR also struggles to exhibit significant effects. In such a scenario, there is growing interest in injecting water into the H2ICE as an alternative to augment the EGR effect. In this study, the spark ignition (SI) single-cylinder engine equipped with two direct injectors was used to evaluate the hydrogen and the water dual direct injection combustion system. This system involved the direct injection of hydrogen using a wall-guided gasoline direct injector and the direct injection of water into the combustion chamber using a diesel injector. This approach utilizes the
Kim, KiyeonLee, SeungilKim, SeungjaeLee, SeunghyunMin, KyoungdougOh, SechulSon, JongyoonLee, Jeongwoo
This paper explains transient, computationally rigorous, three-dimensional and one-dimensional multiphase CFD analysis of engine oil drainback system and lubrication system for predicting aeration. Aeration of engine oil is an important factor as it affects working of Hydraulic Lash Adjusters, bearings performance and it reduces lube system pressure itself which is detrimental for the entire engine. In this work specifically effect of engine tilting on lube oil aeration is presented. When engine is tilted, crankshaft and connecting rod/s are dipped in to oil, which creates air bubbles. These air bubbles travel to lube pump and then to the engine lube system. Therefore, it is essential to model aeration in Engine crankcase, Oil pan and Lube system for the purpose of predicting oil pressure reduction in lube system. The problem under consideration is spread over a bigger zone, involves rotating and translating components, passage’s dimensions are varying from microns to meters and
Tawar, Ranjit RamchandraBedekar, Sanjeev
This research employs advanced Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations to analyze the transient multiphase flow dynamics within a four-cylinder inline (I-4) engine, with a focus on gas-liquid interface interactions and oil distribution phenomena. Utilizing a commercial three-dimensional Computational Fluid Dynamics (CFD) software suite, the study incorporates detailed crankshaft rotational kinematics and piston reciprocation to accurately model oil drawdown and retention across various operational conditions. A Volume of Fluid (VOF) approach is applied to assess the impact of crankshaft rotational speeds of 5000 rpm and 6500 rpm on oil distribution and aeration in the oil pan. Comprehensive computational analyses characterize oil-air distribution patterns, quantify oil flow rates through drainback pipes, and elucidate bubble formation dynamics within the sump. The study also examines the relative contributions of crankshaft rotation, piston pumping, and balance
Godavarthi, Raghu VamseeChen, Yung-MingPandey, AshutoshSrinivasan, Chiranth
One of the most critical enablers of hydrogen internal combustion engines is achieving rapid injection and mixing of hydrogen into the combustion chamber. Optimal cap is actively being investigated to improve the injector performance without major hardware modifications. In this study, detailed computational fluid dynamics simulations using the Reynolds-averaged Navier-Stokes (RANS) turbulence model were undertaken to investigate the behavior of hydrogen jets with various cap designs mounted on a hollow-cone injector within a constant volume chamber. It was found that the implementation of a cap in general enhances mixture formation, leading to a higher proportion of lean mixture over time. Key parameters, such as the cap's inner volume and throat area ratio, directly influence the amount of hydrogen mass trapped within the cap. A smaller volume or larger throat area ratio results in less trapped hydrogen mass. Excessive enlargement of the cap's throat area can lead to a decrease in
Zaihi, AbdullahMoreno Cabezas, KevinLiu, XinleiBen Houidi, MoezWu, HaoAlRamadan, AbdullahCenker, EmreMohan, BalajiRoberts, WilliamIm, Hong
CNTs play an important role in modern engineering projects, especially in engine pistons design for the next-generation of motorcycles. This work presents a comprehensive analyses proposed project using finite element method under actual operating conditions purpose performance evaluation of a motorcycle engine piston design, investigating the suitability of four distinct materials. Precise material properties adhering to linear elastic isotropic behavior were defined within the software environment and proposed advanced nanomaterial ensuring accurate representations of the proposed under the prescribed loading scenarios. The primary objective was to identify the optimal material choice for the piston, ensuring superior strength, minimal deformation, and lightweight characteristics essential for high-performance engine applications. Moreover interpreting and understanding the dynamic behavior of common and advanced engineering materials. Through a comprehensive evaluation of the
Ali, Salah H. R.Ahmed, Youssef G. A.Ali, Amr S.H.R.
Taking a certain type of diesel engine turbocharger as the research object, a detailed study on the identification of turbocharger surge based on non-intrusive acoustic signals was conducted, and a novel turbocharger surge identification method based on multi-domain composite features of acoustic signals was proposed. The data related to the acoustic signals were collected through a series of supercharger surge reproduction experiments, and subsequently, a comprehensive database of these acoustic signals was established. Based on the multi-domain perspective of the time domain and frequency domain, 35 specific features were selected and extracted; the contribution of each individual feature to the occurrence of wheezing was calculated using the random forest algorithm, and the core contributing features were selected to be combined into a comprehensive multi-domain composite feature. This composite feature was then used for the recognition of turbocharger surge, serving as a highly
Zhu, JiaxuZheng, HongyuZong, Changfu
During engine idling, the low engine speed, typically from 600 rpm to 800 rpm, together with the low throttle opening angle, makes it challenging for a proper fuel air mixing process. The uneven intake charge distribution and high portion of internal EGR because of the inefficient gas exchange process further make the air fuel ratio unstable, which is challenging for a robust ignition and combustion process. In this paper, the challenge of achieving proper combustion phasing while maintaining acceptable combustion stability is investigated, and a specially designed common-coil pack was utilized to improve engine idling performance by supplying prolonged ignition duration and elevated discharge current amplitude. The common-coil pack, which comprises three parallel connected ignition coils, was shared by all 4 cylinders of the engine. The ignition strategy shows the capability to advance the combustion phasing for higher IMEP output, while maintaining the combustion stability, and
Yu, XiaoChen, GuangyunQian, JinLeblanc, SimonWang, LinyanZheng, Ming
The significant mechanical features of aluminum alloy, including cost-effectiveness, lightweight, durability, high reliability, and easy maintenance, have made it an essential component of the automobile industry. Automobile parts including fuel tanks, cylinder heads, intake manifolds, brake elements, and engine blocks are made of aluminum alloy. The primary causes of its engineering failure are fatigue and fracture. Aluminum alloys' fatigue resistance is frequently increased by surface strengthening methods like ultrasonic shot peening (USP). This article discusses the shot peening dynamics analysis and the influence of ultrasonic shot peening parameters on material surface modification using the DEM-FEM coupling method. Firstly, the projectile motion characteristics under different processes are simulated and analyzed by EDEM. The projectile dynamics characteristics are imported into Ansys software to realize DEM-FEM coupling analysis, and the surface modification characteristics of
Adeel, MuhammadAzeem, NaqashXue, HongqianHussain, Muzammil
Sound pollution has become one of the major environmental concerns for the global automotive industry. Air Induction System (AIS) plays an important role in engine performance and vehicle noise. An ideal design of AIS provides debris-free air for combustion and reduces the engine noise that is heard while snorkeling. This work aims to correlate low-frequency engine order noise prediction at the compressor inlet and snorkel inlet for a 2.0L I4 turbo engine of a Plug-in hybrid vehicle (PHEV) for better acoustic performance without compromising on engine performance. 1D simulation software GT-POWER, Simcenter 3D, and Hypermesh are used for this work. Transmission loss (TL) results with respect to the frequency of the air-box with ducts and intake manifold with charge air cooler are plotted from 0 to 1000 Hz. The air intake system TL results show a good correlation between 3D and 1D till 600 Hz. Compressor and snorkel noise simulation results, especially the firing order and its harmonic
Dixit, Manish
This study addresses the control problem of the electronic throttle valve (ETV) system in the presence of unmatched perturbations. Most previous works have ignored the effect of actuating motor inductance, which results in an approximated model with a matched perturbation structure. However, if this assumption is not permitted, the ETV model turns into an exact model with unmatched perturbation and the control task becomes more challenging. In this article, a backstepping control design based on a quasi-sliding mode disturbance observer (BS-QSMDO) has been proposed to effectively reject the unmatched perturbation in the ETV system. A rigorous stability analysis has been conducted to prove the ultimate boundedness for disturbance estimation error and tracking error. The key to this proposed observer-based control design is to obtain a robust and chattering-free controller based on a quasi-sliding mode methodology. The proposed quasi-sliding mode observer works to estimate the unmatched
Hameed, Akram HashimAl-Samarraie, Shibly AhmedHumaidi, Amjad Jaleel
In some IC engines, fuel injection pump is driven by camshaft; thus, these camshafts are designed for bending and torsional loads. Conventionally, camshafts are built-to-specification. Typically, durability assessment of camshaft happens at engine level, this calls for proto or calibration engine to be made and available for testing. As there are limited number of engine level proto testing, the overall scatter in camshafts due to manufacturing/process variations is not possible to be covered. This poses a risk of camshaft failures in the final stages of product development. To mitigate this risk, a component level standard test method is needed for quickly validating design and manufacturing process of camshafts for second source suppliers. The current paper discusses the process followed for arriving at a standard test setup and overcoming the challenges in terms of capturing the appropriate physics for camshaft failure during the engine level testing. Camshaft rear end experiences
Chakraborty, AbhirupS, AravamuthanK, Karthikeyan
The efficiency of combustion has a major impact on the performance and emission characteristics of a spark-ignited LPG (Liquified Petroleum Gas) engine. The shape of the combustion chamber determines the homogeneous charge intake velocity, which is crucial for the turbulent motion that encourages flame propagation and quickens combustion. It need the right amount of compression ratio, charge squish velocity and turbulent kinetic energy to sustain combustion and propel laminar flames. There are a number of names for the motion of the charge within the cylinder: swirl, squish, tumble and turbulence. All of these terms affect how air and fuel are mixed and burned. Piston shape affects in-cylinder motion, which in turn reduces fuel consumption and improves combustion characteristics. The shape of the piston quench zone has a substantial impact on the charge velocity inside the combustion chamber. The impact on charge motion was analyzed using computer modeling using STAR-CD on pentroof
Sagaya Raj, GnanaR L, KrupakaranPasupuleti, ThejasreeNatarajan, Manikandan
Alloy steel possesses high strength, hardenability, fatigue strength, and good impact toughness. It is widely used for making various machine parts, automobile components, shafts, gears, connecting rods, and more. Hardening and tempering develop the optimum combination of hardness, strength, and toughness in engineering steel, thereby providing components with high mechanical properties. Hardening and tempering temperatures are crucial factors that affect the mechanical and metallurgical properties of 42Cr4Mo steel. In this research work, 42Cr4Mo alloy steel samples were subjected to hardening and tempering processes. The hardening temperatures were set at 830°C, 850°C, and 870°C, while the tempering temperatures were maintained at 590°C and 650°C. The test results show that hardening at 830°C and tempering at 590°C achieve high tensile strength, which decreases as the temperature increases. Different hardening temperatures and constant tempering temperatures will be optimized to
Murugesan, VenkatasudhaharGanesan, DharmalingamTarigonda, Hariprasad
Nowadays, the energy transition is at the most critical moment. In order to achieve the emission reduction target of ships, a form of boosting piston inside methanol fuel injector has been carried out. The physical property fluctuations and phase change of methanol under high pressure have been considered in the design phase. 1D-3D coupling method is used to comprehensively evaluate the performace of the injector. To this end, an Amesim simulation model is established to systematically study and analyze the injection characteristics. The injection performance of the injector under four typical loads are calculated, which is evaluated from the perspectives of injection quantity, injection duration, valve response, and leakage of boost components. In the nozzle block, the cavitation intensity of methanol is stronger than that of diesel. To reduce the possibility of cavitation erosion, as a consequence, a CFD model is established to optimize the structure of nozzle components. By adding
Yang, LiWen, LimingZhang, HanwenLu, GangaoDong, Weijie
In the context of low-carbon and zero-carbon development strategies, the transformation and upgrading of the energy structure is an inevitable trend. As a renewable fuel, ammonia has a high energy density. When ammonia is burned alone, the combustion speed is slow. The emissions of nitrogen oxides and unburned ammonia is high. Therefore, a suitable high-reactivity combustion aid fuel is required to improve the combustion characteristics of ammonia. Based on this background, this study converted a six-cylinder engine into a single-cylinder ammonia/diesel dual-fuel system, with diesel fuel as the base and a certain percentage of ammonia blended in. The impact of varying the injection pressure and equivalence ratio on engine combustion and emissions was examined. The results demonstrate that an appropriate increase in injection pressure can promote fuel-gas mixing and increase the indicated thermal efficiency (ITE). With regard to emissions, an increase in injection pressure has been
Wang, HuLv, ZhijieZhang, ShouzhenWang, MingdaYang, RuiYao, Mingfa
The combustion performance test under different injection parameters was carried out on an inline 6-cylinder spark-ignition (SI) methanol engine, and the influence mechanism of injection parameters on methanol evaporation, mixing, combustion and emission was revealed through simulation. The results indicate that compared to the low-flow nozzle scheme (14*D0.26), when adopting the high-flow nozzle scheme (16*D0.30), the injection duration is shorter. The evaporation rate of methanol in the intake port is increased, the amount of methanol droplets and wall-attached liquid film in the cylinder is reduced, and the temperature in the cylinder is elevated. Moreover, the changes are more significant under high-load operating conditions. The change in the methanol charge rate during the intake process leads to a slightly higher inhomogeneity of the in-cylinder mixture. The relatively high temperature in the cylinder and the appropriate increase in the mixture concentration on the exhaust side
Zhang, ZhiLiu, HaifengLi, YongzhiChang, WeideShu, ZanqiaoJu, ChengyuanRatlamwala, Tahir Abdul HussainYao, Mingfa
As regulations regarding vehicle emissions and fuel consumption become increasingly stringent, the development of hybrid power systems is accelerating, primarily due to their benefits in fuel efficiency and reduction of pollutants. Hybrid engines are specially designed to operate optimally at mid to high speeds and loads. But for low-speed low-load conditions, due to the relatively low in-cylinder tumble intensity and lower injection pressure, the fuel-air mixture tends to deteriorate, resulting in an increase in particle number. To enable the engine to reach optimal RPM and load quickly during frequent start-stop cycles, hybrid engines typically set a higher startup engine speed and establish fuel rail pressure more quickly compared to traditional engines. Yet hybrid engines still encounter challenges of soot generation during cold start conditions. Especially in urban driving conditions where the hybrid engine frequently experiences startups and idling, the soot generation problem
Liu, ChangyeMan, XingjiaCui, MingliLiang, YuanfeiWang, ShangningLi, Xuesong
The use of carbon-neutral fuels instead of conventional fuels in gasoline direct injection (GDI) engines is beneficial to global decarbonization. However, the application of renewable non-petroleum fuels in GDI engines is still unclear due to their different physicochemical properties. Acetone-Butanol-Ethanol (ABE) is a promising low-carbon alternative fuel for GDI engines, but its high viscosity and latent heat cause pool firing during cold start. The existing flash boiling technology can solve this problem. This study explores the effects of flash boiling on spray characteristics, flame propagation, soot, and emissions of gasoline-ABE blend in a constant volume combustion chamber (CVCC) without airflow. Optical windows, high-speed camera recording, in-chamber pressure measurement, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscope (TEM) were used to analyze flame spreading, combustion characteristics, exhaust gases, and soot morphology. Flash boiling
Nour, MohamedZhang, WeixuanCui, MingliLi, XuesongXu, MinQiu, Shuyi
NOx after-treatment has greatly limited the development of lean-burn technology for gasoline engines. NH3-Selective Catalytic Reduction (SCR) technology has been successfully applied to NOx conversion in diesel engines. For gasoline engines, SCR catalyst is required to maintain high activity over a higher temperature window. In this study, we utilized a turbocharged and intercooled 2.0 L petrol engine to investigate the NOx conversion of two zeolite-based SCR catalysts, Cu-SSZ-13 and Fe/Cu-SSZ-13, at exhaust flows ranging from 80 to 300 kg/h and exhaust temperatures between 550 to 600°C. The catalysts were characterized using SEM, ICP, XRD, H2-TPR, NH3-TPD, and other methods. The selected Fe/Cu-SSZ-13 catalyst showed higher NOx conversion (>80%) in the temperature range of 550~600oC and 80~300 kg/h exhaust gas flow. NOx output could be controlled below 10ppm. The characterization results showed that although the specific surface area and acidic sites decreased after the aging treatment
Pan, ShiyiWang, RuwenZhang, NanXu, ZhiqinHu, JiangtaoLiao, XiukeDuan, PingpingChen, Ruilian
The application of short burn durations at lean engine operation has the potential to increase the efficiency of spark-ignition engines. To achieve short burn durations, spark-assisted compression ignition (SACI) as well as active pre-chamber (PC) combustion systems are suitable technologies. Since a combination of these two combustion concepts has the potential to achieve shorter burn durations than the application of only one of these concepts, the concept of jet-induced compression ignition (JICI) was investigated in this study. With the JICI, the fuel is ignited in the PC, and the combustion products igniting the charge in the main combustion chamber (MC) triggered the autoignition of the MC charge. A conventional gasoline fuel (RON 95 E10) and a Porsche synthetic fuel (POSYN) were investigated to assess the fuel influence on the JICI. Variations of the relative air/fuel ratio in the exhaust gas (λex) were performed to evaluate both the occurrence of the JICI and the dilution
Burkardt, PatrickGünther, MarcoVillforth, JonasPischinger, Stefan
Autonomous vehicles for mining operations offer increased productivity, reduced total cost of ownership, decreased maintenance costs, improved reliability, and reduced operator exposure to harsh mining environments. A large flow of data exists between the remote operation and the ore haul vehicle, and part of the data becomes information for the maintenance sector which it monitors the operating conditions of various systems. One of the systems deserving attention is the suspension system, responsible for keeping the vehicle running and within a certain vibration condition to keep the asset operational and productive. Thus, this work aims to develop a digital twin-assisted system to evaluate the harmonic response of the vehicle’s body. Two representations were created based on equations of motion that modeled the oscillatory behavior of a mass-damper system. One of the representations indicates a quarter of the ore transport truck’s hydraulic system in a healthy state, called a virtual
Rosa, Leonardo OlimpioBranco, César Tadeu Nasser Medeiros
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Vandresen, Marcelodos Santos, Luciano Amaury
The objective of this study is to investigate the root cause of cracks detected in the Turbocharger bracket belonging to the engine Mercedes-Benz OM471 (Power: 390kW, Torque: 2600Nm) from Vehicle Truck Mercedes-Benz Actros 2651LS 6x4 Euro V. The investigation started with the instrumentation of every related component (besides the bracket itself, the charge air pipe, the exhaust pipe and also the crankcase for reference) in order to perform a vibration measurement. The necessary equipment to execute this procedure, included accelerometers, temperature sensors, strain gages and an inductive engine speed sensor. All data had to be acquired directly from real application conditions in vehicle, maximum load of 74 ton in a previously defined mountain road track, due to the impossibility to generate similar results in comparison to the ones detected on road through bench tests (or any other in-door experiment). The bracket position is located on the right side of a diesel combustion engine
Feijó, Igor SommerfeldGonçalves, Carlos Aurélio Bustamante
During accelerations and decelerations of a race car whose engine has a wet sump, the forces generated by the vehicle’s motion cause the engine oil to vigorously shift towards the walls of the oil pan and crankcase, contributing to the phenomenon known as ‘sloshing.’ This phenomenon often leads to fluctuations in oil pressure, resulting in oil pressure surge, when the oil is pushed away from the pump pickup point. Via the logged data, the Formula UFSM FSAE Team had witnessed a recurrent lack of oil pressure in the race track during the 2023 Brazilian FSAE competition. In the AutoCross Event, the recurrence of this problem was 80% of the right corners on lateral accelerations between 0.80G and 1.30G. The average oil pressure in this condition was 0.80 bar, even reaching 0.10 bar above 5000 RPM. Therefore, it was necessary to develop a new set of baffles for the oil pan, capable of minimizing the effects of sloshing and, consequently, the oil surge. As a method of research, a test bench
Zimmermann, Natalia DiovanaJunior, Luiz Alfredo CoelhoMartins, MarioHausen, Roberto
Despite the increasing electrification of current vehicles, Diesel engines will continue to be used for several decades to come. There is still a need to introduce emission control technologies, especially those that show good potential and do not require extensive engine modifications. The increasing focus on reducing pollutant emissions and improving energy efficiency has prompted engine manufacturers to continuously strive for technological progress. The aim is to ensure compliance with environmental regulations and the fulfillment of social expectations. Specifically, new Diesel engine projects face the challenge of minimizing both nitrogen oxides (NOx) and soot emissions, which requires significant investiment in research to develop innovative combustion methods and exhaust gas treatment. One of these innovative methods is Ducted Fuel Injection (DFI), which aims to reduce emissions by improving spray development to obtain a better mixture at flame upstream. This study presents an
Dias, Fábio Jairodos Santos, Leila RibeiroRufino, CaioGarcia, Ezio CastejonLomonaco, RaphaelArgachoy, CelsoLacava, Pedro Teixeira
In the global scenario marked by the increasing environmental awareness and the necessity on reducing pollutant emission to achieve the decarbonization goals, action plans are being proposed by policy makers to reduce the impact of the climate change, mainly affecting the sectors that most contribute to CO2 emissions such as transportation and power generation. In this sense, by virtue of the National Energy Plan 2050, the Brazilian market will undergo the decommissioning of thermal power plants fueled by diesel and heavy fuel oil (HFO) by 2030, compromising about 6.7 GW of power capacity according to the Brazilian Electricity Regulatory Agency (ANEEL) database. An alternative to the scrapping of these engine power plants is their conversion to operate with fuels with a lower carbon footprint, such as the natural gas. This work, therefore, aims to numerically assess the conversion feasibility of a HFO large bore four-stroke turbocharged engine to operate with natural gas by means of a
Gonçalves, Vinícius FernandezZabeu, Clayton BarcelosAntolini, JácsonSalvador, RobertoAlmeida, RogérioValiati, Allan SoaresFilho, Guenther Carlos Krieger
Items per page:
1 – 50 of 14773