Browse Topic: Engine mechanical components
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
The larger domain of surface texture geometry and other input variables related to engine operation, i.e., elevated temperature, has remained to be studied for finding suitable surface texture for real-time engine operations. In previous efforts to find suitable surface texture geometry and technique, the tribological performance of the piston material (Al4032) with dimples of varying diameters (90 to 240 μm) was evaluated under mixed and starved lubrication conditions in a pin-on-disk configuration. The disc was textured using a ball nose end mill cutter via conventional micromachining techniques. The area density and aspect ratio (depth to diameter) of the dimples were kept constant at 10% and 1/6, respectively. SAE 20W-40 oil was used as a lubricant with three separate drop volumes. The experiments were conducted in oscillating motion at temperatures of 50, 100 and 150°C. Conventional micromachining achieved improved dimensional precision and minimized thermal damage. Textured
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
ABSTRACT Cylinder Pressure Monitoring (AVL CYPRESS™) is a technology which provides closed-loop feedback to enable real-time control of combustion in a compression ignition engine. This makes it possible to adapt to the fuel ignition quality and energy density by adjusting the main injection quantity and the placement of the injection events. The engine control system can thus detect fuel quality and adapt the combustion phasing quickly and robustly – and without any prior knowledge of fuel properties. By using a cylinder pressure sensor(s), the engine controller will be able to map the development of the apparent rate of heat release (ARHR) and the mass fuel burn curve - which provides good thermal efficiency correlation. The cylinder pressure map detects the combustion event and the feedback controller adjusts the start of injection to maintain the combustion event at the desired crank position. The cylinder pressure sensor allows for accurate measurement of the power produced. By
ABSTRACT A sudden increase in microgrid electrical power consumption requires the fast supply of energy from different generating sources to guarantee microgrid voltage stability. This paper presents the results of simulations investigating the integration of an electric supercharger into a Heavy Duty Diesel (HDD) genset connected to a microgrid for reducing engine speed droop in response to an abrupt power demand requested from the grid. First, a mean value model for the 13 L HDD engine is used to study the response of the baseline turbocharged engine during a fast load increase at low engine speed. The limited air mass in the cylinder during the transient results in engine lugging and ultimately engine stall. Then, an electrical supercharger is integrated before the turbocharger compressor to increase the engine air charge. During steady state operation, the simulation results indicate that the supercharger is able to increase the air-charge by approximately 50% over the lower half
ABSTRACT This paper details the exploration of oil jet piston cooling phenomenon with a focus on heat transfer from the diesel engine piston to the oil. Several numerical methods based on computational fluid dynamics (CFD) and conjugate heat transfer (CHT) were developed to resolve key aspects of piston oil cooling. These methods aim to establish and characterize the flow and heat transfer regimes that are inherent to the piston gallery cooling system, and to assist in quantifying the piston heat transfer and establish its dependence on a number of parameters related to the engine layout and performance, the oil cooling system, and the cooling gallery contained within the piston. Telemetry experimental data from a single-cylinder diesel engine was used to better understand the piston cooling system and to develop and validate modeling and simulation approaches. The combined findings offer a foundation for further study of oil jet piston cooling. Citation: A. Grunin. V. Korivi, “Oil
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
During a recent Bosch tech showcase, we spoke with Joe Dear, engineering manager for electric propulsion systems at Linamar. The Guelph, Ontario-based parts manufacturer is no stranger to building unsung components for the auto industry, including gears, camshafts, connecting rods, and cylinder heads. The Linamar team was demonstrating a modified Ram 2500, a collaboration between Bosch and Linamar, that was outfitted with a prototype electric powertrain and new e-axles: a rigid axle on the rear (with a Bosch motor and inverter) and a steering axle up front
Airplane turbines and rocket engines are very powerful, hot and noisy and yet in need of extremely sensitive measurement technology. And they have another thing in common: They are most efficient when they run on a constant and even flame. Specialized measurement technology helps aerospace engineers improve combustion chambers and fuel injectors. In Switzerland, two ambitious student organizations have been using iterative pressure measurements to develop and build a significantly more efficient next generation of rocket engines
Reducing vehicle weight is a key task for automotive engineers to meet future emission, fuel consumption, and performance requirements. Weight reduction of cylinder head and crankcase can make a decisive contribution to achieving these objectives, as they are among the heaviest components of a passenger car powertrain. Modern passenger car cylinder heads and crankcases have greatly been optimized in terms of cost and weight in all-aluminum design using the latest conventional production techniques. However, it is becoming apparent that further significant weight reduction cannot be expected, as processes such as casting have reached their limits for further lightweighting due to manufacturing restrictions. Here, recent developments in the additive manufacturing (AM) of metallic structures is offering a new degree of freedom. As part of the government-funded research project LeiMot [Lightweight Engine (Eng.)] borderline lightweight design potential of a passenger car cylinder head with
Items per page:
50
1 – 50 of 14780