Browse Topic: Cams

Items (133)
Computational tools have become indispensable in the development of cam profiles, aiding designers in achieving optimal performance. This paper explores the application of computational tools in the design of cam profiles for a single-cylinder research engine (SCRE) prototype under development with a direct-acting mechanism. The primary objective is to present a comprehensive design process, encompassing kinematic analysis and Quasi-Dynamic Analysis (QDA), to enable designers to generate preliminary cam profiles based on design requirements. The VT-Design® software, a part of the GT-SUITE package, is employed for simulations in this study. Key design considerations, such as lift, velocity, and acceleration curves, are discussed, emphasizing the importance of maintaining continuity in the acceleration curve. The design process involves optimizing the acceleration curve to minimize negative acceleration and improve dynamic response. The paper also highlights the significance of contact
Strapasson, Matheusdos Santos, Igor RodriguesMetzka Lanzanova, Thompson D.Martins, Mario Eduardo Santos
Research and development studies regarding the internal combustion engines are, now more than ever, crucial in order to prevent a premature disposal for this application. An innovative technology is analyzed in this paper. The traditional slider-crank mechanism is replaced by a system of two ring-like elements crafted in such a way to transform the rotating motion of one element in the reciprocating motion of the other. This leads both to a less complex engine architecture and to the possibility to obtain a wide range of piston laws by changing the profile of the two cams. The relative motion of the cams is the peculiar feature of this engine and, due to this, alongside with the thermodynamic analysis, also the tribological aspects are investigated. 3D-CFD simulations are performed for several piston laws at different engine speeds to evaluate the cylinder pressure trace to be used as input data for the development of the tribological model. Moreover, the CFD results are analyzed in
Georgitzikis, VasileiosBreda, SebastianoKalligeros, ChristosSpitas, VasiliosRogkas, NikolaosCicalese, GiuseppeD'Orrico, FabrizioTzouganakis, PanteleimonFontanesi, Stefano
Technologies transition from dominance to nearly dead at different speeds and for various reasons. That's particularly true for motive power. Pistons, cams and valves are giving way to anodes, cathodes and inverters. Governments and OEMs are pledging hard deadlines (2035!) to end sales of combustion-engine light vehicles. Amid the radical changes, what becomes of the V8 - the engine type that has defined American cars and trucks and has spurred their sales for the past 70 years? It took more than two decades for the automobile to end the horse's reign as the mainstream prime mover. Well into the heyday of Ford's Model T, streets in many U.S. towns remained clogged with horse-drawn vehicles, period photos show
Brooke, Lindsay
In the current situation and upcoming government regulations, hybrid vehicles are very promising in terms of meeting fuel economy and stringent requirements of emission norms. Herein, hybridization will be mostly done with gasoline and CNG vehicles. As a normal practice, engine is switched off at the signal and again restart with engine start-stop technology. So, instances of engine start/stop are increased in hybrid vehicle in comparison with standard IC engine vehicle. In order to achieve smooth engine start, engine starting torque can be optimized by adjusting engine valve timing. As Electric Cam Phaser (ECP) meets valve timing target even before first engine combustion start, this is one of the critical technologies in reducing engine starting torque and time reaching to idle speed. This engine starting strategy also gives benefits in terms of reducing engine start emissions and improving fuel economy. This paper describes selection of electric cam phaser for hybrid vehicle
Sheikh, ShabbirThoelke, AndreasDeshmukh, UdayRathore, Krishna Kumar
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states designated as: High Fire, Low Fire, and Skip (deactivation). The Low Fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, High Fire mode. mDSF can be implemented cost-effectively using an asymmetric intake valve lift strategy, with one high-flow power charging port and one high-efficiency Miller port. Prototype mDSF cylinder heads were based on the
Ortiz-Soto, ElliottYang, XiaojianVan Ess, JoelOwlia, ShahaboddinJoshi, AbhishekYounkins, Matthew
Dynamic Skip Fire (DSF) is a proven cylinder deactivation strategy developed at Tula Technology that, in production, has proven to deliver significant fuel consumption improvements across engine and vehicle platforms. DSF allows cylinders to operate near optimal efficiency by reducing pumping losses and improving combustion stability. The Atkinson cycle is also a well-known strategy to improve thermodynamic efficiency by reducing pumping losses and over-expanding combustion gases. This strategy is commonly implemented with long duration intake cams and late intake valve closing. The Atkinson cycle sacrifices power density in a naturally aspirated engine so displacement is commonly increased. The upsized Atkinson cycle engine still shows significant reduction in fuel consumption at high load but has a fuel consumption penalty at low loads due to increased friction and throttling losses. This paper introduces a new synergistic engine concept that employs DSF with Atkinson cycle to
Bowyer, StephenOrtiz-Soto, ElliottYounkins, MatthewVENKADASAMY, Venkatesh
This paper provides a summary of a Liquefied Petroleum Gas (LPG) concept engine developed for medium duty applications (class 6-7 trucks) targeting high efficiency with a power density that matches turbocharged diesel engines. The turbocharged in-line 6 cylinder engine incorporates an advanced spark ignition combustion system design, a purpose built medium-duty class engine structure optimized for operation with a direct propane injection system, dual overhead cams with individual cam phasers and twin-entry turbocharger. The high tumble charge motion combustion system targeted for operation with direct injected (DI) LPG has resulted in an engine capable of producing up to 22 bar brake mean effective pressure (BMEP) at high brake thermal efficiency (BTE) throughout the operating map. The high BTE combined with low carbon to hydrogen ratio of LPG results in 12% lower Brake Specific CO2 (BSCO2) emissions on the heavy-duty FTP cycle when compared to a diesel engine of same displacement and
Rengarajan, SaradhiLiu, ZhunLerin, ChloeStetter, JohnNarang, VikasLana, Carlos
In an accident reconstruction, vehicle speeds and positions are always of interest. When provided with scene photographs or fixed-location video surveillance footage of the crash itself, close-range photogrammetry methods can be useful in locating physical evidence and determining vehicle speeds and locations. Available 3D modeling software can be used to virtually match photographs or fixed-location video surveillance footage. Dash- or vehicle-mounted camera systems are increasingly being used in light vehicles, commercial vehicles and locomotives. Suppose video footage from a dash camera mounted to one of the vehicles involved in the accident is provided for an accident reconstruction but EDR data is unavailable for either of the vehicles involved. The literature to date describes using still photos to locate fixed objects, using video taken from stationary camera locations to determine the speed of moving objects or using video taken from a moving vehicle to locate fixed objects
Manuel, Emmanuel JayMink, RichardKruger, Daniel
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions. Recently introduced technologies combine these two effects by retarding only the swirl port valve, increasing in-cylinder swirl while
Leach, FelixDavy, MartinWeall, AdamCooper, Brian
In order to better understand how the Atkinson cycle and the Miller cycle influence the fuel consumption at different engine speeds and loads, an investigation was conducted to compare influences of early intake valve closing (EIVC) and late intake valve closing (LIVC) on the fuel consumption of a 1.5L turbo-charged gasoline direct injection (TGDI) engine. The engine was tested with three different intake cams, covering three intake durations: 251 degCA (the base engine), 196 degCA (the Miller engine), and 274 degCA (the Atkinson engine). Compression ratios are 9.5:1 for the base engine and 11.4:1 for the Atkinson and Miller engines, achieved with piston modifications. Results of this investigation will be reported in three papers focusing respectively on characteristics of the engine friction, in-cylinder charge motions for different intake events, and combustion and fuel economy without and with EGR for the naturally aspirated mode and boost mode. The present paper is Part I of this
Ouyang, XianlinTeng, Hozeng, XiaochunLuo, XuweiHu, TingjunHuang, XianlongLuo, JiankunZhou, Yongli
Direct drive servo motor and drive technology has many advantages. It reduces an axis’ parts count, mechanical losses, and often its objectionable noise. What’s more, it also increases the machine’s efficiency, lowering operation cost for the user due to its inertia ratio as compared to the more common mechanically advantaged multi-body axis designs. Reducing the mechanical transmission components (gearboxes, timing belts, pulleys, cams, lead screws, etc.) between the motor and its load is only part of the savings
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure. However, a compromise
Gottschalk, WolframFink, ReneSchultalbers, Matthias
This document describes the design relative to assembly force, and hand clearance guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). The minimum values associated with this design guide need to be evaluated against other critical characteristics that impact quality, efficiency and other traits of assembly feasibility. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department
USCAR
This document describes the design relative to assembly force, and hand clearance guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). The minimum values associated with this design guide need to be evaluated against other critical characteristics that impact quality, efficiency and other traits of assembly feasibility. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department
USCAR
This SAE Recommended Practice provides procedures, and information to conduct vibration (impact) tests on lighting devices and their components as well as other safety equipment used on vehicles
Test Methods and Equipment Stds Committee
Gasoline engine downsizing has become a popular and effective approach to reduce CO2 emissions from passenger cars. This is typically achieved in the form of a boosted direct injection gasoline engine, which are typically equipped with variable valve timing (VVT) devices on the intake and/or exhaust valves. This paper describes the synergies between valve timings and boost based on experimental investigations in a single cylinder gasoline direct injection spark ignited (DISI) engine with variable cam phasing on both the intake and exhaust cams. Two cam profiles have been tested to realize Miller cycle and compared with the standard camshaft. One cam features a long opening duration and standard valve lift for Late Intake Valve Closing (LIVC) and the other cam has a short opening duration and low valve lift for Early Intake Valve Closing (EIVC). An external boost rig was used to provide adjustable pressurized air charge, allowing conditions of up to 4000rpm and 25.6 bar NIMEP to be
Li, YuanpingZhao, HuaStansfield, PhilFreeland, Paul
Over the years, internal combustion engines have been researched and improved in the search for more power and for lower fuel consumption. An automotive subsystem that directly affects the performance of the engine is the valve train system. This system allows for the control of the admittance and release of gases from the combustion chamber. This system operates in all phases, ensuring that the valves open and close properly and ensuring the sealing of the cylinder. Several researchers have studied the kinematics and dynamics of the valve actuation system to improve engine performance. As the actuation of the valves occurs usually by cams, every movement and timing of the system is dictated by the design characteristics of the profile of the cams: it has a predominant action on the dynamics of the system. Many phenomena, such as the vibration of the drive system, impacts on the valve seat, and loss of physical contact between cam and follower can be understood and optimized by
Junior, Rubens Gonçalves SalsaPederiva, Robson
Mechanisms are used widely in engineering applications due to their ability to translate force and movement. They are found in kinematic pairs, gears, cams, linkages, and in flexure mechanisms (also known as compliant mechanisms). Mechanisms and flexures are used widely in spacecraft design, especially in the area of optics, where precise positioning of telescope mirrors requires elastic flexing of elements. A compliant mechanism is generally defined as a flexible mechanism that uses an elastic body deformation to cause a displacement (such as positing a mirror). The mechanisms are usually constructed as a single monolithic piece of material, and contain thin struts to allow for large elastic bending with low input force. This creates the largest problem with developing precise mechanisms; they must be fabricated from a single piece of metal, but are required to have strict accuracy on their dimensions. They are generally required to have high strength, elasticity, and low coefficient
The new 2.0L gasoline engine for ACCORD Plug-in Hybrid was developed as a next-generation Honda engine series. This engine's features are low fuel consumption and good emission performance. Variable valve Timing and Electric Control (VTEC) system is applied to this engine, so we can have two characteristic cams, output cam and fuel economy (FE) cam. Output cam is narrow duration, used for power and engine starting. FE cam is wide duration, so it can get Atkinson cycle effect by late intake valve close timing (IVC). Cooled exhaust gas recirculation (Cooled-EGR) is applied to this engine. Low fuel consumption is achieved by combining VTEC and cooled EGR. We made the improvement of control systems. First is the new control which can secure the pressure difference before and behind the EGR valve. As a result, EGR flow control performance is improved. Second is improvement of torque control. It can predict an engine torque decrease when ignition retard is carried out. We keep drivability
Yonekawa, AkiyukiUeno, MasakiWatanabe, OsamuIshikawa, Naohiro
The objective of this investigation was to evaluate the effects of a variable intake and exhaust valve timing in terms of opening, closing, opening duration, lift curve and number of active valves per pair on a four cylinder direct-injecting SI engine for the catalyst heating idling phase at the beginning of an NEDC emission test procedure. The first step evaluated the engine behavior at a reference point of operation. Its parameters in valve timing were adjusted to match the valve timing of the base production engine. The second step investigated the effects of an earlier exhaust valve opening while the exhaust valve closing time was kept and the exhaust valve opening duration was extended. The third step was to answer the question for the optimum number of exhaust valves in order to minimize the wall heat losses inside the cylinder head. The optimum 3V exhaust valve timing has been defined as the basis for exhaust valve timing for steps four and five. The fourth step contained the
Gottschalk, WolframKirstein, GunnarMagnor, OlafSchultalbers, MatthiasWetten, Robert
Setting the correct valve timing and lift based on the operating speed will be the key to achieving good volumetric efficiency and torque. Continuously variable valve timing systems are the best choice but are too expensive. In this work a novel two stage variable valve actuation system was conceived and developed for a small single cylinder three wheeler spark ignition engine. The constraints were space, cost and complexity. The developed system uses one cam for low speeds and another cam that has a higher lift and duration for high speeds. The shift between the cams occurs through the mechanism even as the engine runs by the operation of a stepper motor which can be connected to the engine controller. A one dimensional simulation model validated with experimental data was used to predict the suitable valve timings and lifts in low and high speed ranges. Two profiles were then selected. The mechanism to achieve shifting between cams was conceived and modeled in standard software for
Ramadoss, SambathkumarRamesh, ANarasimhan, Lakshmi
Miniaturization of medical devices offers tangible advantages to clinicians and patients alike. Smaller pill cams, for example, are more easily ingested. Likewise, smaller hearing aids are less invasive and therefore more comfortable for the wearer. But before either of these devices — and many others like them — can be reduced in size, their components must be made smaller. Magnetic reed switches are increasingly being used to enable manufacturers to reduce their footprint while maintaining tight sensitivities and performance characteristics
This work presents the results of a simulation using the Finite Elements Method (FEM) to study the contact pressure between cams and followers in assembled camshafts. The geometry was chosen based on an iron casting camshaft from a commercial car in order to have a base to ensure that the assembled camshaft is a great solution to increase the performance and to reduce weight. Surfaces that are in contact with high levels of contact pressure can increase the wear and reduce the lifetime of the components. In contact stress analysis, the most critical modeling consideration is to choose the ideal meshing, so, as a preparatory step we summarized with some simulations, defined an acceptable model to run 3D finite elements analysis and calculated the contact pressure
de Abreu Duque, Philippede Souza, Mauro MoraesSavoy, JulianoValentina, Guilherme
Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity to simultaneous reduction of fuel consumption and emissions. Because of their robustness and cost performance, multi-hole injectors are being adopted as gasoline DI fuel injectors. Ethanol and ethanol-gasoline blends synergistically improve the performance of a turbo-charged DI gasoline engine, especially in down-sized, down-sped and variable-valvetrain engine architecture. This paper presents Mie-scattering spray imaging results taken with an Optical Accessible Engine (OAE). OAE offers dynamic and realistic in-cylinder charge motion with direct imaging capability, and the interaction with the ethanol spray with the intake air is studied. Two types of cams which are designed for Early Intake Valve Close (EIVC) and Later Intake Valve Close (LIVC) are tested, and the effect of variable valve profile and deactivation of one of the intake valves are discussed. Multi-dimensional Computation Fluid Dynamics (CFD
Matsumoto, AtsushiZheng, YiXie, XingbinLai, Ming-ChiaMoore, Wayne
This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new "lessons learned" become available
A-5B Gears, Struts and Couplings Committee
This SAE Recommended Practice provides procedures, and information to conduct vibration (impact) tests on lighting devices and their components as well as other safety equipment used on vehicles
Test Methods and Equipment Stds Committee
Sprag handle wrenches have been proposed for general applications in which conventional pawl-and-ratchet wrenches and sprag and cam “clickless” wrenches are now used. Sprag handle wrenches are so named because they would include components that would function both as parts of handles and as sprags (roller locking/unlocking components). In comparison with all of the aforementioned conventional wrenches, properly designed sprag handle wrenches could operate with much less backlash; in comparison with the conventional clickless wrenches, sprag handle wrenches could be stronger and less expensive (because the sprags would be larger and more easily controllable than are conventional sprags and cams
Concern for engine particle emission led to EC regulations of the number of solid particles emitted by LDV and HDV. However, all conventional piston-driven combustion engines emit metal oxide particles of which only little is known. The main sources are abrasion between piston ring and cylinder, abrasion of bearing, cams and valves, catalyst coatings, metal-organic lubrication oil additives, and fuel additives. While abrasion usually generates particles in the μm range, high concentrations of nanosize metal oxide particles are also observed, probably resulting from nucleation processes during combustion. In general, metal oxides, especially from transition metals, have high surface reactivity and can therefore be very toxic, especially nanosize particles, which evidently provide a high specific bioactive surface and are suspected to penetrate into the organism. Hence, these particles must be scrutinized for quantity, size distribution and composition. Published data are summarized and
Mayer, Andreas C.Ulrich, AndreaCzerwinski, JanMooney, John J.
The High Efficiency Hybrid Cycle (HEHC) is a thermodynamic cycle which borrows elements of Diesel, Otto and Atkinson cycles, including: Air compression to a high ratio, followed by fuel injection and compression ignition (Diesel). Constant volume combustion (Otto) Over-expansion (Atkinson) Optionally, internal cooling heat recovery via steam generation (Rankine). Simple air standard analysis predicts this cycle to be 17% more efficient than diesel and 19% more efficient than Otto. The construction of a prototype rotary engine implementing this cycle is also described in detail. The main engine components consist of a rotor in pure rotation and two reciprocating gates directly driven by overhead cams. This combination separates the working mixture into three separate volumes. At a given rotor position each volume operates at a different part of the cycle. For instance, intake/compression, combustion, expansion/exhaust are occurring simultaneously in separate chambers. As the rotor moves
Nabours, StephenShkolnik, NikolayNelms, RyanGnanam, GnanaprakashShkolnik, Alexander
This document describes the design, assembly force, and packaging guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department. Refer to SAE/USCAR-12 Wiring Component Design Guidelines for additional guidelines
USCAR
As modern machines have become more advanced, the complexity involved in motion control has escalated. Today, servos have replaced cams and gears on machines and multiple axis of synchronized motion control have become commonplace. Distributed motion control requires busses able to handle rigid jitter and timing demands including
Mechanical CAD (computer-aided design) programs have become very sophisticated during the past few years. Unfortunately, there is still a portion of the engineering spectrum that cannot be handled well in a traditional CAD program: optical modeling. If you are creating a complicated optical system (think of a camera zoom lens), then it is best to perform almost all of the design in a specialized optical design software program and then transfer the optical design to a CAD program for the later stages of the design process where items like housings, threads, cams, and motors are designed and integrated into the model
Items per page:
1 – 50 of 133