Browse Topic: Manifolds
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
The evolution of materials technology has provided in recent decades the replacement of the raw material of many parts made of metal by polymers, carbon fibers, ceramics, and composite materials. This process has been driven by the permanent need to reduce weight and costs, which, even after replacing raw materials, still demand permanent improvement and optimization in the sizing process and in the manufacturing process. In the automotive industry, many components have been replaced by fiber-reinforced polymers, from finishing parts to structural components that are highly mechanically stressed and often also subjected to high temperatures. Although they are lighter and have a lower final cost than conventional metallic parts, components made of fiber-reinforced polymers bring great technological challenges to the development project. Within this context, computational modeling is an indispensable ally for obtaining a product capable of meeting the severe conditions required for its
The charge air cooler (CAC), which is placed between the compressor and the engine intake manifold (IM), is an important component in a turbocharged engine. It is essential to capture the temperature change, the pressure drop or the acoustical wave behavior of the charge air cooler in the one-dimensional(1D) simulation model for the predictive accuracy of engine performance and intake noise. In this paper, the emphasis is on the acoustic modeling of an intake manifold and charge air cooler assembly for the low frequency engine intake order noise. In this assembly, the core of the charge air cooler is embedded in the plenum of the intake manifold. The modeling and correlation process is comprised of three steps. First, the charge air cooler core is removed from the intake manifold and put into a rectangular box matching its envelope with a single air inlet and outlet, thereby simplifying the complex shape of the manifold with the different runner components. The acoustic transmission
A large quantity of fuel is injected into the cold manifold of the engine to enable a quick start. A substantial part of this fuel gets deposited on the manifold walls leading to the formation of a fuel pool. Improper fuel vaporization during the engine cold start leads to the formation of a large amount of HC emissions. In the present investigation, a small flexible polyamide strip heater was placed at a specific location where the fuel impingement happens to enhance fuel vaporization in a 4-stroke motorcycle engine. The heater was turned on 20 seconds before the engine started. A temperature controller was used to maintain the heater at 323 K. The emission data for 180 seconds from the engine start was measured. Initial tests were carried out without the heater to establish the baseline emissions. Later, tests were carried out with the heater switched on and compared. The results showed a 32 % reduction in cumulative HC emissions with the use of the heater. Additionally, it was also
Light weighting in modern automotive powertrains call for use of plastics (PP, PA66GF35) for cam covers, intake manifolds and style covers, and noise encapsulation covers. Conventionally, in early stage of design these components are evaluated for static assembly loads & gasket compression loads at component level. However, engine dynamic excitations which are random in nature make it challenging to evaluate these components for required fatigue life. In this paper, robust methodology to evaluate the fatigue life of engine style cover assembly for random vibration excitations is presented. The investigation is carried out in a high power-density 4-cylinder in-line diesel engine. The engine style cover (with Polyurethane foam) is mounted on cam cover and the intake manifold using steel studs and rubber isolators to suppress the radiated noise. The style cover mounting ribs experience higher dynamic bending stresses due to the overhang of the mounting bosses from cam cover and intake
Items per page:
50
1 – 50 of 1337