Browse Topic: Superchargers

Items (298)
ABSTRACT VanDyne SuperTurbo Inc. has recently completed Phase I of an Army SBIR project entitled “Diesel Waste Heat Recovery Utilizing a SuperTurbocharger”. The project focused on modeling a SuperTurbocharger for a specific Army application and evaluating the potential benefits from a single device capable of supercharging, turbocharging and turbocompounding. The modeling effort resulted in predicted efficiency gains from both air flow management and mechanical waste heat recovery. Additionally, the modeling program revealed additional engine power available that was inaccessible with the engine’s current turbocharged configuration. This paper will cover the fundamentals of the technology, the Phase I engine modeling results and the path forward for the Phase II prototype testing project
VanDyne, EdWaldron, Thomas
ABSTRACT The need for current and future military vehicles to include more powerful and efficient powertrains is critical to both improving operational performance and reducing logistical burden. VanDyne SuperTurbo Inc. is working jointly with TARDEC and OEM partners to develop and field a revolutionary technology that simultaneously increases available engine power and reduces overall fuel consumption. The ability to incorporate efficient supercharging will allow vehicles to accelerate faster in combat situations and accept a heavier load. The ability to mechanically recover waste heat energy will allow vehicles to improve their operational range and reduce the Class III supply chain. SuperTurbo technology additionally reduces visible soot emissions and is transferable to gensets and other equipment. The end result of fielding this kind of capability will be a force protection multiplier that equips the warfighter with better performing systems
Waldron, ThomasVanDyne, EdBrown, Jared
ABSTRACT A sudden increase in microgrid electrical power consumption requires the fast supply of energy from different generating sources to guarantee microgrid voltage stability. This paper presents the results of simulations investigating the integration of an electric supercharger into a Heavy Duty Diesel (HDD) genset connected to a microgrid for reducing engine speed droop in response to an abrupt power demand requested from the grid. First, a mean value model for the 13 L HDD engine is used to study the response of the baseline turbocharged engine during a fast load increase at low engine speed. The limited air mass in the cylinder during the transient results in engine lugging and ultimately engine stall. Then, an electrical supercharger is integrated before the turbocharger compressor to increase the engine air charge. During steady state operation, the simulation results indicate that the supercharger is able to increase the air-charge by approximately 50% over the lower half
Salehi, RasoulMartz, JasonStefanopoulou, AnnaRizzo, DeniseMcGrew, DeanHansen, Taylor
The fast acceleration of GHG (CO2 in particular) emitted by human activities into the atmosphere is accelerating the average temperature increase of our globe causing heavy climate change. This phenomenon has triggered a strong pressure on GHG emission reduction in all the human activities including the transportation sector which contributes for the 29% to the total emissions in EU [1]. A mitigation to this tendency can come from synthetic fuels: when produced by using clean energy, they can be considered CO2 neutral. H2 is the building block of synthetic fuels and can be used in spark ignited engines where releases the energy accumulated during its production. This solution is particularly attractive for HD applications thanks to the high energy density. H2 can be burned in a quite wide range of λ, but staying on 2,2 the amount of engine out NOx will be low enough for the use on a 13L engine with a relatively simple aftertreatment system. This λ value is difficult to maintain in the
Andrisani, NicolaBagal, Nilesh
The combustion timing of auto-ignited combustion is determined by composition, temperature, and pressure of cylinder charge. Thus, for a successful auto-ignition, those key variables must be controlled within tight target ranges, which is challenging due to (i) nature of coupling between those variables, and (ii) complexity of managing multiple actuators in the engine. In this article, a control strategy that manages multiple actuators of a boosted homogeneous charge compression ignition (HCCI) engine is developed to maintain robust auto-ignited combustion. The HCCI engine being considered is equipped with multiple boosting devices including a supercharger and a turbocharger in addition to conventional actuators and sensors. Since each boosting device has its own pros and cons, harmonizing those boosting devices is crucial for successful transient operation. To address the multi-variable transient control problem, speed-gradient control methodology is applied to minimize coupling
Kang, Jun-Mo
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed. The dynamic effects of diesel engine intake boost pressure, rotated speed, and intake pipe geometrical
Yang, ShuaiYan, KaiLiu, HaifengFu, YahaoLiu, HairanLi, Tong
The two-stroke engine has a small displacement and high output, and therefore saves space when the engine is installed in a vehicle. Thus, the application of two-stroke engines to HEVs is a very effective means of reducing vehicle weight and securing engine space. On the other hand, the unfired element increases in the exhaust gas with a two-stroke engine because the air-fuel mixture is blown through to the exhaust system during the scavenging process inside the cylinder. Moreover, combustion becomes unstable due to the large amount of residual burnt gas in the cylinder. To solve these problems, we propose a two-stroke engine that has intake and exhaust valves that injects fuel directly into the cylinder. We describe the engine shape and the method that can provide high scavenging efficiency and stable combustion in such a two-stroke engine
Hisano, AtsushiSaitou, MasahitoSakurai, YotaMatsuda, Yoshimotoichi, Satoaki
The paper presents a preliminary study on a virtual 2-stroke 3-cylinder 0.9 L DI SI supercharged engine running on Hydrogen (H2), able to meet both high performance targets and ultra-low emissions limits (NOx<20 ppm). Combustion is similar to a conventional 4-stroke H2 DI engine, while the design of the cylinder and the actuation law of both intake and exhaust valves are specifically optimized for the 2-stroke cycle. In comparison to a more conventional 2-stroke loop scavenged engine, with piston-controlled ports, the use of poppet valves enables a more flexible control of the gas exchange process and to maintain the same design of a 4-stroke engine for pistons, cylinders block, crankcase and lubrication system. On the other hand, it is more difficult to avoid the short-circuit of the fresh charge, while permeability of the valves becomes quite critical at high engine speed. Therefore, particular care was devoted to the optimization of the intake and exhaust ports geometry, as well as
Caprioli, StefanoVolza, AntonelloMattarelli, EnricoRinaldini, Carlo Alberto
The need for a quick reduction in greenhouse gasses and noxious emissions is pushing maritime transportation to increase the use of alternative fuels. Natural Gas (NG) is well recognized as an effective solution to limit the use of marine diesel oil in the short/mid-term. In this scenario, dual-fuel technology is used to enable a conventional diesel engine to operate with a share of gaseous fuel while retaining the capability to run in full diesel mode. Dual-fuel (DF) engines allow the use of natural gas, or biomethane from renewable sources, as the main fuel, with advantages over CO2, SOx and PM emissions with the same levels of NOx. This paper presents an experimental study investigating the effects of the diesel injection strategy on performance and emissions of a dual-fuel, single-cylinder, large bore, 4-stroke engine for marine applications. The engine is equipped with an external supercharging system; NG is injected in the port, while a Common Rail system injects the diesel pilot
De Simio, LuigiIannaccone, SabatoPennino, VincenzoMarchitto, Luca
In this study, a numerical model validation of the supercharged homogeneous charge compression ignition (HCCI) engine, whose experimental studies at 100, 110, 120, 130, 140, 150, and 160 kPa pressures, was carried out using Converge CFD program. After validation, the in-cylinder pressure, heat release rate (HRR), and maximum pressure rise rate (PRRmax) of a fully HCCI engine and an early direct injection HCCI engine were compared numerically at different supercharger pressures. According to the comparison results, it was observed that the cylinder pressure increased and the maximum in-cylinder pressure point advanced with the increase of the supercharge pressure in the fully homogeneous and early direct injection mode. In the early direct injection system, it was observed that the maximum pressure was lower than the results obtained in fully homogeneous conditions, especially at high manifold absolute pressure (MAP) values. In both modes, it was determined that with increasing
Polat, SeyfiBulut, AhmetAkbulut, FurkanEroğlu, Tuba Neslihan
Conventional 2-Stroke Spark Ignition engines are characterized by very high power to weight ratios and low manufacturing costs, but also by very low thermal efficiencies and high pollutant emissions. The last issues can be fully addressed by adopting an external scavenging pump and a direct or semi-direct injection system. The implementation of these solutions requires a strong support from CFD simulations, in particular for the optimization of air-fuel mixing and combustion. The paper presents a theoretical study on a new 2-Stroke, three cylinders, 1.3 L, Spark Ignition engine for light aircraft. The power-unit also includes an electric motor connected in parallel with the thermal engine. The latter features a supercharger and a two-stage injection system, made up of a set of low-pressure fuel injectors installed on the transfer ports, and a high-pressure gasoline injector on the cylinder head. While a previous paper [1] describes the general design guidelines and the overall
Scrignoli, FrancescoMattarelli, EnricoRinaldini, CarloSavioli, Tommaso
Mass-production single-cylinder engines are generally not turbocharged due to pulsated exhaust flow. Hence, about one-third of the fuel chemical energy is wasted in the engine exhaust. To extract the exhaust energy and boost the single-cylinder engines, a novel supercharging with a turbo-compounding strategy is proposed in the present work, wherein an impulse turbine extracts energy from the pulsated exhaust gas flow. Employing an impulse turbine for a vehicular application, especially on a single-cylinder engine, has never been commercially attempted. Hence, the design of the impulse turbine assumes higher importance. A nozzle, designed as a stator part of the impulse turbine and placed at the exhaust port to accelerate the flow velocity, was included as part of the layout in the present work. The layout was analyzed using the commercial software AVL BOOST. Different nozzle exit diameters were considered to analyze their effect on the exhaust back pressure and engine performance. A
Ramkumar, JKrishnasamy, AnandRamesh, A
Single-cylinder engines in mass production are generally not turbocharged due to the pulsated and intermittent exhaust gas flow into the turbocharger and the phase lag between the intake and exhaust stroke. The present work proposes a novel approach of decoupling the turbine and the compressor and coupling them separately to the engine to address these limitations. An impulse turbine is chosen for this application to extract energy during the pulsated exhaust flow. Commercially available AVL BOOST software was used to estimate the overall engine performance improvement of the proposed novel approach compared to the base naturally aspirated (NA) engine. Two different impulse turbine layouts were analyzed, one without an exhaust plenum and the second layout having an exhaust plenum before the power turbine. The merits and limitations of both layouts are compared in the present study. An optimum nozzle area ratio of 50% for the first layout was arrived, which provided better net engine
Ramkumar, JKrishnasamy, AnandRamesh, A
Engine downsizing is one the most common methods of coping with strict emission regulations. However, it must be coupled with complementary systems so that the engine performance would meet the standards. That is why new efficient solutions can pave the way toward this goal. The electric forced-induction system (EFIS) is the emerging replacement for conventional forced-induction systems (FIS), namely, turbochargers and superchargers. The reason behind this replacement is the drawbacks associated with FIS, among them are turbo lag and inefficiency in exhaust gas energy recycling. Electrically split turbocharger (EST) is a form of EFIS which offers a great potential for engine downsizing. In this paper, a new approach to EST utilization for lowering the fuel consumption (FC) without compromising performance has been introduced, through which the augmented degree of freedom enabled by an EST is used to optimize the air-charge boosting. To show the effectiveness of the proposed method, a
Kouhyar, FarzadNikzadfar, Kamyar
Despite the advantages of turbocharging in improved engine performance and reduced exhaust emissions, commercial single-cylinder engines used for automotive applications remain naturally aspirated (NA) and are not generally turbocharged. This is due to the shortcomings with pulsated and intermittent exhaust gas flow into the turbine and the phase lag between the intake and exhaust stroke. In the present study, experimental investigations are initially carried out with a suitable turbocharger closely coupled to a single-cylinder diesel engine. Results indicated that the engine power dropped significantly by 40% for the turbocharged engine compared to the NA version even though the air mass flow rate was increased by at least 1.5 times with turbocharging. A novel approach of decoupling the turbine and the compressor and coupling them separately to the engine is proposed to address these limitations. Also, an impulse turbine is chosen for this application, better suited to extract energy
Ramkumar, JKrishnasamy, AnandRamesh, A
The supercharged spark ignition engine with direct fuel supply system in cylinder (SI engine) has a problem on abnormal combustion at low engine speed. It is called the LSPI (Low Speed Pre-Ignition)[1]. This research focuses on one of the source of abnormal combustion which is the autoignition of lubricating oil from piston crown in cylinder, here especially, frequency of autoignition in cylinder[2,3,4]. In this experiment, the test engine operates without spark ignition as motoring operation. The advantage of this method is to avoid the effect of gasoline dilution[5,6]. Namely, it is able to reveal the essence of abnormal combustion experimentally. The 2 kinds of lubricating oil are tested. The measured data show that the frequency of autoignition in this research is 1/10 of that of lubricating oil scattering from piston crown. The abnormal combustion occurs the frequency of 1 time in each 10000 cycles approximately. The special behavior of the LSPI has been measured. The autoignition
Seto, AkiraKuwae, YukaTanaka, Junya
Waste Heat Recovery is one of the major opportunities to increase the engine efficiency in internal combustion engines (ICE) for the transportation sector and to meet the emissions targets. ORC-based units are widely investigated, in particular for heavy duty vehicles and light commercial ones. However, when a typical operation of the ICE on a vehicle is considered, working temperature and exhaust flow rates are not always suitable for recovery, being characterized by low-grade enthalpy. Volumetric expanders are among the most suitable technological solutions for small scale ORC-based power units, but they can suffer of low efficiency in real operation. A way to improve its performances is represented by a supercharging technique, which involves a further intake port. Indeed, keeping constant the mass flow rate provided by the pump, the dual-intake expander produces a reduction of the intake pressure with a mechanical power similar to the single intake machine, thanks to a higher
Di Battista, DavideFatigati, FabioDI BARTOLOMEO, MarcoCipollone, Roberto
The supercharged spark ignition engine (SI engine) has a problem of abnormal combustion. It is called Low Speed Pre-ignition (LSPI). The lubricating oil which has a tolerance for LSPI has been introduced already in automobile market nowadays. However, cause and mechanism of LSPI does not clear sufficiently. It has been reported that the peculiar behavior of LSPI corresponded with behavior of lubricating oil from piston crown [1, 2]. This paper focuses on effect of fuel ingredients on autoignition of a lubricating oil droplet about LSPI. On the ignition source point of view, it is important to clear the mechanism of a lubricating oil droplet autoignition in cylinder. This paper will be tried to clear its mechanism fundamentally by using of electric furnace which is heated an oil droplet. As a result, the activation energy E is found for quantitative evaluation of ignition sauce of LSPI. The experimental data which is heated a lubricating oil droplet by electric furnace show
Sato, YutaTanaka, Junya
To meet the requirements of sustainable development, car environmental impacts must be assessed at all stages of its life: from designing, through its manufacture and use, to its recycling after use. Life-cycle assessment (LCA) makes it possible. This approach to environmental assessment is necessary, particularly in assessment of new technologies of electric powertrain, where most environmental impacts are shifted from the use stage to production. Reliable and possibly the most recent data are required on materials and production processes to develop a valid flow model. Ecoinvent inventory database is a commonly used source of reliable data. However, Ecoinvent provides data about Golf 4 (1,240 kg), a compact class car. The ratio of glider and drivetrain is therefore optimized for that class. Using the dataset for other vehicle classes by simply considerably increasing or decreasing the total vehicle mass may lead to imprecise results. There is no mathematical relationship that would
Mrozik, MałgorzataDanilecki, KrzysztofEliasz, Jacek
A 2-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine was researched and developed at Brunel University London to achieve higher power-to-mass ratio and thermal efficiency. In the BUSDIG engine concept, the intake scavenge ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head. Systematic studies on scavenging ports, intake plenum, piston design, valve opening profiles and fuel injection strategies have been performed to investigate and optimise the scavenging performance and in-cylinder fuel/air mixing process for optimised combustion process. In order to achieve superior power performance with higher thermal efficiency, the evaluation and optimisation of the boost system for a 1.0 L 2-cylinder 2-stroke BUSDIG engine were performed in this study using one dimensional (1D) engine simulations. The results show that the engine exhaust valve opening (EVO) timing and exhaust
Wang, XinyanZhao, Hua
Although supercharged system has been widely employed in downsized engines, the effect of supercharging on the intake flow characteristics remains inadequately understood. Therefore, it is worthwhile to investigate intake flow characteristics under high intake pressure. In this study, the supercharged intake flow is studied by experiment using steady flow test bench with supercharged system and transient flow simulation. For the steady flow condition, gas compressibility effect is found to significantly affect the flow coefficient (Cf), as Cf decreases with increasing intake pressure drop, if the compressibility effect is neglected in calculation by the typical evaluation method; while Cf has no significant change if the compressibility effect is included. Compared with the two methods, the deviation of the theoretical intake velocity and the density of the intake flow is the reason for Cf calculation error. For the transient intake condition, such increase of intake flow velocity with
Feng, YizhuoLu, ZhenWang, TianyouCai, JunqianWei, PengfeiLi, Yufeng
This article presents experimental results obtained with a disruptive engine platform, designed to maximize the engine efficiency through a synergetic implementation of downsizing, high compression-ratio, and importantly exhaust-heat energy recovery in conjunction with advanced lean/dilute low-temperature type combustion. The engine architecture is a supercharged high-power output, 1.1-liter engine with two-firing cylinders and a high compression ratio of 13.5: 1. The integrated exhaust heat recovery system is an additional, larger displacement, non-fueled cylinder into which the exhaust gas from the two firing cylinders is alternately transferred to be further expanded. The main goal of this work is to implement in this engine, advanced lean/dilute low-temperature combustion for low-NOx and high efficiency operation, and to address the transition between the different operating modes. Those include well-mixed charge compression-ignition at low-load, and a mixed-mode combustion at
Dernotte, JeremieNajt, Paul M.Durrett, Russell P.
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft
Yao, YeShi, LeiZhang, ZheXiao, MaoyuLiu, MingweiTan, Jianwei
In order to meet the CO2 emission reduction targets, downsizing coupled with turbocharging has been proven as an effective way in reducing CO2 emissions while maintaining and improving vehicle driveability. As the downsizing becomes widely exploited, the increased boost levels entail the exploration of dual stage boosting systems. In a context of increasing electrification, the usage of electrified boosting systems can be effective in the improvement of vehicle performances. The aim of this work is therefore to evaluate, through numerical simulation, the impact of different voltage (12 V or 48 V) electric superchargers (eSC) on an extremely downsized 1.0L engine on vehicle performance and fuel consumption over different transient manoeuvres. The virtual test rig employed for the analysis integrates a 1D CFD Fast Running Model (FRM) engine representative of a 1.0L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, an electric network (12 V or 48 V
Zanelli, AlessandroMillo, FedericoBarbolini, Marco
The demanding CO2 emission targets are fostering the development of downsized, turbocharged and electrified engines. In this context, the need for high boost level at low engine speed requires the exploration of dual stage boosting systems. At the same time, the increased electrification level of the vehicles enables the usage of electrified boosting systems aiming to exploit the opportunities of high levels of electric power and energy available on-board. The aim of this work is therefore to evaluate, through numerical simulation, the impact of a 48 V electric supercharger (eSC) on vehicle performance and fuel consumption over different transients. The virtual test rig employed for the analysis integrates a 1D CFD fast running engine model representative of a 1.5 L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, a dual voltage electric network (12 V + 48 V), a six-speed manual transmission and a vehicle representative of a B-SUV segment car. The
Zanelli, AlessandroMillo, FedericoBarbolini, MarcoNeri, Luca
Small single & two cylinder diesel engines, still have primitive technical design features and extensively used in India and various Asian countries to power small and light motor vehicles viz., three wheelers, light duty four wheelers. These vehicles have become inevitable for the transport for both urban and rural areas. Vehicles with small single & two cylinder engines have high market demand in commercial transport due to restrictions on entry of Heavy Commercial Vehicles (HCV) in congested cities roads. Due to ever rising market demand for higher power and torque requirement along with better fuel economy, vehicle manufacturer are developing high Brake Mean Effective Pressure (BMEP) engines or replacing single cylinder engine by two cylinder engine, similarly two cylinder engine by three cylinder engines. Further, these engines should meet the present and forthcoming stringent emission limits. Single cylinder and two cylinder small diesel engines are widely used in various
Bhat, PrasannaPawar, NarendraNarwade, DadaraoNalawade, SantoshGayen, Hirak JyotiMarathe, NeelkanthChopane, Sanjay Parshuram
This document discusses formulae considered applicable to aircraft engines having integral supercharging without aftercooling, and using gasoline introduced at the entrance to the supercharger or directly into the cylinders. Such engines are normally designated as single and two speed engines. Correction formulae for engines having two stage or exhaust turbo supercharging will not be discussed. Corrections for engines having a high degree of integral supercharging will be discussed in general terms only and no specific formulae will be presented. The correction formulae and methods listed are empirical and subject to error due to conditions beyond the scope of known corrections. Usage has indicated, however, that the correction formulae listed will provide a satisfactory approximation of power output under standard conditions
E-25 General Standards for Aerospace and Propulsion Systems
This document lists definitions that are commonly used in describing aircraft reciprocating engine performance
E-25 General Standards for Aerospace and Propulsion Systems
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR). The fully dynamic drive cycle results are compared
Nazari, ShimaMiddleton, RobertSugimori, KanjiSiegel, JasonStefanopoulou, Anna
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented. It is shown
Bharath, Anand NageswaranReitz, RolfRutland, Christopher
MAHLE has developed a heavily downsized demonstrator engine to explore the limits, and potential benefits, of engine downsizing. The 1.2 litre, 3-cylinder, MAHLE downsizing (Di3) engine, in conjunction with an Aeristech 48 V electric supercharger (eSupercharger, eSC), achieves a BMEP level of 35 bar and a specific power output in excess of 160 kW/litre. The eSupercharger enables high specific power output, good low speed torque and excellent transient response. The resulting heavily downsized engine has been installed into a demonstrator vehicle that also features 48 V mild hybridization. At specific power output levels above 90 kW/litre the engine is operated with excess fuel in order to protect the turbine from excessive exhaust gas temperatures. In this analytical study, the boosting system requirements to maintain lambda 1 fuelling, via the use of EGR, across the entire engine operating map for the eSupercharged version of the MAHLE Di3 engine, have been explored. It has been found
Bassett, MikeVogler, ChristianHall, JonathanTaylor, JamesCooper, AdrianReader, SimonGray, KevinWall, Richard
This paper provides insight into the tradeoffs between exhaust energy recovery and increased pumping losses from the flow restriction of the electric turbo-generator (eTG) assessed using thermodynamic principles and with a detailed GT-Power engine model. The GT-Power engine model with a positive displacement expander model was used to predict the influence of back pressure on in-cylinder residuals and combustion. The eTG is assessed for two boosting arrangements: a conventional turbocharger (TC) and an electrically assisted variable speed (EAVS) supercharger (SC). Both a low pressure (post-turbine) and high pressure (pre-turbine) eTG are considered for the turbocharged configuration. The reduction in fuel consumption (FC) possible over various drive cycles is estimated based on the steady-state efficiency of frequently visited operating points assuming all recovered energy can be reused at an engine efficiency of 30% with 10% losses in the electrical path. On the city FTP and US06
Kiwan, RaniMiddleton, RobertStefanopoulou, Anna
Superchargers are engine driven positive displacement devices which increase the air mass flow into the engine, thereby leading to a better combustion efficiency. This gives an advantage of extracting more power from the same engine [1], thereby reducing emissions and achieving a better fuel economy [2]. With emission norms getting more and more stringent, the need for boosting engine intake air becomes very important [3]. There are many types of superchargers based on design [4], out of which, the roots-type positive displacement supercharger, is discussed in here. A 1-dimensional model of supercharger gives flexibility of choosing the right aspect ratio (length to the diameter of the rotor), deciding on the clearances (a tradeoff between volumetric efficiency and manufacturing capabilities) and arriving at the inlet and discharge port dimensions. The dependency of the above parameters on mass flow rate of air and volumetric efficiency of the supercharger can be studied in good depth
S, PradhanP. K., Jeemon
Items per page:
1 – 50 of 298