Browse Topic: Turbochargers
ABSTRACT A sudden increase in microgrid electrical power consumption requires the fast supply of energy from different generating sources to guarantee microgrid voltage stability. This paper presents the results of simulations investigating the integration of an electric supercharger into a Heavy Duty Diesel (HDD) genset connected to a microgrid for reducing engine speed droop in response to an abrupt power demand requested from the grid. First, a mean value model for the 13 L HDD engine is used to study the response of the baseline turbocharged engine during a fast load increase at low engine speed. The limited air mass in the cylinder during the transient results in engine lugging and ultimately engine stall. Then, an electrical supercharger is integrated before the turbocharger compressor to increase the engine air charge. During steady state operation, the simulation results indicate that the supercharger is able to increase the air-charge by approximately 50% over the lower half
Today, advancements in industrial laser cleaning automation show great promise in boosting productivity and safety when rust and contaminant removal or surface preparation is required for higher volumes of components and equipment
The combustion timing of auto-ignited combustion is determined by composition, temperature, and pressure of cylinder charge. Thus, for a successful auto-ignition, those key variables must be controlled within tight target ranges, which is challenging due to (i) nature of coupling between those variables, and (ii) complexity of managing multiple actuators in the engine. In this article, a control strategy that manages multiple actuators of a boosted homogeneous charge compression ignition (HCCI) engine is developed to maintain robust auto-ignited combustion. The HCCI engine being considered is equipped with multiple boosting devices including a supercharger and a turbocharger in addition to conventional actuators and sensors. Since each boosting device has its own pros and cons, harmonizing those boosting devices is crucial for successful transient operation. To address the multi-variable transient control problem, speed-gradient control methodology is applied to minimize coupling
The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage. One such fluid is the condensed water in the low-pressure exhaust gas recirculation channel (LP-EGR) formulated at cold
The 2025 Kia Carnival MPV is acquiring a hybrid powertrain as part of the minivan's model year update that debuted at the Chicago Auto Show. The internal-combustion engine option remains the 3.5-L V6 GDI seen in the current Carnival and produces 287 hp and 260 lb-ft (353 Nm) that powers the front wheels through an 8-speed automatic transmission. Engine power is down slightly from the output of the V6 in the 2024 model (290 hp and 262 lb-ft [355 Nm]). It's the addition of an electric motor to the new hybrid model where things get interesting. The hybrid Carnival uses a 1.6-L turbocharged 4-cyl. and a 54 kW motor that produce a combined 242 hp and 271 lb-ft (367 Nm). The Carnival Hybrid MPV uses a 6-speed automatic transmission. Improved fuel economy is one reason for the new hybrid option. While Kia doesn't yet have official EPA estimates, a spokesperson told SAE Media that the target is 32 mpg combined. The current ICE-only Carnival gets 22 mpg
Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines. Drawing on a comprehensive review of prior research endeavors, this study presents a meticulous summary of the
The new 2600 Series 13-liter engine for off-highway machines will do more with less thanks to variable geometry turbocharging. Perkins announced in September its all-new engine series for off-highway applications, launching the 2600 Series 13-liter engine at a press event in London where Truck & Off-Highway Engineering was in attendance. Perkins states that the 2600 Series is intended for a wide array of off-highway applications including agricultural tractors, materials handling, construction, mining, aircraft ground support and other use cases. “As the off-highway industry advances toward a lower-carbon future, equipment manufacturers still face expectations for long-term productivity and reliability in the world's most-demanding work environments,” said Jaz Gill, vice president of global sales, marketing, service and parts. “The new Perkins 2600 Series engine platform demonstrates how we're leveraging our experience, intelligence and commitment to help OEMs navigate the energy
Cummins announced its seventh-generation series HE250 and HE300 waste-gate turbochargers for medium displacement on- and off-highway commercial engines. The turbos are sized for 5.5- to 8-liter medium-duty diesel engines and 8- to 11-liter natural-gas engines. Cummins states that the HE250 and 300 were designed to meet the global emissions regulations from 2024 onwards including the upcoming China Stage IV FE 2024, NSVII 2026 and Euro VII 2027. Cummins claims significant improvements in performance and durability compared to the outgoing models. Both turbos reportedly offer a 6-7% gain in overall efficiency as well as enhanced low-speed performance, which translates to additional low-end torque and better compatibility with engine start/stop systems
Ford's seventh-generation Mustang is continuing the tradition of improving the breed with each iteration. While the changes under the skin may seem incremental, the 2024 Mustang has been bred to deliver an even higher level of performance. The engines from the previous pony have been carried forward, with the 2.3-L EcoBoost 4-cyl. serving as the base powerplant and the 5.0-L Coyote V8 continuing as the GT's mill. The EcoBoost I-4 remains SAE-rated at 315 horsepower at 5,500 rpm and 350 lb-ft. (475 Nm), which matches the outgoing entry-level Mustang's output. However, there have been some significant hardware changes to the ancillaries and engine internals
Diesel engines operated at high altitudes would experience performance degradation due to the fuel-air amount mismatch, resulting in combustion deterioration. Technologies that supplement oxygen concentration, such as intake oxygen enrichment, turbocharging and the addition of oxygenated fuel additives, can help restore performance at high altitudes, but each has its own limitations Operating diesel engines at high altitudes still generates extremely lean fuel-air mixtures, making the improved utilization of excess air the most economically efficient approach to optimize engine performance under such conditions. The objective of this paper is to investigate the effects of injector nozzle-hole numbers on diesel engines operated at high altitudes, a topic that has been limitedly discussed in existing literature, with the aim of enhancing understanding regarding the potential of this cost-effective approach and aiding in the design of a cooperative approach between oxygen concentration
Items per page:
50
1 – 50 of 1264