Browse Topic: Pistons
The larger domain of surface texture geometry and other input variables related to engine operation, i.e., elevated temperature, has remained to be studied for finding suitable surface texture for real-time engine operations. In previous efforts to find suitable surface texture geometry and technique, the tribological performance of the piston material (Al4032) with dimples of varying diameters (90 to 240 μm) was evaluated under mixed and starved lubrication conditions in a pin-on-disk configuration. The disc was textured using a ball nose end mill cutter via conventional micromachining techniques. The area density and aspect ratio (depth to diameter) of the dimples were kept constant at 10% and 1/6, respectively. SAE 20W-40 oil was used as a lubricant with three separate drop volumes. The experiments were conducted in oscillating motion at temperatures of 50, 100 and 150°C. Conventional micromachining achieved improved dimensional precision and minimized thermal damage. Textured
ABSTRACT This paper details the exploration of oil jet piston cooling phenomenon with a focus on heat transfer from the diesel engine piston to the oil. Several numerical methods based on computational fluid dynamics (CFD) and conjugate heat transfer (CHT) were developed to resolve key aspects of piston oil cooling. These methods aim to establish and characterize the flow and heat transfer regimes that are inherent to the piston gallery cooling system, and to assist in quantifying the piston heat transfer and establish its dependence on a number of parameters related to the engine layout and performance, the oil cooling system, and the cooling gallery contained within the piston. Telemetry experimental data from a single-cylinder diesel engine was used to better understand the piston cooling system and to develop and validate modeling and simulation approaches. The combined findings offer a foundation for further study of oil jet piston cooling. Citation: A. Grunin. V. Korivi, “Oil
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs. Additionally, optimizing injection parameters, adopting a constant pressure delivery valve, and fine-tuning injection timing mitigated lignin deposit formation related to incomplete combustion or spray tip penetration to the cylinder
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine. A new combustion chamber was designed based on a commercial 11-liter natural gas
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work. This finding suggests that a DFI retrofit for this
There is no ISO standard equivalent to this SAE Standard. This SAE Standard identifies and defines the most commonly used terms for piston ring-groove characteristics, specifies dimensioning for groove widths, and demonstrates the methodology for calculation of piston groove root diameter. The requirements of this document apply to pistons and rings of reciprocating internal combustion engines and compressors working under analogous conditions, up to and including 200 mm diameter and 4.5 mm width for compression rings and 8.0 mm width for oil rings. The specifications in this document assume that components are measured at an ambient temperature of 20 °C (68 °F). Tolerances specified in this document represent practical functional limits and do not imply process capabilities
This document covers the mechanisms from the power cylinder, which contribute to the mechanical friction of an internal combustion engine. It will not discuss in detail the influence of other engine components or engine driven accessories on friction
With the constant strive towards increase in performance and corresponding stringent emission standards of modern IC engine, engine components such as the head, block and piston are subjected to higher thermal loads. An integrated simulation methodology is proposed where the head, the block and the piston are integral part of the analysis. The CFD – CHT methodology is used to simulate and predict the temperature of these engine components. The head and block are run in a steady-state conjugate heat transfer framework while the transient multiphase volume of fluid approach is used to determine piston temperatures. Combustion surfaces boundary conditions are derived from 3D CFD open-loop combustion simulation, while cooling and lubrication surface boundary condition are mapped from 1D system simulation or experimental data. The heat transfer boundary conditions are exchanged between the two simulations. The temperature field obtained from simulation is used further as input to perform
With the constant strive towards increase in performance and corresponding stringent emission standards of modern IC engine, engine components such as the head, block and piston are subjected to higher thermal loads. An integrated simulation methodology is proposed where the head, the block and the piston are integral part of the analysis. The CFD – CHT methodology is used to simulate and predict the temperature of these engine components. The head and block are run in a steady-state conjugate heat transfer framework while the transient multiphase volume of fluid (VOF) approach is used to predict piston temperatures. Combustion surfaces boundary conditions are derived from 3D CFD open-loop combustion simulation, while cooling and lubrication surface boundary condition are mapped from 1D system simulation or experimental data. The heat transfer boundary conditions are exchanged between the two simulations. The temperature field obtained from simulation is used further as input to
Photochromism is a reversible color change phenomenon based on chemical reactions caused by light illumination. In the present study, this technique is applied to visualize the lubricating oil and fuel around the piston rings in the gasoline engine. The oil film was colored with a UV laser and photographed by synchronizing the shutter of a high-speed camera with a flashlight. The color density was evaluated as a value of absorbance, calculated from images taken at two different wavelengths and two different times before and after the coloration. The authors performed photochromism visualization experiments in an engine under motored operation. However, using photochromic dyes that are robust to temperature changes makes it possible to visualize the engine under fired operation. The experiment was conducted mainly by switching to the motored operation for a fixed time between the fired operations. The visualization results showed that during the motored operation, lubricating oil
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures. The model was then applied to a
Items per page:
50
1 – 50 of 3782