Browse Topic: Crankcases

Items (617)
The objective of this study is to investigate the root cause of cracks detected in the Turbocharger bracket belonging to the engine Mercedes-Benz OM471 (Power: 390kW, Torque: 2600Nm) from Vehicle Truck Mercedes-Benz Actros 2651LS 6x4 Euro V. The investigation started with the instrumentation of every related component (besides the bracket itself, the charge air pipe, the exhaust pipe and also the crankcase for reference) in order to perform a vibration measurement. The necessary equipment to execute this procedure, included accelerometers, temperature sensors, strain gages and an inductive engine speed sensor. All data had to be acquired directly from real application conditions in vehicle, maximum load of 74 ton in a previously defined mountain road track, due to the impossibility to generate similar results in comparison to the ones detected on road through bench tests (or any other in-door experiment). The bracket position is located on the right side of a diesel combustion engine
Feijó, Igor SommerfeldGonçalves, Carlos Aurélio Bustamante
During accelerations and decelerations of a race car whose engine has a wet sump, the forces generated by the vehicle’s motion cause the engine oil to vigorously shift towards the walls of the oil pan and crankcase, contributing to the phenomenon known as ‘sloshing.’ This phenomenon often leads to fluctuations in oil pressure, resulting in oil pressure surge, when the oil is pushed away from the pump pickup point. Via the logged data, the Formula UFSM FSAE Team had witnessed a recurrent lack of oil pressure in the race track during the 2023 Brazilian FSAE competition. In the AutoCross Event, the recurrence of this problem was 80% of the right corners on lateral accelerations between 0.80G and 1.30G. The average oil pressure in this condition was 0.80 bar, even reaching 0.10 bar above 5000 RPM. Therefore, it was necessary to develop a new set of baffles for the oil pan, capable of minimizing the effects of sloshing and, consequently, the oil surge. As a method of research, a test bench
Zimmermann, Natalia DiovanaJunior, Luiz Alfredo CoelhoMartins, MarioHausen, Roberto
Closed crankcase ventilation prevent harmful gases from entering atmosphere thereby reducing hydrocarbon emissions. Ventilation system usually carries blowby gases along with oil mist generated from Engine to Air intake system. Major sources of blowby occurs from leak in combustion chamber through piston rings, leakage from turbocharger shafts & leakage from valve guides. Oil mist carried by these blowby gases gets separated using separation media before passing to Air Intake. Fleece separation media has high separation efficiency with lower pressure loss for oil aerosol particles having size above 10 microns. However, efficiency of fleece media drops drastically if size of aerosol particles are below 10 microns. Aerosol mist of lower particle size (>10 microns) generally forms due to flash boiling on piston under crown area and from shafts of turbo charger due to high speeds combined with elevated temperatures. High power density diesel engine is taken for our study. It produces
M, VelshankarDharan R, BharaniDhadse, AshishPermude, AshokLoganathan, Sekar
Emissions regulation continually drives the automotive industry to innovate and develop. This pushes to introduce mechanism to maintain negative crankcase pressure in gas engine to meet this changing regulation. The way a turbocharger is used, to meet engine performance, can impact the pressure balance over the compressor and turbine end seals. This pressure difference can allow oil to leak through turbocharger seals. In normal engine operating condition the pressure in the turbocharger end housings is higher than the bearing housing and oil/gas flows into the bearing housing, through the oil drain to the crankcase. Under certain operating conditions, such as low idle and motoring, this pressure difference can be reversed with a higher bearing housing pressure than the pressure behind the turbine wheel. Under this condition oil will flow out of the bearing housing to the recess behind the turbine wheel, will increase the exhaust tail pipe emission, high oil consumption and damages the
R, Mahesh Bharathi
Throughout the world the efforts are being carried out to reduce the GHG emissions from transportation sector. As Volvo Group is a signatory of SBTi and having internal target of carbon neutrality by 2040, we have intensified & also diversified our R&D efforts to develop powertrains of the future having mix of conventional, various alternate fuels, electric etc. There will not be a unique solution or strategy suiting for all the markets in the world. Each market will have its own motivation & factors which OEMs need to consider while deciding the short term, midterm & long-term strategy for powertrain technology. Accordingly, OEMs must be ready with product mix suitable for all global markets. This paper will talk about the efforts taken and lessons learned during development of Hydrogen fuelled IC Engine. We used 8L Diesel IC engine as a base to convert it to Hydrogen powered IC engine, in a retrofit spirit, so that with minimum changes we could make the working prototype. This engine
Lad, Makrand RajendraNeveu, Jean MarcS, Anoop Krishna
Future demands for modern emission free drivetrains using hydrogen or liquid e-fuels also necessitate a fundamental reduction in oil emissions. Entry of lubrication oil into the combustion chamber can lead to pre-combustion phenomena (LSPI) in downsizing or hydrogen engines and is a cause of particle emissions, which play a significant role especially if fuel related particle emissions are already low. A fundamental understanding of the oil film behavior on the piston assembly and cylinder liner surface are crucial to avoid oil ingress into the combustion chamber. The processes involved take place mainly around the piston group. In particular, the area of the piston rings with the prevailing pressure and temperature conditions as well as the component geometries has a high influence on the exchange of media between the crankcase and combustion chamber. The objective of this paper is to increase the understanding of the processes leading to oil ingress into the combustion chamber. In
Stark, MichaelHärtl, MartinJaensch, MaltePreuss, Ann-ChristinPryymak, KonstantinMatz, GerhardGohl, Marcus
The mechanism of lubricant dilution by post injection fuel in a diesel engine was investigated. The operating conditions of the engine were changed, and oil was sampled from each part of the piston and the crankcase, and the dilution ratio was analyzed. Also, photochromism was used to visualize the oil and fuel flow. Dilution ratios obtained from oil sampling and photochromism showed the same tendency
Mihara, YujiHirose, YuyaOikawa, MasakuniKyuu, SeikouNakakouji, HarutoSanda, ShuzoAzetsu, AkihikoKawamoto, YukiInoue, NaokiIto, YutoOchiai, MasayukiTakahashi, Shun
The paper presents a preliminary study on a virtual 2-stroke 3-cylinder 0.9 L DI SI supercharged engine running on Hydrogen (H2), able to meet both high performance targets and ultra-low emissions limits (NOx<20 ppm). Combustion is similar to a conventional 4-stroke H2 DI engine, while the design of the cylinder and the actuation law of both intake and exhaust valves are specifically optimized for the 2-stroke cycle. In comparison to a more conventional 2-stroke loop scavenged engine, with piston-controlled ports, the use of poppet valves enables a more flexible control of the gas exchange process and to maintain the same design of a 4-stroke engine for pistons, cylinders block, crankcase and lubrication system. On the other hand, it is more difficult to avoid the short-circuit of the fresh charge, while permeability of the valves becomes quite critical at high engine speed. Therefore, particular care was devoted to the optimization of the intake and exhaust ports geometry, as well as
Caprioli, StefanoVolza, AntonelloMattarelli, EnricoRinaldini, Carlo Alberto
In comparison to aluminum, Compacted Graphite Iron (CGI) iron has superior mechanical properties, enables the use of parent bore running surfaces and fracture split main bearings, and provides advantageous NVH, package size, cost, and manufacturing CO2 profiles. Despite these advantages, aluminum blocks have leveraged density, and therefore weight, differentials to make considerable gains in the small, in-line passenger vehicle sector over the last 30 years. In order to demonstrate the potential benefits of CGI for small, in-line spark-ignition engines, the present study converted the cylinder block of a series production 1.2 litre three-cylinder engine from aluminum to CGI. Leveraging a novel design concept, with the running surface and load path constructed from high-strength CGI and the outer crankcase housing fabricated from durable, lightweight plastic, the assembled cylinder block achieved the same weight as the original aluminum block. NVH analyses showed that the global
Dawson, SteveFerrarese, AndreMarquard, Ralf
A compression ring may be a metal seal between the pistons and cylinder walls in a combustion chamber of Internal combustion engine, the important function of the compression ring is to cover the combustion area in order that there’s no movement of gases from the engine chamber to the crank case area. Supportive heat transmission from the piston to the cylinder wall helps in achieving the specified power exerted at the piston crown and efficiency of an engine. This compression ring is continuously subjected to friction and wear. To overcome or decrease the wear and tear it’s coated with certain materials which rises the lifetime of the ring. In this project we are using Chrome and Moly coated piston rings. The Coating thickness were measured using Image Analyzer. The Pin-on-Disk (POD) testing machine used to find the wear and tear rate of Chrome and Moly coated piston rings. The results obtained from the test were studied for optimum piston ring coating and found that the moly coating
Deepan Kumar, SadhasivamR, KarthikN, BoopalanS, BalakrishnanS, ArulkumarBoobalan, Saravanan
A computational study based on unsteady Reynolds-Averaged-Navier-Stokes that resolves the gas-liquid interface was performed to examine the unsteady multiphase flow in a 4 cylinder Inline (i-4) engine. In this study, the rotating motion of the crankshaft and reciprocating motion of the pistons were accounted for to accurately predict the oil distribution in various parts of the engine. Three rotational speeds of the crankshaft have been examined: 1000, 2800, and 4000 rpm. Of particular interest is to examine the mechanisms governing the process of oil drawdown from the engine head into the case. The oil distributions in other parts of the engine have also been investigated to understand the overall crankcase breathing process. Results obtained show the drawdown of oil from the head into the case to be strongly dependent on the venting strategy for the foul air going out of the engine through the PCV system. Results also show the dynamic holdup of oil in the steady operation to be
Pandey, AshutoshSchlautman, JeffNichani, Varun
This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries. The Paper also explains the necessity for gear-train layout
Telshinge, PravinPaulraj, Lemuel
This document covers the mechanisms associated with the power cylinder system which might affect blow-by. It will not discuss in detail the blow-by mechanisms from other systems or engine subsystems
Piston and Ring Standards Committee
The main drawback of an in-cylinder Low Pressure Direct Injection (LPDI) in a two-stroke engine is the difficulty of achieving a satisfactory vaporization level in low load conditions. The liquid droplets are characterized by large diameters and, when the temperature level and the velocity of the scavenging flow field are low, the time needed for the droplet vaporization and the homogenization with fresh air becomes too long to guarantee a suitable mixture formation. A transfer port injection allows a higher flexibility, due to the possibility of performing a mixed injection either directly in the cylinder or indirectly in the crank case, depending on the load request or engine speed. Also, an even lower injection pressure can be adopted with respect to an in-cylinder LPDI injection, which is relevant in case of lightweight and low power applications. On the other hand, the time available for the direct in-cylinder injection is limited to the scavenge phase. In the present work, a
Balduzzi, FrancescoRomani, LucaFerrara, GiovanniTrassi, PaoloFiaschi, Jacopo
This document describes methodologies to determine the causes of high oil consumption caused primarily by the power cylinder system
Piston and Ring Standards Committee
The article is devoted to laser interferometry technology for investigating the strain and stress state (SSS) of heat engine details and units. It is an efficient alternative to traditional technologies based on using strain gauges. It has been shown that the use of traditional technologies to experimentally investigate the SSS of heat engine complex details when using the strain gauges requires a significant amount of research and time. Thus, deploying physical effects previously not used for solving similar problems is a perspective research direction that includes laser interferometry technology. The article deals with its use to experimentally investigate the SSS of complex details, such as a crankcase block of an internal combustion engine (ICE). Laser interferometry research is based on the use of holographic interferometry, speckle photography, electronic speckle pattern interferometry, and modern methods of computer simulation. The article goes on to say that to achieve the aim
Kesariiskyi, Oleksandr G.Marchenko, AndriiGritsuk, IgorMateichyk, VasylPylyov, VolodymyrKravchenko, Serhii
Due to increasing pollution and climatic cries, newly implemented BS-VI emission norms in India have stressed the reduction of emission. For which many automobiles have been shifted to alternate fuels like CNG. Also, the Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without an increase in emissions. Crankcase blow-by gases can be an important source of particulate emission as well as other regulated and unregulated emissions. They can also contribute to the loss of lubricating oil and fouling of surface and engine components. Closed Crankcase Ventilation (CCV) or Open Crankcase Ventilation (OCV) is capable to reduce particulate emissions by removing the oil mist that is caused mainly due to blow-by in the combustion chamber. This paperwork is focused, to measure the effectiveness of the CCV and OCV systems on the engine-out emissions, primarily on the particulate emissions. A comparative analysis of these crankcase ventilation
Sutar, Prasanna Sbandyopadhyay, DebjyotiSonawane, Shailesh BalkrishnaRairikar, S DKavathekar, KishorkumarThipse, Sukrut SKale, SamirKshirsagar, Chinmay
As part of transformation from BS4 to BS6 automobile emission standard in India, engine manufactures are focusing on continuous development of emission control technologies and suitable strategies. Exhaust tail pipe emission and Crankcase emission are added together to meet the regulation acceptable limit. The crankcase emissions contribute substantially to the total Particulate Matter (PM) emitted from an engine. Hence there is a need of design and development of suitable Crankcase ventilation system. This paper presents investigation of high PM contributed from Open Crankcase ventilation (OCV) system in Diesel engine and experiment based solutions
Jayagopal, S.Mahesh.Bharathi, RSadagopan, KrishnanMahesh, PM, SathyanandanBolar, YogeshGrasius, Deepu
An afterburner-assisted turbocharged single-cylinder 425 cc two-stroke SI-engine is described in this simulation study. This engine is intended as a Backup Range Extender (REX) application for heavy-duty battery electric vehicles (BEV) when external electric charging is unavailable. The 425 cc engine is an upscaled version of a 125 cc port-injected engine [26] which demonstrated that the selected technology could provide a specific power level of 400 kW/L and the desired 150 kW in a heavy duty BEV application. The 425 cc single cylinder two-stroke engine is an existing engine as one half of a 850 cc snowmobile engine. This simulation study includes upscaling of the swept volume, impact on engine speed and gas exchange properties. In the same way as for the 125cc engine [26], the exhaust gases reaches the turbine through a tuned exhaust pipe and an afterburner or oxidation catalyst. The intent with the afterburner is to convert some of the air and hydrocarbons (HC) to heat to provide
Zander, Lennarth
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results. Cold start experiments fueled by highly volatile iso-pentane
Hu, JinghuHall, MatthewMatthews, RonMoilanen, PeterWooldridge, StevenYi, Jianwen
Design and development of high-pressure pipe involves number of design validation plans for robust design in diesel engine. The fundamental behavior of two-cylinder diesel engine with parallel stroke involves high vibration which generates stress on components mounted on crankcase resulting into earlier fatigue failure. In this paper, the innovative approach of using optimized design of vibration damper for resolving high vibration stress concerns in fuel system is discussed. The vibration dampers were designed meeting both performance and durability aspects in two-cylinder diesel engine applicable for both passenger and commercial vehicle. This paper highlights the design approach involving experimental stress measurements and design optimization based on part development feasibility. We measured the vibration stress of the complete fuel system on engine test bench as well as in vehicle chassis dyno at different loads and engine speed to confirm the existence of resonance phenomenon
Yaser, K U Syed TajSasikumar, K
Power dense internal combustion engines (ICEs) are interesting candidates for onboard charging devices in different electric powertrain applications where the weight, volume and price of the energy storage components are critical. Single-cylinder naturally aspirated two-stroke spark-ignited (SI) engines are very small and power dense compared to four-stroke SI engines and the installation volume from a single cylinder two-stroke engine can become very interesting in some concepts. During charged conditions, four-stroke engines become more powerful than naturally aspirated two-stroke engines. The performance level of a two-stroke SI engines with a charging system is less well understood since only a limited number of articles have so far been published. However, if charging can be successfully applied to a two-stroke engine, it can become very power dense. This article outlines some of the challenges related to charging systems for a single-cylinder crank case scavenged two-stroke SI
Zander, LennarthDahlander, Petter
This SAE Standard specifies the major dimensions and tolerances for Engine Flywheel Housings and the Mating Transmission Housing Flanges. It also locates the crankshaft flange face or the transmission pilot bore (or pilot bearing bore) stop face in relation to housing SAE flange face. This document is not intended to cover the design of the flywheel housing face mating with the engine crankcase rear face or the design of housing walls and ribs. Housing strength analysis and the selection of housing materials are also excluded. This document applies to any internal combustion engine which can utilize SAE No. 6 through SAE No. 00 size flywheel housing for mounting a transmission
Automatic Transmission and Transaxle Committee
Currently automotive design is facing multi facet challenges such as reduction in greenhouse gases, better thermal management, and low cost solution to market, vehicle weight management etc. Considering these challenges, efforts had been taken to improve weight management of engine while optimizing the cost of it. Good ‘engine breathing’ is usually associated with efficient intake system e.g. high flow air filter, a well-designed manifold, cylinder block, cylinder head and cylinder head cover etc. However, efficient ‘crankcase breathing’ is an equally important function of any engine. Even in a new engine, the combustion pressure will inevitably pass the piston rings into the crankcase. If an engine’s breathing system should become blocked or restricted, the crankcase will pressurize causing lots of problems to the engine. Prior to 1963 most vehicle engines vented their vapors and oil deposits to atmosphere and the road surface. With increasing environmental pressures positive
Deshpande, Shirish MadanBhargava, AashishDhalait, SahilMusani, Ameel
The methods and principles of monitoring and diagnosing the parameters of power units are generalized. They allow increasing the wheeled vehicles operational reliability. Systems for monitoring the functional stability parameters of the most sensitive to operating conditions systems and assemblies of machines have been developed on the example of a cylinder-piston engine group and steering. An improved method for diagnosing the steering of an articulated wheeled vehicle, which significantly affects the safety of its use, is proposed based on the use of angular accelerations of sections in the road plane as a diagnostic parameter. The dependence for determining the angular accelerations for the case of the random installation of two sensors of the mobile registration and measuring complex on the machine, which allows increasing the accuracy of measurements, is obtained. Experimental studies to diagnose the steering of wheeled vehicles with various operating times have been carried out
Podrigalo, MikhailDubinin, YevhenMOLODAN, ANDRIIPolianskyi, OleksandrKholodov, MykhailoKlets, DmytroKholodov, AntonViktoriia, ZadorozhniaKHVOROST, OLEKSANDRMykola, PotapovStepanov, Alex
Sludge and Varnish deposits that can build up in the crankcase originate in large part from fuel and fuel components that enter the crankcase through blow-by. These deposits can lead to a variety of engine issues including piston skirt deposits, cylinder bore scuffing, stuck lifters and oil filter plugging. A test has been developed to evaluate the contribution of “Complete Fuel System Cleaner” (CFSC) aftermarket fuel additives to crankcase sludge and varnish deposit formation. CFSC aftermarket fuel additives are typically formulated with polyether amine (PEA) chemistry and at concentrations that exceed 2000ppm. Three different commercially-available CFSC products were tested, containing two different classes of PEA chemistry - propylene oxide-based PEA (“PO-PEA”) and butylene oxide-based PEA (“BO-PEA”). Two of the three products contained the same PO-PEA chemistry, but at different concentrations, to show the effect of additive dosage. Using the Sequence VG sludge and varnish test
Smocha, Ruth
Understanding cylinder-kit tribology is pivotal to durability, emission management, reduced oil consumption, and efficiency of the internal combustion engine. This work addresses the understanding of the fundamental aspects of oil transport and combustion gas flow in the cylinder kit, using simulation tools and high-performance computing. A dynamic three-dimensional multi-phase, multi-component modeling methodology is demonstrated to study cylinder-kit assembly tribology during the four-stroke cycle of a piston engine. The percentage of oil and gas transported through different regions of the piston ring pack is predicted, and the mechanisms behind this transport are analyzed. The velocity field shows substantial circumferential flow in the piston ring pack, leading to blowback into the combustion chamber during the expansion stroke. Oil initialization and management of a continuous supply of oil throughout the cycle are observed to govern how much oil would be lost to the crankcase
Chowdhury, Sadiyah SabahKharazmi, AliAtis, CyrusSchock, Harold
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction. To evaluate the potential of form honing, with respect to the optimization of frictional loss in the piston assembly, knowledge of the tribological effects occurring during
Halbhuber, JohannesWachtmeister, Georg
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine. In addition to the standard cylinder pressure sensor, a quick surface temperature probe is also used as supplementary measurement
Burger, BenjaminBargende, Michael
Aside from aerosols produced during the combustion of fossil fuels, the oil mist vented through the crankcase breather of the engine is considered as a threat to the environment or, in case of closed ventilation systems, to the functionality of the engine. In the past, these “blow-by” aerosols have been investigated mainly from the perspective of emitted oil mass. This study instead focuses on sources and reduction of fine aerosols in the size range of about 0.2-5 μm, where number concentrations are of equal importance. The investigation is conducted on a commercial truck diesel engine; aerosols are sampled with an optical particle counter at various locations along the blow-by path, in the region of the cylinder head before and after the oil aerosol separation system. The contribution of the turbocharger to the total aerosol load is found to be 24% by number and 21% by mass. The air compressor adds 8%-20% concerning number and mass only depending on the engine load. The influences of
Lorenz, Magnus LukasKoch, ThomasKasper, GerhardPfeil, JürgenNowak, Niclas
Published motorcycle lubricant research often focuses on developments to meet certain specifications, regulatory requirements, or a combination of the two. Seemingly missing from the literature is research where the primary goal is development of a lubricant that enables maximum torque, power and acceleration from a machine for the purpose of winning races. The present study combines the two areas of research, where a high-performance motorcycle engine oil platform is developed to be used in competition, while simultaneously meeting the necessary regulations and specifications to be useful for commuters and leisure riders alike. Well-known are the demands on a motorcycle oil, which must lubricate and protect the crankcase, clutch and gears, all of which have competing requirements such that a strategy to improve the performance in one area can cause a detriment in another. Formulating for racing engines that are typically much more powerful than production versions further exacerbates
Marcella, MikeJohnson, Aaron
When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas
Nakamura, YoichiroHashimoto, KenNakamura, HidekiEjiri, Shinji
Currently automotive industry is facing bi-fold challenge of reduction in greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus on customer value proposition. In engine emission the blow by gases are one of the source of greenhouse gases from engine. Blow-by gases not only consist of unburnt hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle. Considering the above challenges, effort taken to develop a low-cost closed crankcase ventilation with oil mist separation system on diesel engine. For cost-effective solution, two different design and configuration of oil mist separation system developed. Further, engine with two different above said configuration has been tested for blow-by gasses and oil consumption measurement on Engine test bed and vehicle to
Walhekar, Vishal KailasGavade, SujitSoni, GauravBhargava, Aashish
Closed crankcase ventilation (CCV) systems are required in most automotive markets in order to meet emissions regulations. Such systems usually require a separator to recover oil and return it to the sump. Many end users fit improved separators in order to reduce intake/aftercooler contamination with soot/oil. This study measured clean and wet pressure drop and filter capture efficiency in 12 different crankcase oil mist separators which are commonly used for either original equipment (OE) or aftermarket fitment to passenger vehicles and four-wheel drives (≤200 kW). The filters tested spanned three different size/rating classes as well as included both branded and unbranded (imitation) models. In addition to filters, separators (often termed “catch cans”) and an OE cyclone separator were also examined. Testing was performed under controlled laboratory conditions using methods equivalent to previous work and current mist filter test standards. All separators were tested at flow rates
Golkarfard, VahidSubramaniam, RamanathanBroughton, JonathanKing, AndrewMullins, Benjamin
To provide a method by which to assess the cleanliness of new hydraulic fluids. The method is applicable to new mineral and synthetic hydraulic fluids - regardless of packaging. This SAE Standard is not intended as a procedure for operating equipment
CTTC C1, Hydraulic Systems
In addition to performance target, recent stringent emission legislation and reduction in oil consumption are the major driving force for engine design and development. In this reference importance of crankcase ventilation has increased immensely and the manufacturers are bound to develop most efficient system with high oil trap efficiency. In crankcase ventilation system, the blow-by gases from the crankcase are routed to the intake manifold through Oil separator system. The oil separator task is to retain the oil part from the blow by gas and send it back to sump. Developing an oil separator for the engine studied here was very challenging considering double stage turbocharger which produces very fine mist of oil and is difficult to separate. The study shows that oil mist coming in blow by is of size 0.3 micron and lesser than it. The major contribution of these fine mists was from turbocharger. Keeping this in view, an oil separation unit which is an integral part of cam cover had
Alam, Md TauseefThakur, AnilKumar PS, VenkateshGhadei, Sataya
An original 2-stroke prototype engine, equipped with an electronically controlled gasoline direct-injection apparatus, has been tested over the last few years, and the performances of these tests have been compared with those obtained using a commercial crankcase-scavenged 2-stroke engine. Very satisfactory results have been obtained, as far as fuel consumption and unburned hydrocarbons in the exhaust gas are concerned. Large reductions in fuel consumption and in unburned hydrocarbons have been made possible, because the injection timing causes all the injected gasoline to remain in the combustion chamber, and thus to take part in the combustion process. Moreover, a force-feed lubrication system, like those usually exploited in mass-produced 4-stroke engines, has been employed, because of the presence of an external pump. In fact, it is no longer necessary to add oil to the gasoline in the engine, as the gasoline does not pass through the crankcase volume. The aim of this paper is to
Nuccio, P.De Donno, D.Magno, A.
This procedure covers ultrasonic inspection of tubular, centrifugally-cast, corrosion-resistant steel cylinders
AMS K Non Destructive Methods and Processes Committee
This paper reports on the research and development challenges experienced from dynamometer testing of a spark ignition UAV engine operating on heavy fuel. The engine is a segregated scavenging two stroke engine with air charge delivery by means of integral stepped pistons overcoming durability issues of conventional crankcase scavenged engines. A key element of the experimental study builds upon performance development to address the need for repeatable cold start on low volatility fuel thereby eliminating gasoline from UAV theatres of deployment. Lubrication challenges normally associated with crankcase scavenged two stroke engines are avoided by the integrated re-circulatory lubrication system. The fuel explored in this study is kerosene JET A-1
Hooper, Peter R.
High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems. In addition to the prediction of pressure fluctuations for I4 engines this paper discusses the variation of crankcase pressure of various other engine architectures and the observations made from I4, V6 and V8 engine
Randall, KatherineBradford, CodyRoss, JeremyChurch, JeremyDickey, NolanChristian, AdamDunn, Matthew
Items per page:
1 – 50 of 617