Browse Topic: Combustion chambers
Emissions regulations, such as Euro VI, drives the Automotive industry to innovate continuously in Engine development. One significant challenge is the engine oil pumping from the crankcase into the combustion chamber, where it participates in combustion, which contributes to increased Particulate Numbers and fails to meet Euro VI emission compliance. This issue is most noticeable during engine idling and motoring conditions. During this time, a higher negative pressure difference develops between the intake manifold, which is acting above the combustion chamber and the engine crankcase. This pressure difference drives oil-laden blow-by aerosols past piston rings during the intake stroke and through the valve stem seals, allowing oil into the combustion chamber. The impact of the pressure difference between the intake manifold and crankcase was studied by varying the crankcase pressure through crankcase ventilation system. The results confirm that oil entry into the combustion chamber
As a zero-carbon fuel, ammonia has the potential to completely defossilize combustion engines. Due to the inert nitrogen present in the molecule, ammonia is difficult to ignite or burn. Even if the ammonia can be successfully ignited, combustion will be very slow and there is a risk of flame quenching, i.e. the flame going out before the ammonia-air mixture has been almost completely converted. Both the difficult flammability and the slow combustion result in high ammonia slip, which should be avoided at all costs. The engine efficiency is also greatly reduced. Safe ignition and burn-through can be achieved by drastically increasing the ignition energy and/or using a reaction accelerator such as hydrogen. The planned paper will use detailed 1D and 3D CFD calculations to show how high the potential of ammonia combustion in an internal combustion engine is when an active pre-chamber is used as the ignition system. As a result of the flame jets penetrating into the main combustion chamber
NASA is developing a lightweight one-piece regeneratively cooled thrust chamber assembly (TCA) for liquid rocket engines. Liquid rocket engines create thrust through the expansion of combusted propellants within the TCA. Standard manufacturing of TCAs involves individually building the injector, main combustion chamber and nozzle, and then bolting or welding the components together at the joints. However, potential seal failures in these complex joints can cause catastrophic explosions, as in the tragedy of the Space Shuttle Challenger.
Items per page:
50
1 – 50 of 3967