Browse Topic: Human Factors and Ergonomics

Items (20,152)
Vehicular accident reconstruction is intended to explain the stages of a collision. This also includes the description of the driving trajectories of vehicles. Stored driving data is now often available for accident reconstruction, increasingly including gyroscopic sensor readings. Driving dynamics parameters such as lateral acceleration in various driving situations are already well studied, but angular rates such as those around the yaw axis are little described in the literature. This study attempts to reduce this gap somewhat by evaluating high-frequency measurement data from real, daily driving operations in the field. 813 driving maneuvers, captured by accident data recorders, were analyzed in detail and statistically evaluated. These devices also make it possible to record events without an accident. The key findings show the average yaw rates as a function of driving speed as well as the ratio between mean and associated peak yaw rate. Beyond that, considerably lower yaw rates
Fuerbeth, Uwe
This document applies to safety observers or spotters involved with the use of outdoor laser systems. It may be used in conjunction with AS4970.
G-10T Laser Safety Hazards Committee
This SAE Aerospace Standard (AS) provides design criteria for onboard stairways intended for use by passengers aboard multi-deck transport category airplanes. It is not intended for stairways designed for use only by crewmembers, supernumeries, or maintenance personnel. Additionally, this AS does not apply to fuselage mounted or external stairways used for boarding passengers, which are covered by ARP836.
S-9B Cabin Interiors and Furnishings Committee
The development of drones has raised questions about their safety in case of high-speed impacts with the head. This has been recently studied with dummies, postmortem human surrogates and numerical models but questions are still open regarding the transfer of skull fracture tolerance and procedures from road safety to drone impacts. This study aimed to assess the performance of an existing head FE model (GHBMC M50-O v6.0) in terms of response and fracture prediction using a wide range of impact conditions from the literature (low and high-speed, rigid and deformable impactors, drones). The fracture prediction capability was assessed using 156 load cases, including 18 high speed tests and 19 tests for which subject specific models were built. The GHBMC model was found to overpredict peak forces, especially for rigid impactors and fracture cases. However, the model captured the head accelerations tendencies for drone impacts. The formulation of bone elements, the failure representation
Pozzi, ClémentGardegaront, MarcAllegre, LucilleBeillas, Philippe
The Equivalent Consumption Minimization Strategy (ECMS) is an effective approach for managing energy flow in hybrid electric vehicles (HEVs), balancing the use of electric energy and fuel consumption. The strategy’s performance depends heavily on the Equivalent Factor (EF), which governs this trade-off. However, the optimal EF varies under different driving conditions and is influenced by the inherent randomness in factors such as traffic, road gradients, and driving behavior, making it challenging to determine through traditional methods. This paper introduces Bayesian Optimization (BO) as a solution to address the stochastic nature of the EF parameter tuning process. By using a probabilistic model, BO efficiently navigates the complex, uncertain performance landscape to find the optimal EF parameters that minimize fuel consumption and emissions across variable conditions. Simulation results under WLTP cycles show that the proposed method reduces fuel consumption by 0.9% and improves
Zhang, CetengfeiZhou, QuanJia, YiqiXiong, Lu
This study presents a novel biomimetic flow-field concept that integrates a triply periodic minimal surface (TPMS) porous architectures with a hierarchical leaf-vein-inspired distribution zone, fabricated through 3D printing. By mimicking natural transport systems, the proposed design enhances oxygen delivery and water removal in proton exchange membrane fuel cells (PEMFCs). The results showed that I-FF and G-FF significantly improved mass transport and water management compared to conventional CPFF. The integrated design I-FF-LDZ achieves up to 32% improvement in power density at 1.85 A/cm2@0.4 V and delays the onset of mass transport losses. The study also reveals that optimizing the volume fraction Vf significantly affects gas penetration, with lower Vf (30%) improving performance in the mass-limited region. These findings underscore the promise of nature-inspired, 3D-printed flow-field architectures in overcoming key transport limitations and advancing the scalability of next
Ho-Van, PhucLim, Ocktaeck
The article introduces the air springs, CDC, rear-wheel steering system, braking system, front-wheel steering system, and electric drive system in the vehicle’s central coordinated motion control system. It explores achieving more comfortable shock absorption by adjusting the CDC (Continuously Variable Damping system) damping and other means. By combining open-loop and closed-loop rear-wheel steering control, the turning radius in small-radius steering mode is reduced by up to 10%, enabling crab-walking, optimizing the moose test entering speed up to 90.9 kph, and improving vehicle behavior on split-friction surfaces. Through the cooperation of IBS (Intelligent Brake System) and VMC, an extremely comfortable braking process is achieved.
Zhou, YuxingLi, Wen
The urgent need to decarbonise transport has increased the utilisation of renewable fuels blended with current hydrocarbons. Heavy duty vehicle electrification solutions are yet to be realised and therefore the reliance on diesel engines may still be present for decades to come. Currently, the diesel supplied to fuel stations across the UK is a 7% blended biodiesel, whilst in South Korea a 5% blend is utilised. Biodiesel is produced from renewable sources, for example, crops, waste residue, oils and biomass. Particulates from diesel combustion are known to be toxic due to the presence of polycyclic aromatic hydrocarbons (PAHs), however there is very limited understanding of blending oxygenated fuels on the toxicity of the particulates produced. PAHs are aromatic structures that can be metabolised into chemicals which can disrupt DNA replication and potentially influence cancer mechanisms if inhaled in high quantities. Soyabean methyl-ester (SME) was blended at lower ratios, e.g., 5
Hailwood, EmmaHellier, PaulLadommatos, NicosLeonard, Martin
Trajectory planning is a major challenge in robotics and autonomous vehicles, ensuring both efficient and safe navigation. The primary objective of this work is to generate an optimal trajectory connecting a starting point to a destination while meeting specific requirements, such as minimizing travel distance and adhering to the vehicle’s kinematic and dynamic constraints. The developed algorithms for trajectory design, defined as a sequence of arcs and straight segments, offer a significant advantage due to their low computational complexity, making them well-suited for real-time applications in autonomous navigation. The proposed trajectory model serves as a benchmark for comparing actual vehicle paths in trajectory control studies. Simulation results demonstrate the robustness of the proposed method across various scenarios.
Soundouss, HalimaMsaaf, MohammedBelmajdoub, Fouad
The reliability and performance of steering systems in commercial vehicles are paramount, given their direct impact on reducing hazardous driving and improving operational efficiency. The torque overlay system is designed to enhance driver control, feedback, and reduce driver fatigue. However, vulnerabilities such as water ingress under certain environmental conditions have raised significant reliability requirements. This article discusses the systematic investigation into how radial bearing sideloading led to the input shaft seal failing to contact the input shaft. Water was allowed a path to enter the TOS module, affecting the electronic sensor, and faulting out the ADAS functionality. Improvement to the bearing support and sealing design culminated to an enhanced TOS module package able to withstand testing procedures that mimic the environmental and use case situation which caused the ingress.
Bari, Praful RajendraKintner, Jason
Image dehazing techniques can play a vital role in object detection, surveillance, and accident prevention, especially in scenarios where visibility is compromised because of light scattering by atmospheric particles. To obtain a high-quality image or as an initial step in processing, it’s crucial to restore the scene’s information from a single image, given that this is an ill-posed inverse problem. The present approach utilized an unsupervised learning approach to predict the transmission map from a hazy image and used YOLOv8n to detect the car from a clear recovered image. The dehazing model utilized a lightweight parallel channel architecture to extract features from the input image and estimate the transmission map. The clear image is recovered using an atmospheric scattering model and given to the YOLOv8n for car detection. By incorporating dark channel prior loss during training, the model eliminates the need for a paired dataset. The proposed dehazing model with fewer
Dave, ChintanPatel, HetalKumar, Ahlad
Public buses can be high-risk environments for the transmission of airborne viruses due to the confined space and high passenger density. However, advanced cabin air control systems and other measures can mitigate this risk. This research was conducted to explore various strategies aimed at reducing airborne particle transmission in bus cabins by using retrofit accessories and a redesigned parallel ventilation system. Public transit buses were used for stationary and on-road testing. Air exchange rates (ACH) were calculated using CO2 gas decay rates measured by low-cost sensors throughout each cabin. An aerosol generator (AG) was placed at various locations inside the bus and particle concentrations were measured for various experiments and ventilation configurations. The use of two standalone HEPA air filters lowered overall concentrations of particles inside the bus cabin by a factor of three. The effect of using plastic “barriers” independently showed faster particle arrival times
Lopez, BrendaSwanson, JacobDover, KevinRenck, EvanChang, M.-C. OliverJung, Heejung
Letter from the Guest Editors
Wang, ZhenfengZhang, YunqingQi, RonghuaiLu, Yukun
Researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) previously conducted a full-scale crash test of a Fokker F28 MK1000 aircraft to study occupant injury risks. The goal of the current study was to investigate the injury predictions of the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS) occupant models in the tested aircraft crash condition and explore possible utilization of both human body models (HBMs) in this context. Eight crash conditions were simulated utilizing each of the models. The HBMs were positioned in two postures, a neutral upright posture with hands resting on the legs and feet contacting the floor and a braced posture with head and hand contact with the forward seat back. Head and neck injury metrics and lumbar vertebra axial force were calculated and compared for all simulations. Both HBMs reported similar kinematic responses in the simulated impact conditions. However, the GHBMC
Jones, NathanielPutnam, JacobUntaroiu, Costin Daniel
Current voluntary standards for wheelchair crashworthiness only test under frontal and rear impact conditions. To help provide an equitable level of safety for occupants seated in wheelchairs under side impact, we developed a sled test procedure simulating nearside impact loading using a fixed staggered loading wall. Publicly available side impact crash data from vehicles that could be modified for wheelchair use were analyzed to specify a relevant crash pulse. Finite element modeling was used to approximate the side impact loading of a wheelchair during an FMVSS No. 214 due to vehicle intrusion. Validation sled tests were conducted using commercial manual and power wheelchairs and a surrogate wheelchair base fixture. Test procedures include methods to position the wheelchair to provide consistent loading for wheelchairs of different dimensions. The fixture and procedures can be used to evaluate the integrity of wheelchairs under side impact loading conditions.
Boyle, KyleHu, JingwenManary, MiriamOrton, Nichole R.Klinich, Kathleen D.
Recent studies have found that Brain Injury Criteria (BrIC) grossly overpredicts instances of real-world, severe traumatic brain injury (TBI). However, as it stands, BrIC is the leading candidate for a rotational head kinematics-based brain injury criteria for use in automotive regulation and general safety standards. This study attempts to understand why BrIC overpredicts the likelihood of brain injury by presenting a comprehensive analysis of live primate head impact experiments conducted by Stalnaker et al. (1977) and the University of Pennsylvania before applying these injurious conditions to a finite element (FE) monkey model. Data collection included a thorough analysis and digitization of the head impact dynamics and resulting pathology reports from Stalnaker et al. (1977) as well as a representative reconstruction of the Penn II baboon diffuse axonal injury (DAI) model. Computational modeling techniques were employed on a FE Rhesus monkey model, first introduced by Arora et al
Demma, Dominic R.Tao, YingZhang, LiyingPrasad, Priya
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
Driving Skills Standards Committee
In the early days of computers, interfaces were paper printouts or blinking lights, but as the technology matured, the graphical user interface (GUI) quickly became the standard.
The existing variable speed limit (VSL) control strategies rely on variable message signs, leading to slow response times and sensitivity to driver compliance. These methods struggle to adapt to environments where both connected automated vehicles (CAVs) and manual vehicles coexist. This article proposes a VSL control strategy using the deep deterministic policy gradient (DDPG) algorithm to optimize travel time, reduce collision risks, and minimize energy consumption. The algorithm leverages real-time traffic data and prior speed limits to generate new control actions. A reward function is designed within a DDPG-based actor-critic framework to determine optimal speed limits. The proposed strategy was tested in two scenarios and compared against no-control, rule-based control, and DDQN-based control methods. The simulation results indicate that the proposed control strategy outperforms existing approaches in terms of improving TTS (total time spent), enhancing the throughput efficiency
Ding, XibinZhang, ZhaoleiLiu, ZhizhenTang, Feng
Letter from the Guest Editors
Liang, CiTörngren, Martin
The frequency and amplitude content of powertrain noise is motor torque and speed dependent and tends to influence the driver’s subjective perception of the vehicle. This provides manufacturers with an opportunity to drive product differentiation through consideration of powertrain noise in early stages of the development cycles for electric vehicles (EVs). This paper focuses on the evaluation of customer preference and perception of acoustic feedback from different powertrain design options based on targeted powertrain orders and expected wind and road masking during high acceleration maneuvers. A jury study is used to explore customer feedback to a two-stage gearbox design with AC permanent magnet motor order combinations. The subjective influence of order spacing, dominant frequency content and the number of audible orders is studied to understand aural perspective product differentiation opportunities.
Joodi, BenjaminJayakumar, VigneshConklin, ChrisPilz, FernandoIyengar, ShashankWeilnau, KelbyHodgkins, Jeffrey
There are some paradoxical keys to NVH engineering success that are not taught in engineering schools. This paper will describe these in detail and provide examples to add context. The first unexpected key is that a good generalist makes a better expert. The more you understand the complete product development process, and the better contacts you have throughout the product development organization, the easier it will be for you to find cost effective solutions to your specific issues. Next, you need to know your customers, and that means both internal and external customers. If you work for a supplier, it means knowing original equipment manufacturer (OEM) and end user customers. The more you understand the customers’ needs, the better you can address them and make your product stand out. Another key is to try to turn a crazy idea into something practical. Sometimes you might find a completely insane solution to your problem, such as making a major component out of solid gold. If you
Reinhart, Thomas
Subjective perception of vehicle secondary ride is dependent on simultaneous touchpoint vibrations and audible inputs to the occupants. Standards such as ISO 2361 provide guidelines for objective assessments of human body thresholds to vibration [1]. However, when a human experiences vibration inputs at multiple touchpoints, as well as aural inputs, it becomes complicated to judge each individual contribution to the overall subjective perception [2]. Additional factors, such as ambient conditions, ergonomics, age, gender etc. also play a role. Secondary ride, which is defined as energy in the 10-30 Hz frequency range, is one such event that affects the customers’ perception of ride comfort and quality. The goal of this work is to develop a sound and vibration simulator model and execute a secondary ride jury study of vehicle driving over cleats. The aim of the study is to rank the contributions of each touch point vibration input, as well as sound to the overall subjective perception
Jayakumar, VigneshJoodi, BenjaminGeissler, ChristianPilz, FernandoLynch, LukeConklin, ChrisWeilnau, KelbyHodgkins, Jeffrey
In the highly competitive automotive industry, optimizing vehicle components for superior performance and customer satisfaction is paramount. Hydrobushes play an integral role within vehicle suspension systems by absorbing vibrations and improving ride comfort. However, the traditional methods for tuning these components are time-consuming and heavily reliant on extensive empirical testing. This paper explores the advancing field of artificial intelligence (AI) and machine learning (ML) in the hydrobush tuning process, utilizing algorithms such as random forest, artificial neural networks, and logistic regression to efficiently analyze large datasets, uncover patterns, and predict optimal configurations. The study focuses on comparing these three AI/ML-based approaches to assess their effectiveness in improving the tuning process. A case study is presented, evaluating their performance and validating the most effective method through physical application, highlighting the potential
Hazra, SandipKhan, Arkadip Amitava
New mobility concepts with smart infrastructure have led to enhanced customer driving experience. The potential to develop safe cars with minimal driver intervention is a great need of the future. The cusp for fully autonomous driving has produced much technical talk, which has led to faster transition and adoption. One of the features that global OEMs have tried to focus on, is Human Machine Interface (HMI) solutions, popularly called display screens. The touchscreen HMIs are common in all mid-range budget cars. They offer driver support beyond just streaming music, including inputs for navigation, parking assistance, in-car technologies, Advanced Driver Assistance Systems (ADAS), and infotainment. Poor display screen visibility is a phenomenon observed when a vehicle is driven over different road surfaces. This paper presents a user-centric approach for the right design & development of the HMI for a vibration free driving experience. The mounting strategies for the display screens
Adil, MD ShahzadC M, MithunMohammed, RiyazuddinR, Prasath
The multifaceted, fast-paced evolution in the automotive industry includes noise and vibration (NVH) behavior of products for regulatory requirements and ever-increasing customer preferences and expectations for comfort. There is pressing need for automotive engineers to explore new and advanced technologies to achieve a ‘First Time Right’ product development approach for NVH design and deliver high-quality products in shorter timeframes. Artificial Intelligence (AI) and Machine Learning (ML) are trending transformative technologies reshaping numerous industries. AI enables machines to replicate human cognitive functions, such as reasoning and decision-making, while ML, a branch of AI, employs algorithms that allow systems to learn and improve from data over time. The purpose of the paper is to show an approach of using machine learning techniques to analyze the impact of variations in structural design parameters on vehicle NVH responses. The study begins by executing the Design of
Miskin, Atul R.Parmar, AzanRaj, SoniaHimakuntla, Uma Maheswar
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
Redon, MilanDendievel, ClementPluton, Matthias
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual
Rodrigues Ferraz Esteves, Ana RaquelCampos Magalhães, Eduardo MiguelBernardes de Almeida, Gilberto
Tires have a significant impact on vehicle road noise. The noise in 80~160Hz is easily felt when driving on rough roads and has a great relationship with the tire structural design. How to improve the problem through tire simulation has become an important issue. Therefore, this paper puts forward the concept of virtual tire tuning to optimize the noise. An appropriate tire model is crucial for road noise performance, and the CDtire (Comfort and Durability Tire) model was used in the article. After conducting experimental validation to get an accurate tire model, adjust the parameters and structure of the tire model to generate alternative model scenarios. The transfer function of the tire center was analyzed and set as the evaluation condition for tire NVH (Noise, vibration, and harshness) performance. This enabled a comparison among various model scenarios to identify the best-performing tire scenario in focused frequency whose transfer function needed to be lowest. Manufacture the
Zhang, BenYu Sr, JingChen, QimiaoLiu, XianchenGu, Perry
Two wheeler is important and essential transportation mode in many of the countries across the globe. Designing a motorcycle with better riding comfort and minimal vibration are thus a major challenge for engineers now a day. Engine and road excitations are two source of vibration acting on motor bike or scooter both. These vibrations are transmitted to the chassis, sub chassis, aesthetic parts and then to the rider and pillion. Unwanted vibrations will create discomfort to the rider/pillion and produce noise. Hence, these need to be minimized. This study is focus on diagnosis and control of output vibration response of sub chassis/aesthetic parts due to engine unbalanced excitation force. There are numerous parameter of motor bike/scooter that governs the vibration response of sub chassis/aesthetic parts. Engine unbalanced inertia force characteristics and their transmission to rider and pillion has been studied and reported here. Environmental benefit demands for a complete noise
Khare, Saharash
The world of plastic products has been growing due to its versatile properties and has become an intrinsic and fundamental part of engineering for new products. The most important aspects contributing to this spectacular growth are the design and assembly, making sure that plastic parts are designed optimally. The safety requirements have been increased due to the safety ratings and thus interior parts must provide more absorption and protection to occupants. The main connection types used in the plastic parts are heat stakes and snap fits. The purpose of a good snap fit is not only to have a high retention effort but also to present ergonomic characteristics with optimal insertion and extraction effort because each part requires a different function. With the time-dependent loading, the material will redistribute its internal energy thereby performing a time-related flow leading to reduced pretension thus decreasing stiffness. This paper presents an analytical and numerical method for
Michael Stephan, Navin Estac RajaC M, MithunMohammed, RiyazuddinR, Prasath
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. While the use of electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets, hybridized propulsion solutions will continue to play a vital role in the electrification strategy of vehicle manufacturers. Plug-in hybrid electric vehicles (PHEV) and range extender vehicles (REx) come with unique NVH challenges due to their different possible operation modes. First, the paper outlines different driveline and vehicle architectures for PHEV and REx. Given the multiple general architectures, as well as operation modes which typically accompany these vehicles, NVH characterizations and noise source-path analysis can be more complicated than conventional vehicles. In the following steps, typical NVH related challenges are highlighted and potential solutions for NVH optimization are
Wellmann, ThomasFord, AlexPruetz, Jeffrey
The implementation of active sound design models in vehicles requires precise tuning of synthetic sounds to harmonize with existing interior noise, driving conditions, and driver preferences. This tuning process is often time-consuming and intricate, especially facing various driving styles and preferences of target customers. Incorporating user feedback into the tuning process of Electric Vehicle Sound Enhancement (EVSE) offers a solution. A user-focused empirical test drive approach can be assessed, providing a comprehensive understanding of the EVSE characteristics and highlighting areas for improvement. Although effective, the process includes many manual tasks, such as transcribing driver comments, classifying feedback, and identifying clusters. By integrating driving simulator technology to the test drive assessment method and employing machine learning algorithms for evaluation, the EVSE workflow can be more seamlessly integrated. But do the simulated test drive results
Hank, StefanKamp, FabianGomes Lobato, Thiago Henrique
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
Norris, Mark A.Orzechowski, JeffreySanderson, BradSwanson, DouglasVantimmeren, Andrew
Powertrain mounts are vital for isolating vibrations and enhancing vehicle ride comfort and performance, making their dynamic behavior critical for effective design. This study provides a comprehensive analysis of powertrain mount decoupling by integrating virtual simulations, physical testing, and analytical calculations. In our approach, we first derived stiffness data through analytical calculations, which were validated through multi-body dynamics (MBD) simulations that modeled interactions within the powertrain mounts. By adjusting bush stiffness parameters within the MBD framework, we predicted decoupling frequencies and analyzed kinetic energy distribution. The iterated stiffness values from simulations were then confirmed through physical testing, ensuring consistency in decoupling frequencies and energy distribution. This alignment between virtual and experimental data enhances the reliability of our findings and helps identify overlapping frequencies across vehicle systems
Shende, KalyaniShingavi, ShreyasRane, VisheshHingade, Nikhil
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
Bray, Wade
With the current popularity of new energy vehicles and the continuous development of intelligent cabin technology, the demand for acoustic comfort within automotive cockpit is increasing. A multi-channel feedforward active sound design and control method was proposed to improve the sound quality of the hybrid broadband road and narrowband order noise inside the test vehicle. The method selectively designed the target amplitudes for broadband noise and narrowband noise in the vehicle to satisfy passengers comfort, mainly including the sound design phase and the control phase. During the sound design phase, objective sound quality parameter analysis was first conducted on the noise of the prototype vehicle, followed by an subjective evaluation of the sound quality with rating scale method. An active acoustic design strategy focusing on comfort, motivation sense were proposed, including a formula for the target amplitude of adjustment order and sound pressure level. The sound quality was
Liu, XuexianXu, WenxuanLi, RubinLu, Lu
Items per page:
1 – 50 of 20152