Browse Topic: Human Factors and Ergonomics

Items (19,998)
The introduction of unrestrained torso neck braces as a safety intervention for helmeted motorcycle riders has introduced a set of unsolved challenges. Understanding the injury prevention afforded by these devices depends on a reliable test methodology by which to critically evaluate their efficacy against the most common mechanisms of neck injury. An inverted pendulum test is proposed to evaluate compression flexion (CF), tension flexion (TF), and tension extension (TE) of the neck using a Hybrid III anthropomorphic test device (HIII ATD) neck and a motorcycle-specific ATD (MATD) neck. In addition to investigating methods to quantify the beneficial effects of a neck brace, potential adverse effects of such a device are evaluated by measuring and evaluating relevant neck response measures. To that end, measured data using a current neck brace were analyzed and applied to various injury criteria related to the ATD neck used to compare the injury risk predicted by each parameter. The
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers insecticides for use in disinsection of aircraft as required on international passenger flights
AMS J Aircraft Maintenance Chemicals and Materials Committee
ABSTRACT Model-Based Systems Engineering (MBSE) has grown in popularity since the introduction of SysML a decade ago. Pockets of modeling excellence have developed within many government, industrial, and educational organizations. Few, if any, have achieved “wall-to-wall” adoption. This paper will focus on a key component of a successful system modeling efforts: the individuals who must translate sound systems engineering into robust, useful system models. The author routinely teaches systems architecture, systems engineering, and system modeling and will share methods and techniques for identifying and growing modeling talent. Success depends as much upon mindset and approach as it does upon understanding tool user interfaces and modeling conventions. Published texts, class exercises, videos, and case studies can be used to shape engineers’ problem-solving methods. In addition, a craft system (with apprentice, journeyman, and master modelers engaged in interlocking skill development
Vinarcik, Michael J.
ABSTRACT The need for up-armored vehicles has increased over the years. This has put a greater emphasis on suspensions that can provide improved ride and handling capabilities while facing the additional weight. One of the challenges with these vehicles traditionally has been increased likelihood of rollover. Increased rollover is due to high center of gravity, kinematics of the overloaded suspension, and the low damping that is needed to satisfy 6-Watt ride speed performance criteria. The Lord magneto-rheological (MR) suspension system addresses these issues by improving the ride quality and handling characteristics thereby increasing safety and mission effectiveness. During handling maneuvers, algorithms inside the controller unit apply corrective forces to minimize peak roll angle and peak roll rate. The benefit of this has been tested on a vehicle comparing the stock passive dampers to the MR dampers over NATO Lane change events. Furthermore, the controller has the capability to
Hildebrand, StephenMargolis, DonaldMathew, AbrahamMattson, Michael
ABSTRACT Research is currently underway to improve controllability of high degree-of-freedom manipulators under a Phase II SBIR contract sponsored by the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). As part of this program, the authors have created new control methods as well as adapting tool changing technology onto a dexterous arm to look at controllability of various manipulator functions. In this paper, the authors describe the work completed under this program and describe the findings of this work in terms of how these technologies can be used to extend the capabilities of existing and newly developed robotic manipulators
Peters, DouglasGunnett, KeithGray, Jeremy
ABSTRACT This paper describes work to develop a hands-free, heads-up control system for Unmanned Ground Vehicles (UGVs) under an SBIR Phase I contract. Industry is building upon pioneering work that it has done in creating a speech recognition system that works well in noisy environments, by developing a robust key word spotting algorithm enabling UGV Operators to give speech commands to the UGV completely hands-free. Industry will also research and develop two sub-vocal control modes: whisper speech and teeth clicks. Industry is also developing a system that will enable the Operator to drive a UGV, with a high level of fidelity, to a location selected by the Operator using hands-free commands in conjunction with image segmentation and video overlays. This Phase I effort will culminate in a proof-of-concept demonstration of a hands-free, heads-up system, implemented on a small UGV, that will enable the Operator have a high level of fidelity for control of the system
Brown, JonathanGray, Jeremy P.Blanco, ChrisJuneja, AmitAlberts, JoelReinerman, Lauren
ABSTRACT The concept of Autonomous Vehicles ultimately generating an “order of magnitude” potential increase in the duty or usage cycle of a vehicle needs to be addressed in terms of impact on the reliability domain. Voice of the customer data indicates current passenger vehicle usage cycles are typically very low, 5% or less. Meaning, out of a 24 hour day, perhaps the average vehicle is actually driven only 70 minutes or less. Therefore, approximately 95% of the day, the vehicles lay dormant in an unused state. Within the context of future fully mature Autonomous Vehicle environment involving structured car sharing, the daily vehicle usage rate could grow to 95% or more
Wasiloff, James
ABSTRACT BAE Systems Combat Simulation and Integration Labs (CSIL) are a culmination of more than 14 years of operational experience at our SIL facility in Santa Clara. The SIL provides primary integration and test functions over the entire life cycle of a combat vehicle’s development. The backbone of the SIL operation is the Simulation-Emulation-Stimulation (SES) process. The SES process has successfully supported BAE Systems US Combat Systems (USCS) SIL activities for many government vehicle development programs. The process enables SIL activities in vehicle design review, 3D virtual prototyping, human factor engineering, and system & subsystem integration and test. This paper describes how CSIL applies the models, software, and hardware components in a hardware-in-the-loop environment to support USCS combat vehicle development in the system integration lab
Lin, TCChang, KevinJohnson, ChristopherNaghshineh, KasraKwon, SungLi, Hsi Shang
Abstract Converting vehicles from conventional manned operations to unmanned supervised operations has been slow to adoption in many industries due to cost, complexity (requiring more highly skilled personnel) and perceived lower productivity. Indeed, hazardous operations (military, nuclear cleanup, etc.) have seen the most significant implementations of robotics based solely on personnel safety. Starting in 2005, the U.S. Army Corps of Engineers (USACE) has assumed a leading role in promoting the use of robotics in unexploded ordnance (UXO) range remediation. Although personnel safety is the primary component of the USACE mission, increasing productivity while reducing overall cost is an extremely important driver behind their program. To achieve this goal demands that robotic range clearance equipment be affordable, easy to install on rental equipment, durable and reliable (to minimize down-time), low or no maintenance, and easy to learn / operate by the same individuals who would
Selfridge, BobHewitt, Gregory
ABSTRACT Over the last several years all branches of the United States military have experienced an increased number of orthopedic and internal injuries to knees lower back, neck, and digestive system. Additionally the level of severity has also been increasing. Primary cause factors contributing to the overall increase in injuries to US military personnel include the increase in overall individual loads being carried by the individual soldier which at times can approach 150 pounds, higher operations tempo which results in greater exposure to higher levels of impact forces and for a greater duration. The greater impact forces are a result of the poor design of the current bench deployed on United States tactical vehicles, and the brutal nature of the third world transportation networks in Afghanistan and Iraq. This paper documents the engineering approach utilized by AOM Engineering Solutions to achieve the following primary design objectives; improved ergonomic design for injury
Micheli, JohnDonovan, LTC Ken
ABSTRACT Lay error is a primary source of error in fire control, which is defined as “the gunner’s inability to lay the sight crosshairs exactly on the center of the target.” To evaluate the potential implementation of computer vision and artificial intelligence algorithms for improving gunners’ performance or enabling autonomous targeting, it is crucial for the US Army to establish a benchmark of human performance as a reference point. In this study, we present preliminary results of a human subject study conducted to establish such a baseline. Using the Unreal Engine [1], we developed a photorealistic simulation environment with various targets. Fifteen individuals meeting the military applicant criteria in terms of age were assigned the task of aligning crosshairs on targets at multiple ranges and under different motion conditions. Each participant fired at 240 targets, resulting in a total of 3600 shots fired. We collected and analyzed data including lay error and time to fire. The
Gans, Nicholas R.Lundberg, Cody L.Forsythe, JenniferEnsing, ParkerBourlai, Thirimachos
ABSTRACT This paper presents a practical and easy to implement method for tracking the position of tele-operated Unmanned Ground Vehicles (UGVs) inside buildings, where GPS is unavailable. In conventional dead-reckoning systems, which typically use odometry combined with a single-axis gyro or an Inertial Measurement Unit (IMU), heading errors grow without bound. For that reason, tracking the position of tele-operated UGVs for more than a few minutes becomes unfeasible. Our method, called Heuristics-Enhanced Dead-reckoning (HEDR), overcomes this problem by completely eliminating heading errors at steady state in tele-operated missions of unlimited duration. As a result, HEDR allows the plotting of very accurate trajectories on the Operator Console Unit (OCU). When overlaid over an aerial photo of a building, the real-time trajectory display gives the operator crucial information about position and heading of the UGV relative to the building. This feature offers the operator much
Borenstein, JohannBorrell, AdamMiller, RussThomas, David
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
Hart, Robert JPerkins, J. ScottBlinzler, BrinaMiller, PatrickShen, YangDeo, Ankit
ABSTRACT Designing robots for military applications requires a greater understanding between the engineer and the Soldier. Soldier considerations result from experiences not common to the engineer in the lab and, when understood, can minimize the design time and provide a more capable product that is more readily deployed into the unit
Stehle, Brian C.
ABSTRACT To support customers during product development, General Dynamics Land Systems (GDLS) utilizes a set of Operations Research/Decision Support processes and tools to facilitate all levels of decision-making aimed at achieving a balanced system design. GDLS employs a rigorous Structured Decision (SD) process that allows for large, highly complex or strategic decisions to be made at the system-of-systems, system, and/or subsystem level. Powerful, robust tools -the Advanced Collaborative System Optimization Modeler (ACSOM) and Logical Decisions for Windows (LDW) - are used to make relatively quick assessments and provide recommendations. The latest ACSOM algorithms have increased the response time for trade study analysis by over 2,000 times and future versions will incorporate logistics analysis helping to reduce vehicle Life Cycle Cost
Gerlach, JamesHartman, GregoryWilliams, DarrellParent, Jeffery
ABSTRACT There is a need to better understand how operators and autonomous vehicle control systems can work together in order to provide the best-case scenario for utilization of autonomous capabilities in military missions to reduce crew sizes and thus reduce labor costs. The goal of this research is to determine how different levels of autonomous capabilities in vehicles affect the operator’s situational awareness, cognitive load, and ability to respond to road events while also responding to other auditory and visual tasks. Understanding these interactions is a crucial step to eventually determining the best way to allocate tasks to crew members in missions where crew size has been reduced due to the utilization of autonomous vehicles. Citation: J. E. Cossitt, C. R. Hudson, D. W. Carruth, C. L. Bethel, “Dynamic Task Allocation and Understanding of Situation Awareness Under Different Levels of Autonomy in Closed-Hatch Military Vehicles”, In Proceedings of the Ground Vehicle Systems
Cossitt, Jessie E.Hudson, Christopher R.Carruth, Daniel W.Bethel, Cindy L.
ABSTRACT Automated systems can have a hard time completing complex tasks in a timely manner. When controlling a robot outside of autonomous mode, a good control device needs to give the user full control of the system while enabling the mission to be completed in a quick, accurate and efficient manner. This paper outlines the potential features of a puppet style control device and the lessons learned while implementing such a device
Rusbarsky, DavidGray, Jeremy P.Grebinoski, JimMor, Andrew B.
ABSTRACT In this paper, we propose a new approach to developing advanced simulation environments for use in performing human-subject experiments. We call this approach the mission-based scenario. The mission-based scenario aims to: 1) Situate experiments within a realistic mission context; 2) Incorporate tasks, task loadings, and environmental interactions that are consistent with the mission’s operational context; and 3) Permit multiple sequences of actions/tasks to complete mission objectives. This approach will move us beyond more traditional, tightly-scripted experimental scenarios, and will employ concepts from interactive narrative as well as nonlinear game play approaches to video game design to enhance the richness and realism of Soldier-task-environment interactions. In this paper, we will detail the rationale for adopting such an approach and present a discussion of significant concepts that have guided a proof-of-concept test program of the mission-based scenario, which we
Lance, BrentVettel, JeanPaul, VictorOie, Kelvin S.
ABSTRACT Can convolutional neural networks (CNNs) recognize gestures from a camera for robotic control? We examine this question using a small set of vehicle control gestures (move forward, grab control, no gesture, release control, stop, turn left, and turn right). Deep learning methods typically require large amounts of training data. For image recognition, the ImageNet data set is a widely used data set that consists of millions of labeled images. We do not expect to be able to collect a similar volume of training data for vehicle control gestures. Our method applies transfer learning to initialize the weights of the convolutional layers of the CNN to values obtained through training on the ImageNet data set. The fully connected layers of our network are then trained on a smaller set of gesture data that we collected and labeled. Our data set consists of about 50,000 images recorded at ten frames per second, collected and labeled in less than 15 man-hours. Images contain multiple
Kawatsu, ChrisKoss, FrankGillies, AndyZhao, AaronCrossman, JacobPurman, BenStone, DaveDahn, Dawn
ABSTRACT The confluence of intra-vehicle networks, Vehicular Integration for (C4ISR) Command, Control Communication, Computers, Intelligence, Surveillance, Reconnaissance/(EW) Electronic Warfare Interoperability (VICTORY) standards and onboard general-purpose processors creates an opportunity to implement Army combat ground vehicle intercommunications (intercom) capability in software. The benefits of such an implementation include 1) SWAP savings, 2) cost savings, 3) simplified path to future upgrades and 4) enabling of potential new capabilities such as voice activated mission command. The VICTORY Standards Support Office (VSSO), working at the direction of its Executive Steering Group (ESG) members (Program Executive Office (PEO) Ground Combat Systems (GCS), PEO Combat Support and Combat Service Support (CS&CSS), PEO Command Control Communications-Tactical (C3T) and PEO Intelligence, Electronic Warfare and Sensors (IEW&S)), has developed and demonstrated a software intercom
Kelsch, GeoffreySerafinko, RobertFrissora, Anthony
ABSTRACT Over the past several years, the rate of advancements in modern computer hardware and graphics computing capabilities has increased exponentially and provided unprecedented opportunities within the Modeling and Simulation community to increase the visual fidelity and quality in new Image Generators (IGs). As a result, IG vendors are continuously reevaluating the best way to make use of these new performance improvements. Some vendors have chosen to increase the resolution of the environment by displaying higher resolution imagery from disk while other vendors have chosen to increase the number of polygons that are capable of being presented in the scene while maintaining 60Hz. While all of these approaches use the latest hardware technology to improve the quality of the simulated environment in the IG, the authors of this paper have chosen to focus on a different approach; to improve the accuracy and realism of the simulated environment. To accomplish this, the authors have
Kuehne, BobHebert, KennyChladny, Brett
ABSTRACT Although autonomy has the potential to help military drivers travel safely while performing other tasks, many drivers refuse to rely on the technology. Military drivers sometimes fail to leverage a vehicle’s autonomy because of a lack of trust. To address this issue, the current study examines whether augmenting the driver’s situational awareness will promote their trust in the autonomy. Results of this study are expected to provide new insights into promoting trust and acceptance of autonomy in military settings
Petersen, LukeTilbury, DawnRobert, LionelYang, Xi Jessie
ABSTRACT Latencies as small as 170 msec significantly degrade ground vehicle teleoperation performance and latencies greater than a second usually lead to a “move and wait” style of control. TORIS (Teleoperation Of Robots Improvement System) mitigates the effects of latency by providing the operator with a predictive display showing a synthetic latency-corrected view of the robot’s relationship to the local environment and control primitives that remove the operator from the high-frequency parts of the robot control loops. TORIS uses operator joystick inputs to specify relative robot orientations and forward travel distances rather than rotational and translational velocities, with control loops on the robot making the robot achieve the commanded sequence of poses. Because teleoperated ground vehicles vary in sensor suite and on-board computation, TORIS supports multiple predictive display methods. Future work includes providing obstacle detection and avoidance capabilities to support
Kluge, Karl C.Lacaze, AlbertoCelle, Zach LaLegowik, SteveMurphy, KarlThomson, Rob
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT The objective of this study was to optimize the occupant restraint systems (including both seatbelt and airbag) in a light tactical vehicle under frontal crash conditions through a combination of sled testing and computational modeling. Two iterations of computational modeling and sled testing were performed to find the optimal restraint design solutions for protecting occupants represented by three size of ATDs (namely Hybrid-III 5th percentile female ATD, 50th percentile male ATD, and 95th male ATD) and two military gear configurations, namely improved outer tactical vest (IOTV) and SAW Gunner configuration using a tactical assault panel (TAP). The sled tests with the optimized seatbelt and airbag designs provided significant improvement on the head, neck, chest, and femur injury risks compared to the baseline tests. This study demonstrated the benefit of adding a properly designed airbag and advanced seatbelt to improve the occupant protection in frontal crashes for a light
Hu, JingwenOrton, NicholeChen, CongRupp, Jonathan D.Reed, Matthew P.Gruber, RebekahScherer, Risa
ABSTRACT The AirLift is a novel device that enables rapid stabilized extraction of injured personnel from a ground vehicle. When deployed from its pre-installed position as a seat cover, the AirLift rigidizes for stabilizing the occupant’s spine by pressurizing an inflatable panel. After extraction from the vehicle with the occupant stabilized in the seated position, the AirLift can convert to a backboard so that the occupant can be safely transported in the supine position. The inflatable panel was designed and tested to provide stiffness while also being durable and manufacturable at volume. Pressure mapping tests were also performed to demonstrate that the AirLift did not change seat comfort compared to the standard seat. Citation: A. Purekar, G. Hiemenz, P. Gillis, “AirLift: Enabling Blast Protection and Rapid, Stabilized Vehicle Extraction”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
Purekar, AshishHiemenz, GregoryGillis, Paula
ABSTRACT One of the main thrusts in current Army Science & Technology (S&T) activities is the development of occupant-centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle structure is an enabling factor for faster transport, higher mobility, greater fuel conservation, higher payload, and a reduced ground footprint of supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic characteristics for mitigating blast loads are investigated. The Dynamic Response Index (DRI) metric [1] is employed as an occupant injury measure for determining the effectiveness of the each blast mitigation configuration that is considered. A model of the TARDEC Generic V-Hull
Jiang, WeiranVlahopoulos, NickolasCastanier, Matthew P.Thyagarajan, RaviMohammad, Syed
ABSTRACT The use of lead-free components in electronic modules destined for defense applications requires a deep understanding of the reliability risks involved. In particular, pad cratering, tin whiskers, shock and vibration, thermal cycling and combined environments are among the top risks. Testing and failure analysis of representative assemblies across a number of scenarios, including with and without risk mitigations, were performed to understand reliability of lead-free assembly approaches, in comparison with leaded and mixed solder approaches. The results lead to an understanding of lead-free reliability and how to improve it, when required. This outcome is resulting in user acceptance of lead-free electronics, which is timely given the increasing scope of lead-free legislation
Straznicky, Ivan
ABSTRACT This paper presents modeling methodology and results for a study of Soldier effectiveness in a hot environment. The effectiveness of Soldiers is diminished under conditions of high heat stress. Excessive heat stress will degrade mental and physical performance capabilities and eventually cause heat casualties. The core temperature of a human body provides the “best” single physiological measure to estimate physical work capabilities during hot weather operations. Prediction of Soldier effectiveness in extreme environments can be accomplished through the use of segmental human thermoregulation models. Differences in physiological characteristics among Soldiers can affect thermoregulatory response and must be accounted for when predicting effectiveness. Additionally, prediction accuracy can be improved by combining human thermoregulatory models with a complete characterization of the thermal environment. Human thermal models representing Soldiers with significant physiological
Hepokoski, MarkCurran, AllenKlein, MarkSmith, RobKorivi, Vamshi
ABSTRACT Currently, fielded ground robotic platforms are controlled by a human operator via constant, direct input from a controller. This approach requires constant attention on the part of the operator, decreasing situational awareness (SA). In scenarios where the robotic asset is non-line-of-sight (non-LOS), the operator must monitor visual feedback, which is typically in the form of a video feed and/or visualization. With the increasing use of personal radios, smart devices/wearable computers, and network connectivity by individual warfighters, the need for an unobtrusive means of robotic control and feedback is becoming more necessary. A proposed intuitive robotic operator control (IROC) involving a heads up display (HUD), instrumented gesture recognition glove, and ground robotic asset is described in this paper. Under the direction of the Marine Corps Warfighting Laboratory (MCWL) Futures Directorate, AnthroTronix, Inc. (ATinc) is implementing the described integration for
Baraniecki, LisaVice, JackBrown, JonathanNichols, JoshStone, DaveDahn, Dawn
Items per page:
1 – 50 of 19998