Browse Topic: Human Factors and Ergonomics
Letter from the Guest Editors
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
In the early days of computers, interfaces were paper printouts or blinking lights, but as the technology matured, the graphical user interface (GUI) quickly became the standard.
Letter from the Guest Editors
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
The implementation of active sound design models in vehicles requires precise tuning of synthetic sounds to harmonize with existing interior noise, driving conditions, and driver preferences. This tuning process is often time-consuming and intricate, especially facing various driving styles and preferences of target customers. Incorporating user feedback into the tuning process of Electric Vehicle Sound Enhancement (EVSE) offers a solution. A user-focused empirical test drive approach can be assessed, providing a comprehensive understanding of the EVSE characteristics and highlighting areas for improvement. Although effective, the process includes many manual tasks, such as transcribing driver comments, classifying feedback, and identifying clusters. By integrating driving simulator technology to the test drive assessment method and employing machine learning algorithms for evaluation, the EVSE workflow can be more seamlessly integrated. But do the simulated test drive results
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
In the highly competitive automotive industry, optimizing vehicle components for superior performance and customer satisfaction is paramount. Hydrobushes play an integral role within vehicle suspension systems by absorbing vibrations and improving ride comfort. However, the traditional methods for tuning these components are time-consuming and heavily reliant on extensive empirical testing. This paper explores the advancing field of artificial intelligence (AI) and machine learning (ML) in the hydrobush tuning process, utilizing algorithms such as random forest, artificial neural networks, and logistic regression to efficiently analyze large datasets, uncover patterns, and predict optimal configurations. The study focuses on comparing these three AI/ML-based approaches to assess their effectiveness in improving the tuning process. A case study is presented, evaluating their performance and validating the most effective method through physical application, highlighting the potential
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
There are some paradoxical keys to NVH engineering success that are not taught in engineering schools. This paper will describe these in detail and provide examples to add context. The first unexpected key is that a good generalist makes a better expert. The more you understand the complete product development process, and the better contacts you have throughout the product development organization, the easier it will be for you to find cost effective solutions to your specific issues. Next, you need to know your customers, and that means both internal and external customers. If you work for a supplier, it means knowing original equipment manufacturer (OEM) and end user customers. The more you understand the customers’ needs, the better you can address them and make your product stand out. Another key is to try to turn a crazy idea into something practical. Sometimes you might find a completely insane solution to your problem, such as making a major component out of solid gold. If you
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Southwest Research Institute is working to expand software normally used to model electrolytes and predict corrosion and turn it into a tool that can help determine whether ice-covered worlds have the right conditions for microbial life. The project is supported by NASA’s Habitable Worlds program, which seeks to use knowledge of the history of the Earth and the life upon it as a guide for determining the processes and conditions that create and maintain habitable environments.
Machining metal has its challenges as many shops will attest, but machining glass is another matter – one that Dan Bukaty Jr., President of Precision Glass & Optics (PG&O) is well schooled in. Mr. Bukaty and his 35-person shop manufacture high-end precision glass optics for customers such as IMAX, Intuitive Surgical, Boeing and NASA, to name a few. The products PG&O make can range from the ordinary to the extraterrestrial, such as mirrors that it fabricated for the Hobby–Eberly Telescope to measure dark energy in outer space.
Metabolic imaging is a noninvasive method that enables clinicians and scientists to study living cells using laser light, which can help them assess disease progression and treatment responses. But light scatters when it shines into biological tissue, limiting how deeply it can penetrate and hampering the resolution of captured images.
Using an array of tiny needles that are almost too small to see, researchers have developed a minimally invasive technique for sampling a largely unexplored human bodily fluid that could potentially provide a new source of information for routine clinical monitoring and diagnostic testing.
An invention that uses microchip technology in implantable devices and other wearable products such as smart watches can be used to improve biomedical devices including those used to monitor people with glaucoma and heart disease.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT, have developed a groundbreaking near-infrared (NIR) fluorescent nanosensor capable of simultaneously detecting and differentiating between iron forms — Fe(II) and Fe(III) — in living plants.
Scientists from Tomsk Polytechnic University and Saratov State University teamed up with colleagues from Taiwan and proposed to make a laser “blade” for a medical scalpel with a specified curved shape using a photonic “hook.” Currently there are laser scalpels only with an axisymmetric focus area, i.e., with a cylindrical blade. According to scientists, changing the shape of the blade will expand the possibilities of using the laser in medicine, while it is about two times thinner than the cylindrical option. The concept and its rationale are published in the Journal of Biophotonics.
Items per page:
50
1 – 50 of 20155