Browse Topic: Human Factors and Ergonomics

Items (20,113)
Dedicated lanes provide a simpler operating environment for ADS-equipped vehicles than those shared with other roadway users including human drivers, pedestrians, and bicycles. This final report in the Automation and Infrastructure series discusses how and when various types of lanes whether general purpose, managed, or specialty lanes might be temporarily or permanently reserved for ADS-equipped vehicles. Though simulations and economic analysis suggest that widespread use of dedicated lanes will not be warranted until market penetration is much higher, some US states and cities are developing such dedicated lanes now for limited use cases and other countries are planning more extensive deployment of dedicated lanes. Automated Vehicles and Infrastructure: Dedicated Lanes includes a review of practices across the US as well as case studies from the EU and UK, the Near East, Japan, Singapore, and Canada. Click here to access the full SAE EDGETM Research Report portfolio.
Coyner, KelleyBittner, Jason
Ride comfort is an important factor in the development of vehicles. Understanding the characteristics of seat components allows more accurate analysis of ride comfort. This study focuses on urethane foam, which is commonly used in vehicle seats. Soft materials such as urethane foam have both elastic and viscous properties that vary with frequency and temperature. Dynamic viscoelastic measurements are effective for investigating the vibrational characteristics of such materials. Although there have been many studies on the viscoelastic properties of urethane foam, no prior research has focused on dynamic viscoelastic measurements during compression to simulate the condition of a person sitting on a seat. In this study, dynamic viscoelastic measurements were performed on compressed urethane foam. Moreover, measurements were conducted at low temperatures, and a master curve using the Williams–Landel–Ferry (WLF) formula (temperature–frequency conversion law) was created.
Kamio, ChihiroYamaguchi, TakaoMaruyama, ShinichiHanawa, KazutoIwase, TsutomuHayashi, TatsuoSato, ToshiharuMogawa, Hajime
This paper explores methods to enhance the sound quality of V6 outboard engines. Previous research in the boat and outboard engine domain has underscored the importance of enhancing sound quality. Specific preferences and desired directions for outboard engine sound quality have been identified. It’s been suggested that controlling intake sound and gear noise is important to achieving desired sound quality according to customer preferences. However, there are few examples of methods for achieving this. This study aims to develop methods for enhancing sound quality by emphasizing low-frequency sounds through intake sound. Initially, various methods were evaluated, and intake valve timing modification was chosen. Simple simulations confirmed that delaying valve timing for some cylinders may introduce characteristics that are not present in conventional cases. Subsequent 1D simulations identified optimal intake valve timing, balancing intake pressure characteristics and horsepower
Muramatsu, HidetaMatsumoto, TaroNaoe, GakuKondo, Takashi
The arc welding process is essential for motorcycle frames, which are difficult to form in one piece because of their complex shapes, because a single frame has dozens of joints. Many of the damaged parts of the frames under development are from welds. Predicting the strength of welds with high reliability is important to ensure that development proceeds without any rework. In developing frames, CAE is utilized to build up strength before prototyping. Detailed weld shapes are not applicable to FE models of frames because weld shapes vary widely depending on welding conditions. Even if CAE is performed on such an FE model and the evaluation criteria are satisfied, the model may fail in the actual vehicle, possibly due to the difference between CAE and actual weld bead geometry. Therefore, we decided to study the extent to which the stresses in the joint vary with the variation of the weld bead geometry. Morphing, a FE modeling method and design of experiment method, was utilized to
Hada, YusukeSugita, Hisayuki
The possibilities and challenges of adding a rider model to the motorcycle dynamics simulation were investigated for the future planning of a full virtual test. The human model was added to a multi-body dynamics model that reproduces the equations of motion of a motorcycle, called the 10 degrees of freedom (10-DoF) model. The human model is composed from multiple masses and joints, and the steering angle can be controlled by determining the angle of the arms and shoulder. To study the effect of this model, three distinct simulations were carried out: ‘the eigenvalue analysis’, ‘the steady-state circular test simulation’ and ‘the slalom running simulation’. In the eigenvalue analysis, the eigenvalues of the wobble mode shifted to a stable side in the root locus when both hands were fixed on the handlebars. As a result of the slalom running simulation, the response of the handlebar control through the human model produced a more convex trajectory than a direct control of the steering
Ueki, MotohitoTakayama, AkihiroYabe, Noboru
Contemporary Japanese society relies heavily on vehicles for transportation and leisure. This has led to environmental concerns owing to vehicle emissions, prompting a shift toward environmentally friendly alternatives, such as clean diesel and electric vehicles. Clean diesel vehicles aim to reduce harmful emissions, whereas electric vehicles are favored because of their minimal emissions and quiet operation. However, the lack of engine noise in electric vehicles can make it difficult for drivers to perceive speed changes, potentially increasing the risk of accidents, and simply amplifying all sounds is not viable because it may cause discomfort. Therefore, this study explored how deviations from expected engine sounds affect the perceived sound quality and vehicle performance assessment. Unlike traditional gasoline-powered and clean diesel vehicles, electric vehicles produce very little running noise, which makes road surface noise more prominent. Given the novelty of electric
Nitta, MisakiIshimitsu, ShunsukeFujikawa, SatoshiIwata, KiyoakiNiimi, MayukoKikuchi, MasakazuMatsumoto, Mitsunori
Visual object tracking technology is the core foundation of intelligent driving, video surveillance, human–computer interaction, and the like. Inspired by the mechanism of human eye gaze, a new correlation filter (CF) tracking algorithm, named human eye gaze (HEG) tracking algorithm, was proposed in this study. The HEG tracking algorithm expanded the tracking detection idea from the traditional detection-tracking to detection-judging-tracking by adding a judging module to check the initial and retrack the unreliable tracking result. In addition, the detection module was further integrated into the edge contour feature on the basis of the HOG (histogram of oriented gradients) extracting feature and the color histogram to reduce the sensitivity of the algorithm to factors such as deformation and illumination changes. The comparison conducted on the OTB-2015 dataset showed that the overall overlap precision, distance precision, and center location error of the HEG tracking algorithm were
Jiang, YejieJiang, BinhuiChou, Clifford C.
These general operator precautions apply to off-road work machines as defined in SAE J1116. These should not be considered as all-inclusive for all specific uses and unique features of each particular machine. Other more specific operator precautions not mentioned herein should be covered by users of this recommended practice for each particular machine application.
OPTC1, Personnel Protection (General)
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle Locating the SgRP as a function of seat height (H30) Establishing seat track dimensions using the seating accommodation model Establishing a steering wheel position Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
Human Accom and Design Devices Stds Comm
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Pelvic pusher energy absorption pad in a vehicle saves the occupant from pelvic injuries in the event of a crash, especially side or pole crash. This pelvic pusher pad plays a crucial role in absorbing the impact energy from the body side and minimizing the impact to the occupant. Positioning of pelvic pusher pad with respect to occupant manikin position and torso angle, stiffening criteria for the energy absorption pad, maximum force and energy absorption target setting methodology and evaluation methods through CAE and part level physical validations are all discussed in detail. Pelvic pusher pad are of various types such as EPP moulded, blow moulded or injection moulded and the criteria differ for each type. For EPP moulded type, based on the EPP grade, S-S Graph gets converted to F-S Graph and validated accordingly. F-S Graph for a test vehicle is generated through sled test where the sled is made to impact the pelvis of ES2 Dummy at a constant velocity and the F-S Graph is
S M, Rahuld, AnanthaKakani, Phani KumarMalliboina, Mahendra
Efficient and sustainable transportation in urban environments depends on understanding driving behaviors, and their implications. This study explores into the distinction between aggressive and non-aggressive driving patterns, leveraging an on-road driving dataset provided by an automotive company. By contrasting this data with established Fuel Economy cycles from United States Environmental Protection Agency (EPA) and employing curve-fitting techniques, the research not only reveals driving patterns but also predicts potential behaviors in unfamiliar scenarios. Results show significantly different acceleration profile patterns between different driving behaviors which has serious impact in fuel economy and environmental wellness. The findings highlights the environmental impact of driving behaviors, paving the way for environmentally responsible policy recommendations and sustainable driving practices.
Padmanaban, GandhimathiFeng, FredDai, EdwardSaini, AnkitHu, GuopengZhao, Yanan
In order to effectively improve the chassis handling stability and driving safety of intelligent electric vehicles (IEVs), especially in combing nonlinear observer and chassis control for improving road handling. Simultaneously, uncertainty with system input, are always existing, e.g., variable control boundary, varying road input or control parameters. Due to the higher fatality rate caused by variable factors, how to precisely chose and enforce the reasonable chassis prescribed performance control strategy of IEVs become a hot topic in both academia and industry. To issue the above mentioned, a fuzzy sliding mode control method based on phase plane stability domain is proposed to enhance the vehicle’s chassis performance during complex driving scenarios. Firstly, a two-degree-of-freedom vehicle dynamics model, accounting for tire non-linearity, was established. Secondly, combing with phase plane theory, the stability domain boundary of vehicle yaw rate and side-slip phase plane based
Liao, YinshengWang, ZhenfengGuo, FenghuanDeng, WeiliZhang, ZhijieZhao, BinggenZhao, Gaoming
Headlight glare remains a persistent problem to the U.S. driving public. Over the past 30 years, vehicle forward lighting and signaling systems have evolved dramatically in terms of styling and lighting technologies used. Importantly, vehicles driven in the U.S. have increased in size during this time as the proportion of pickup trucks and sport-utility vehicles (SUVs) has increased relative to passenger sedans and other lower-height vehicles. Accordingly, estimates of typical driver eye height and the height of lighting and signaling equipment on vehicles from one or two decades ago are unlikely to represent the characteristics of current vehicles in the U.S. automotive market. In the present study we surveyed the most popular vehicles sold in the U.S. and carried out evaluations of the heights of lighting and signaling systems, as well as typical driver eye heights based on male and female drivers. These data may be of use to those interested in understanding how exposure to vehicle
Bullough, John D.
The proportion of pedestrian fatalities due to traffic accidents is higher at night than during the day. Drivers can more easily recognize pedestrians by setting their headlights to high beam, but use of high beam poses the issue of increasing glare for pedestrians. This study proposes a lighting technology that increases the noticeability of pedestrians for drivers and the noticeability of approaching vehicles for pedestrians while at the same time helping to reduce glare for pedestrians. The newly designed lighting enables geometric patterns projection lighting that makes use of projection technology. This geometric pattern projection lighting was compared with conventional low beam and high beam headlights to verify the effectiveness. Tests were conducted on a closed course with the participation of 20 drivers to evaluate the functionality of each headlight type. In these tests, subjects performed specific tasks such as evaluation of pedestrian visibility from the driver’s point of
Kawamura, KazuyukiOshida, Kei
Drivers sometimes operate the accelerator pedal instead of the brake pedal due to driver error, which can potentially result in serious accidents. To address this, the Acceleration Control for Pedal Error (ACPE) system has been developed. This system detects such errors and controls vehicle acceleration to prevent these incidents. The United Nations is already considering regulations for this technology. This ACPE system is designed to operate at low speeds, from vehicle standstill to creep driving. However, if the system can detect errors based on the driver's operation of the accelerator pedal at various driving speeds, the system will be even more effective in terms of safety. The activation threshold of ACPE is designed to detect operational errors, and it is necessary to prevent the system from being activated during operational operations other than operational errors, i.e., false activation. This study focuses on the pedal operation characteristics of pedal stroke speed and
Natsume, HayatoShen, ShuncongHirose, Toshiya
In the Baja race, off-road vehicles need to run under a variety of real and complex off-road conditions such as pebble road, shell pit, stone bad road, hump, water puddle, etc. In the process of this high-intensity and high-concentration race, the unoptimized design of the cab in ergonomics will easily cause the driver's visual and handling fatigue, so that the driver's attention is not concentrated. Cause the occurrence of security accidents. Moreover, lower back pain, sciatic nerve discomfort, lumbar spine diseases and other occupational diseases are basically caused by uncomfortable driving posture and unreasonable control matching, and these have a lot to do with unreasonable ergonomic design. In order to solve these problems, firstly establish the human body model of the driver, and then build the BSC racing car model by using 3D modeling software Catia. Then use the ergonomics simulation software Jack to analyze the visibility, accessibility and comfort. Based on the simulation
Liu, YuzhouLiu, Silang
During a pitch-over event, the forward momentum of the combined bicycle and rider is suddenly arrested causing the rider and bicycle to rotate about the front wheel and also possibly propelling the rider forward. This paper examines the pitch-over of a bicycle and rider using two methods different from previous approaches. One method uses Newton’s 2nd Law directly and the other method uses the principle of impulse and momentum, the integrated form of Newton’s 2nd Law. The two methods provide useful equations, contributing to current literature on the topic of reconstructing and analyzing bicycle pitch-over incidents. The analysis is supplemented with Madymo simulations to evaluate the kinematics and kinetics of the bicycle and rider interacting with front wheel obstructions of different heights. The effect of variables such as rider weight, rider coupling to the bicycle, bicycle speed, and obstruction height on resulting kinematics were evaluated. The analysis shows that a larger
Brach, R. MatthewKelley, MireilleVan Poppel, Jon
With the widespread application of the Automatic Emergency Braking System (AEB) in vehicles, its impact on pedestrian safety has received increasing attention. However, after the intervention of AEB, the kinematic characteristics of pedestrian leg collisions and their corresponding biological injury responses also change. At the same time, in order to accurately evaluate the pedestrian protection performance of vehicles, the current assessment regulations generally use advanced pedestrian protection leg impactors (aPLI) and rigid leg impactors (TRL) to simulate the movement and injury conditions of pedestrian legs. Based on this, in order to explore the collision boundary conditions and changes in injury between vehicles and APLI and TRL leg impactors under the action of AEB, this paper first analyzes the current passive and active assessment conditions. Secondly, the simulation software LS-DYNA is used to build a finite element model of APLI and TRL impactor-vehicle collisions to
Ye, BinHong, ChengWan, XinmingLiu, YuCheng, JamesLong, YongchenHao, Haizhou
The skull-brain interface is structurally complex, and various simplification methods have been employed in existing head models to simulate the interaction between the skull and the brain. The modeling approach of the skull-brain interface determines how loads are transmitted to the interior, which is critical for accurately simulating head injuries. Thus, understanding the impact of current skull-brain interface modeling approaches on intracranial simulation results is significant. This study aims to explore the influence of different skull-brain interface modeling methods on the results of finite element models during the development of Advanced Chinese Human Body Models (AC-HUMs) based on the LS-DYNA solver. By comparing the responses of rigidly bonded connections (tied Contact), failure-allowing bonded contacts (tiebreak Contact), shared nodes, and arbitrary Lagrangian-Eulerian (ALE) methods under the Nahum 37 test load conditions, the study analyzes the effects of different
Gan, Qiuyujiang, YejieJunpeng, XuZhou, RunzhouZhang, LiyingJiang, Binhui
With the increasing adoption of Zero-Gravity Seats in intelligent cockpits, there is a growing concern over the safety of occupants in reclined postures during collisions. The newly released anthropomorphic test device (ATD), THOR-AV, has modified the neck, spine, and pelvis structures to better match reclined postures. This study aims to investigate the changes in kinematic response and injury metrics for occupants in reclined postures, through high-speed frontal sled tests utilizing the THOR-AV. The tests were conducted using an adjustable rigid seat with a zero-gravity characteristic and an integrated three-point seat belt. Six tests were performed across four seat configurations: Standard, Semi-Reclined, Reclined, and Zero-gravity postures. The input acceleration pulse for these tests was derived from the equivalent double trapezoidal waveform of the Mobile Progressive Deformable Barrier (MPDB) test. Data from sensors and high-speed video were collected for analysis. The results
Wang, QiangLiu, YuFei, JingYang, XiaotingWang, PeifengBai, Zhonghao
There are numerous commercially available neck and back support/cushion/pillow devices which are commonly attached to seats by vehicle owners. To our knowledge, there has been no published research on the biomechanical effects of these devices in low-speed rear impacts. To address this, a series of 54 simulated low-speed rear impact tests were conducted using a validated remote-controlled crash sled system. All tests utilized an instrumented BioRID II rear impact anthropomorphic test device (ATD) restrained using a 3-point seatbelt system in a 2018 Toyota Camry LE driver’s seat. Two delta-V ranges were used: a lower range from 7.2 to 8.0 kph (4.5 to 5.0 mph) and a higher range from 10.5 to 11.3 kph (6.5 to 7.0 mph). Six neck only devices, one combination neck and back device, and three back only devices were assessed. Two tests per delta-V range for each device and each device adjustment position were conducted and compared against five reference tests without any devices at each delta
Phan, AndrewGross, JamieUmale, SagarCrowley, ShannonGlasser, GabrielFurbish, Christopher
The electric vehicle market, vehicle ECU computing power, and connected electronic vehicle control systems continue to grow in the automotive industry. The results of these advanced and expanded vehicle technologies will provide customers with increased cost savings, safety, and ride quality benefits. One of these beneficial technologies is the tire wearing prediction. The improved prediction of tire wear will advise a customer the best time to change tires. It is expected that this prediction algorithms will be essential part for both the optimization of the chassis control systems and ADAS systems to respond to changed tire performance that varies with a tire’s wear condition. This trend is growing, with many automakers interested in developing advanced technologies to improve product quality and safety. This study is aimed at analyzing the handling and ride comfort characteristics of the tire according to the depth of tire pattern wear change. The handing and ride comfort
Kim, ChangsuKwon, SeungminSung, Dae-UnRyu, YonghyunKo, Younghee
With the continuous development of automotive intelligence, there is an increasing demand for vehicle chassis systems to become more intelligent, electronically controlled, integrated, and lightweight. In this context, the steer-by-wire system, which is electronically controlled, offers high precision and fast response. It provides greater flexibility, stability, and comfort for the vehicle, thus meeting the above requirements and has garnered widespread attention. Unlike traditional systems, the steer-by-wire system eliminates mechanical components, meaning the road feel cannot be directly transmitted to the steering wheel. To address this, the road feel, which is derived from the vehicle's state or integrated with environmental driving data, must be simulated and transmitted to the steering wheel through a road feel motor. This motor generates feedback that mimics the road feel, similar to that experienced in a conventional steering system. This simulation enhances the driver's
Li, ShangKaku, ChuyoZheng, HongyuZhang, Yuzhou
Objective: This study aims to evaluate the biofidelity of the Advanced Chinese Human Body Model (AC-HUMs) by utilizing a generic sedan buck model and post-mortem human surrogates (PMHS) test data. Methods: The boundary conditions of the simulation were derived from the PMHS test with the buck vehicle. The methodology involved the pose adjustment of the upper and lower extremities of AC-HUMs, executed through a pre-simulation approach. Subsequently, a 200 milliseconds whole body pedestrian crash simulation was conducted using the buck vehicle and the AC-HUMs pedestrian model. The trajectories of AC-HUMs during the period from initial position to head impact were recorded, including the Head CG, T1, T8 and pelvis. Based on the knee joint, the corridors of trajectories from the PMHS test were scaled to match the Chinese 50th percentile male to evaluate the biofidelity of AC-HUMs's kinematic response. Furthermore, the biomechanical responses were compared with the PMHS tests, including
Qian, JiaqiWang, QiangLiu, YuWu, XiaofanHuida, ZhangBai, Zhonghao
With the increasing prevalence of Automatic Emergency Braking Systems (AEB) in vehicles, their performance in actual collision accidents has garnered increasing attention. In the context of AEB systems, the pitch angle of a vehicle can significantly alter the nature of collisions with pedestrians. Typically, during such collisions, the pedestrian's legs are the first to come into contact with the vehicle's front structure, leading to a noticeable change in the point of impact. Thus, to investigate the differences in leg injuries to pedestrians under various pitch angles of vehicles when AEB is activated, this study employs the Total Human Model for Safety (THUMS) pedestrian finite element model, sensors were established at the leg location based on the Advanced Pedestrian Legform Impactor (APLI), and a corresponding vehicle finite element model was used for simulation, analyzing the dynamic responses of the pedestrian finite element model at different pitch angles for sedan and Sport
Hong, ChengYe, BinZhan, ZhenfeiLiu, YuWan, XinmingHao, Haizhou
As global warming and environmental problems are becoming more serious, tires are required to achieve a high level of performance trade-offs, such as low rolling resistance, wet braking performance, driving stability, and ride comfort, while minimizing wear, noise, and weight. However, predicting tire wear life, which is influenced by both vehicle and tire characteristics, is technically challenging so practical prediction method has long been awaited. Therefore, we propose an experimental-based tire wear life prediction method using measured tire characteristics and the wear volume formula of polymer materials. This method achieves practical accuracy for use in the early stages of vehicle development without the need for time-consuming and costly real vehicle tests. However, the need for improved quietness and compliance with dust regulations due to vehicle electrification requires more accuracy, leading to an increase in cases requiring judgment through real vehicle tests. To address
Ando, Takashi
This paper introduces a novel approach to optimize battery power usage and optimal engine torque for Axle disconnect device engagement under power constrained scenarios for range extended hybrid vehicles. Range extended hybrid architecture provides benefits of BEV architecture and relief the range anxiety that BEV drivers often have. The Axle disconnect device helps improve the efficiency of the battery power usage when it is disconnected and provides better drivability and performance to fulfill driver demand when it is connected [1]. Under power constraint scenario, the disconnect device engagement could take too long or eventually fail to engage and result in degradation for drivability and vehicle level performance. This novel approach is utilizing the engine to either generate more power to spin up the disconnect motor faster under discharge limited case or generate less power to allow the disconnect motor to spin down under charge limited case. The effectiveness of this approach
Sha, HangxingMadireddy, Krishna ChaitanyaBanuso, AbdulquadriKhanal, ShishirRock, JoePatel, Nadirsh
Items per page:
1 – 50 of 20113