Browse Topic: Human Factors and Ergonomics

Items (20,155)
Vehicular accident reconstruction is intended to explain the stages of a collision. This also includes the description of the driving trajectories of vehicles. Stored driving data is now often available for accident reconstruction, increasingly including gyroscopic sensor readings. Driving dynamics parameters such as lateral acceleration in various driving situations are already well studied, but angular rates such as those around the yaw axis are little described in the literature. This study attempts to reduce this gap somewhat by evaluating high-frequency measurement data from real, daily driving operations in the field. 813 driving maneuvers, captured by accident data recorders, were analyzed in detail and statistically evaluated. These devices also make it possible to record events without an accident. The key findings show the average yaw rates as a function of driving speed as well as the ratio between mean and associated peak yaw rate. Beyond that, considerably lower yaw rates
Fuerbeth, Uwe
Trajectory planning is a major challenge in robotics and autonomous vehicles, ensuring both efficient and safe navigation. The primary objective of this work is to generate an optimal trajectory connecting a starting point to a destination while meeting specific requirements, such as minimizing travel distance and adhering to the vehicle’s kinematic and dynamic constraints. The developed algorithms for trajectory design, defined as a sequence of arcs and straight segments, offer a significant advantage due to their low computational complexity, making them well-suited for real-time applications in autonomous navigation. The proposed trajectory model serves as a benchmark for comparing actual vehicle paths in trajectory control studies. Simulation results demonstrate the robustness of the proposed method across various scenarios.
Soundouss, HalimaMsaaf, MohammedBelmajdoub, Fouad
The reliability and performance of steering systems in commercial vehicles are paramount, given their direct impact on reducing hazardous driving and improving operational efficiency. The torque overlay system is designed to enhance driver control, feedback, and reduce driver fatigue. However, vulnerabilities such as water ingress under certain environmental conditions have raised significant reliability requirements. This article discusses the systematic investigation into how radial bearing sideloading led to the input shaft seal failing to contact the input shaft. Water was allowed a path to enter the TOS module, affecting the electronic sensor, and faulting out the ADAS functionality. Improvement to the bearing support and sealing design culminated to an enhanced TOS module package able to withstand testing procedures that mimic the environmental and use case situation which caused the ingress.
Bari, Praful RajendraKintner, Jason
Image dehazing techniques can play a vital role in object detection, surveillance, and accident prevention, especially in scenarios where visibility is compromised because of light scattering by atmospheric particles. To obtain a high-quality image or as an initial step in processing, it’s crucial to restore the scene’s information from a single image, given that this is an ill-posed inverse problem. The present approach utilized an unsupervised learning approach to predict the transmission map from a hazy image and used YOLOv8n to detect the car from a clear recovered image. The dehazing model utilized a lightweight parallel channel architecture to extract features from the input image and estimate the transmission map. The clear image is recovered using an atmospheric scattering model and given to the YOLOv8n for car detection. By incorporating dark channel prior loss during training, the model eliminates the need for a paired dataset. The proposed dehazing model with fewer
Dave, ChintanPatel, HetalKumar, Ahlad
Public buses can be high-risk environments for the transmission of airborne viruses due to the confined space and high passenger density. However, advanced cabin air control systems and other measures can mitigate this risk. This research was conducted to explore various strategies aimed at reducing airborne particle transmission in bus cabins by using retrofit accessories and a redesigned parallel ventilation system. Public transit buses were used for stationary and on-road testing. Air exchange rates (ACH) were calculated using CO2 gas decay rates measured by low-cost sensors throughout each cabin. An aerosol generator (AG) was placed at various locations inside the bus and particle concentrations were measured for various experiments and ventilation configurations. The use of two standalone HEPA air filters lowered overall concentrations of particles inside the bus cabin by a factor of three. The effect of using plastic “barriers” independently showed faster particle arrival times
Lopez, BrendaSwanson, JacobDover, KevinRenck, EvanChang, M.-C. OliverJung, Heejung
Letter from the Guest Editors
Wang, ZhenfengZhang, YunqingQi, RonghuaiLu, Yukun
Researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) previously conducted a full-scale crash test of a Fokker F28 MK1000 aircraft to study occupant injury risks. The goal of the current study was to investigate the injury predictions of the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS) occupant models in the tested aircraft crash condition and explore possible utilization of both human body models (HBMs) in this context. Eight crash conditions were simulated utilizing each of the models. The HBMs were positioned in two postures, a neutral upright posture with hands resting on the legs and feet contacting the floor and a braced posture with head and hand contact with the forward seat back. Head and neck injury metrics and lumbar vertebra axial force were calculated and compared for all simulations. Both HBMs reported similar kinematic responses in the simulated impact conditions. However, the GHBMC
Jones, NathanielPutnam, JacobUntaroiu, Costin Daniel
Recent studies have found that Brain Injury Criteria (BrIC) grossly overpredicts instances of real-world, severe traumatic brain injury (TBI). However, as it stands, BrIC is the leading candidate for a rotational head kinematics-based brain injury criteria for use in automotive regulation and general safety standards. This study attempts to understand why BrIC overpredicts the likelihood of brain injury by presenting a comprehensive analysis of live primate head impact experiments conducted by Stalnaker et al. (1977) and the University of Pennsylvania before applying these injurious conditions to a finite element (FE) monkey model. Data collection included a thorough analysis and digitization of the head impact dynamics and resulting pathology reports from Stalnaker et al. (1977) as well as a representative reconstruction of the Penn II baboon diffuse axonal injury (DAI) model. Computational modeling techniques were employed on a FE Rhesus monkey model, first introduced by Arora et al
Demma, Dominic R.Tao, YingZhang, LiyingPrasad, Priya
Current voluntary standards for wheelchair crashworthiness only test under frontal and rear impact conditions. To help provide an equitable level of safety for occupants seated in wheelchairs under side impact, we developed a sled test procedure simulating nearside impact loading using a fixed staggered loading wall. Publicly available side impact crash data from vehicles that could be modified for wheelchair use were analyzed to specify a relevant crash pulse. Finite element modeling was used to approximate the side impact loading of a wheelchair during an FMVSS No. 214 due to vehicle intrusion. Validation sled tests were conducted using commercial manual and power wheelchairs and a surrogate wheelchair base fixture. Test procedures include methods to position the wheelchair to provide consistent loading for wheelchairs of different dimensions. The fixture and procedures can be used to evaluate the integrity of wheelchairs under side impact loading conditions.
Boyle, KyleHu, JingwenManary, MiriamOrton, Nichole R.Klinich, Kathleen D.
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
Driving Skills Standards Committee
The existing variable speed limit (VSL) control strategies rely on variable message signs, leading to slow response times and sensitivity to driver compliance. These methods struggle to adapt to environments where both connected automated vehicles (CAVs) and manual vehicles coexist. This article proposes a VSL control strategy using the deep deterministic policy gradient (DDPG) algorithm to optimize travel time, reduce collision risks, and minimize energy consumption. The algorithm leverages real-time traffic data and prior speed limits to generate new control actions. A reward function is designed within a DDPG-based actor-critic framework to determine optimal speed limits. The proposed strategy was tested in two scenarios and compared against no-control, rule-based control, and DDQN-based control methods. The simulation results indicate that the proposed control strategy outperforms existing approaches in terms of improving TTS (total time spent), enhancing the throughput efficiency
Ding, XibinZhang, ZhaoleiLiu, ZhizhenTang, Feng
In the early days of computers, interfaces were paper printouts or blinking lights, but as the technology matured, the graphical user interface (GUI) quickly became the standard.
Letter from the Guest Editors
Liang, CiTörngren, Martin
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
Bray, Wade
With the current popularity of new energy vehicles and the continuous development of intelligent cabin technology, the demand for acoustic comfort within automotive cockpit is increasing. A multi-channel feedforward active sound design and control method was proposed to improve the sound quality of the hybrid broadband road and narrowband order noise inside the test vehicle. The method selectively designed the target amplitudes for broadband noise and narrowband noise in the vehicle to satisfy passengers comfort, mainly including the sound design phase and the control phase. During the sound design phase, objective sound quality parameter analysis was first conducted on the noise of the prototype vehicle, followed by an subjective evaluation of the sound quality with rating scale method. An active acoustic design strategy focusing on comfort, motivation sense were proposed, including a formula for the target amplitude of adjustment order and sound pressure level. The sound quality was
Liu, XuexianXu, WenxuanLi, RubinLu, Lu
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Kumar, AdityaIppili, Rajani
Powertrain mounts are vital for isolating vibrations and enhancing vehicle ride comfort and performance, making their dynamic behavior critical for effective design. This study provides a comprehensive analysis of powertrain mount decoupling by integrating virtual simulations, physical testing, and analytical calculations. In our approach, we first derived stiffness data through analytical calculations, which were validated through multi-body dynamics (MBD) simulations that modeled interactions within the powertrain mounts. By adjusting bush stiffness parameters within the MBD framework, we predicted decoupling frequencies and analyzed kinetic energy distribution. The iterated stiffness values from simulations were then confirmed through physical testing, ensuring consistency in decoupling frequencies and energy distribution. This alignment between virtual and experimental data enhances the reliability of our findings and helps identify overlapping frequencies across vehicle systems
Shende, KalyaniShingavi, ShreyasRane, VisheshHingade, Nikhil
The frequency and amplitude content of powertrain noise is motor torque and speed dependent and tends to influence the driver’s subjective perception of the vehicle. This provides manufacturers with an opportunity to drive product differentiation through consideration of powertrain noise in early stages of the development cycles for electric vehicles (EVs). This paper focuses on the evaluation of customer preference and perception of acoustic feedback from different powertrain design options based on targeted powertrain orders and expected wind and road masking during high acceleration maneuvers. A jury study is used to explore customer feedback to a two-stage gearbox design with AC permanent magnet motor order combinations. The subjective influence of order spacing, dominant frequency content and the number of audible orders is studied to understand aural perspective product differentiation opportunities.
Joodi, BenjaminJayakumar, VigneshConklin, ChrisPilz, FernandoIyengar, ShashankWeilnau, KelbyHodgkins, Jeffrey
The implementation of active sound design models in vehicles requires precise tuning of synthetic sounds to harmonize with existing interior noise, driving conditions, and driver preferences. This tuning process is often time-consuming and intricate, especially facing various driving styles and preferences of target customers. Incorporating user feedback into the tuning process of Electric Vehicle Sound Enhancement (EVSE) offers a solution. A user-focused empirical test drive approach can be assessed, providing a comprehensive understanding of the EVSE characteristics and highlighting areas for improvement. Although effective, the process includes many manual tasks, such as transcribing driver comments, classifying feedback, and identifying clusters. By integrating driving simulator technology to the test drive assessment method and employing machine learning algorithms for evaluation, the EVSE workflow can be more seamlessly integrated. But do the simulated test drive results
Hank, StefanKamp, FabianGomes Lobato, Thiago Henrique
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
Redon, MilanDendievel, ClementPluton, Matthias
In the highly competitive automotive industry, optimizing vehicle components for superior performance and customer satisfaction is paramount. Hydrobushes play an integral role within vehicle suspension systems by absorbing vibrations and improving ride comfort. However, the traditional methods for tuning these components are time-consuming and heavily reliant on extensive empirical testing. This paper explores the advancing field of artificial intelligence (AI) and machine learning (ML) in the hydrobush tuning process, utilizing algorithms such as random forest, artificial neural networks, and logistic regression to efficiently analyze large datasets, uncover patterns, and predict optimal configurations. The study focuses on comparing these three AI/ML-based approaches to assess their effectiveness in improving the tuning process. A case study is presented, evaluating their performance and validating the most effective method through physical application, highlighting the potential
Hazra, SandipKhan, Arkadip Amitava
Tires have a significant impact on vehicle road noise. The noise in 80~160Hz is easily felt when driving on rough roads and has a great relationship with the tire structural design. How to improve the problem through tire simulation has become an important issue. Therefore, this paper puts forward the concept of virtual tire tuning to optimize the noise. An appropriate tire model is crucial for road noise performance, and the CDtire (Comfort and Durability Tire) model was used in the article. After conducting experimental validation to get an accurate tire model, adjust the parameters and structure of the tire model to generate alternative model scenarios. The transfer function of the tire center was analyzed and set as the evaluation condition for tire NVH (Noise, vibration, and harshness) performance. This enabled a comparison among various model scenarios to identify the best-performing tire scenario in focused frequency whose transfer function needed to be lowest. Manufacture the
Zhang, BenYu Sr, JingChen, QimiaoLiu, XianchenGu, Perry
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. While the use of electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets, hybridized propulsion solutions will continue to play a vital role in the electrification strategy of vehicle manufacturers. Plug-in hybrid electric vehicles (PHEV) and range extender vehicles (REx) come with unique NVH challenges due to their different possible operation modes. First, the paper outlines different driveline and vehicle architectures for PHEV and REx. Given the multiple general architectures, as well as operation modes which typically accompany these vehicles, NVH characterizations and noise source-path analysis can be more complicated than conventional vehicles. In the following steps, typical NVH related challenges are highlighted and potential solutions for NVH optimization are
Wellmann, ThomasFord, AlexPruetz, Jeffrey
The multifaceted, fast-paced evolution in the automotive industry includes noise and vibration (NVH) behavior of products for regulatory requirements and ever-increasing customer preferences and expectations for comfort. There is pressing need for automotive engineers to explore new and advanced technologies to achieve a ‘First Time Right’ product development approach for NVH design and deliver high-quality products in shorter timeframes. Artificial Intelligence (AI) and Machine Learning (ML) are trending transformative technologies reshaping numerous industries. AI enables machines to replicate human cognitive functions, such as reasoning and decision-making, while ML, a branch of AI, employs algorithms that allow systems to learn and improve from data over time. The purpose of the paper is to show an approach of using machine learning techniques to analyze the impact of variations in structural design parameters on vehicle NVH responses. The study begins by executing the Design of
Miskin, Atul R.Parmar, AzanRaj, SoniaHimakuntla, Uma Maheswar
Two wheeler is important and essential transportation mode in many of the countries across the globe. Designing a motorcycle with better riding comfort and minimal vibration are thus a major challenge for engineers now a day. Engine and road excitations are two source of vibration acting on motor bike or scooter both. These vibrations are transmitted to the chassis, sub chassis, aesthetic parts and then to the rider and pillion. Unwanted vibrations will create discomfort to the rider/pillion and produce noise. Hence, these need to be minimized. This study is focus on diagnosis and control of output vibration response of sub chassis/aesthetic parts due to engine unbalanced excitation force. There are numerous parameter of motor bike/scooter that governs the vibration response of sub chassis/aesthetic parts. Engine unbalanced inertia force characteristics and their transmission to rider and pillion has been studied and reported here. Environmental benefit demands for a complete noise
Khare, Saharash
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
Norris, Mark A.Orzechowski, JeffreySanderson, BradSwanson, DouglasVantimmeren, Andrew
New mobility concepts with smart infrastructure have led to enhanced customer driving experience. The potential to develop safe cars with minimal driver intervention is a great need of the future. The cusp for fully autonomous driving has produced much technical talk, which has led to faster transition and adoption. One of the features that global OEMs have tried to focus on, is Human Machine Interface (HMI) solutions, popularly called display screens. The touchscreen HMIs are common in all mid-range budget cars. They offer driver support beyond just streaming music, including inputs for navigation, parking assistance, in-car technologies, Advanced Driver Assistance Systems (ADAS), and infotainment. Poor display screen visibility is a phenomenon observed when a vehicle is driven over different road surfaces. This paper presents a user-centric approach for the right design & development of the HMI for a vibration free driving experience. The mounting strategies for the display screens
Adil, MD ShahzadC M, MithunMohammed, RiyazuddinR, Prasath
The world of plastic products has been growing due to its versatile properties and has become an intrinsic and fundamental part of engineering for new products. The most important aspects contributing to this spectacular growth are the design and assembly, making sure that plastic parts are designed optimally. The safety requirements have been increased due to the safety ratings and thus interior parts must provide more absorption and protection to occupants. The main connection types used in the plastic parts are heat stakes and snap fits. The purpose of a good snap fit is not only to have a high retention effort but also to present ergonomic characteristics with optimal insertion and extraction effort because each part requires a different function. With the time-dependent loading, the material will redistribute its internal energy thereby performing a time-related flow leading to reduced pretension thus decreasing stiffness. This paper presents an analytical and numerical method for
Michael Stephan, Navin Estac RajaC M, MithunMohammed, RiyazuddinR, Prasath
Subjective perception of vehicle secondary ride is dependent on simultaneous touchpoint vibrations and audible inputs to the occupants. Standards such as ISO 2361 provide guidelines for objective assessments of human body thresholds to vibration [1]. However, when a human experiences vibration inputs at multiple touchpoints, as well as aural inputs, it becomes complicated to judge each individual contribution to the overall subjective perception [2]. Additional factors, such as ambient conditions, ergonomics, age, gender etc. also play a role. Secondary ride, which is defined as energy in the 10-30 Hz frequency range, is one such event that affects the customers’ perception of ride comfort and quality. The goal of this work is to develop a sound and vibration simulator model and execute a secondary ride jury study of vehicle driving over cleats. The aim of the study is to rank the contributions of each touch point vibration input, as well as sound to the overall subjective perception
Jayakumar, VigneshJoodi, BenjaminGeissler, ChristianPilz, FernandoLynch, LukeConklin, ChrisWeilnau, KelbyHodgkins, Jeffrey
There are some paradoxical keys to NVH engineering success that are not taught in engineering schools. This paper will describe these in detail and provide examples to add context. The first unexpected key is that a good generalist makes a better expert. The more you understand the complete product development process, and the better contacts you have throughout the product development organization, the easier it will be for you to find cost effective solutions to your specific issues. Next, you need to know your customers, and that means both internal and external customers. If you work for a supplier, it means knowing original equipment manufacturer (OEM) and end user customers. The more you understand the customers’ needs, the better you can address them and make your product stand out. Another key is to try to turn a crazy idea into something practical. Sometimes you might find a completely insane solution to your problem, such as making a major component out of solid gold. If you
Reinhart, Thomas
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual
Rodrigues Ferraz Esteves, Ana RaquelCampos Magalhães, Eduardo MiguelBernardes de Almeida, Gilberto
This recommended practice is intended to provide general guidelines for the selection and proper use of technologies and methods intended to minimize the risk of exposure to infection through light-duty vehicle cabin air. It is not intended to include all aspects of cabin air quality, including odor, inorganic particulates, volatile organic compounds (VOCs), etc.
Cabin Disinfection Practices Committee
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Kaestner, DanielGebhard, GernotHuembert, ChristianPister, MarkusWegener, SimonFerdinand, Christian
Southwest Research Institute is working to expand software normally used to model electrolytes and predict corrosion and turn it into a tool that can help determine whether ice-covered worlds have the right conditions for microbial life. The project is supported by NASA’s Habitable Worlds program, which seeks to use knowledge of the history of the Earth and the life upon it as a guide for determining the processes and conditions that create and maintain habitable environments.
Machining metal has its challenges as many shops will attest, but machining glass is another matter – one that Dan Bukaty Jr., President of Precision Glass & Optics (PG&O) is well schooled in. Mr. Bukaty and his 35-person shop manufacture high-end precision glass optics for customers such as IMAX, Intuitive Surgical, Boeing and NASA, to name a few. The products PG&O make can range from the ordinary to the extraterrestrial, such as mirrors that it fabricated for the Hobby–Eberly Telescope to measure dark energy in outer space.
Metabolic imaging is a noninvasive method that enables clinicians and scientists to study living cells using laser light, which can help them assess disease progression and treatment responses. But light scatters when it shines into biological tissue, limiting how deeply it can penetrate and hampering the resolution of captured images.
Using an array of tiny needles that are almost too small to see, researchers have developed a minimally invasive technique for sampling a largely unexplored human bodily fluid that could potentially provide a new source of information for routine clinical monitoring and diagnostic testing.
An invention that uses microchip technology in implantable devices and other wearable products such as smart watches can be used to improve biomedical devices including those used to monitor people with glaucoma and heart disease.
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with Temasek Life Sciences Laboratory (TLL) and MIT, have developed a groundbreaking near-infrared (NIR) fluorescent nanosensor capable of simultaneously detecting and differentiating between iron forms — Fe(II) and Fe(III) — in living plants.
Scientists from Tomsk Polytechnic University and Saratov State University teamed up with colleagues from Taiwan and proposed to make a laser “blade” for a medical scalpel with a specified curved shape using a photonic “hook.” Currently there are laser scalpels only with an axisymmetric focus area, i.e., with a cylindrical blade. According to scientists, changing the shape of the blade will expand the possibilities of using the laser in medicine, while it is about two times thinner than the cylindrical option. The concept and its rationale are published in the Journal of Biophotonics.
Items per page:
1 – 50 of 20155