Browse Topic: Anthropometrics
ABSTRACT The study describes the development of a plug-in module of the realistic 3D Digital Human Modeling (DHM) tool RAMSIS that is used to optimize product development of military vehicle systems. The use of DHM in product development has been established for years. DHM for the development of military vehicles requires not only the representation of the vehicle occupants, but also the representation of equipment and simulation of the impact of such equipment on the Warfighter. To simulate occupants in military vehicles, whether land or air based, realistically, equipment must become an integral part of the extended human model. Simply attaching CAD-geometry to one manikin’s element is not sufficient. Equipment size needs to be scalable with respect to anthropometry, impact on joint mobility needs to be considered with respect to anatomy. Those aspects must be integrated in posture prediction algorithms to generate objective, reliable and reproducible results to help design engineers
ABSTRACT Application of human figure modeling tools and techniques has proven to be a valuable asset in the effort to examine man-machine interface problems through the evaluation of 3D CAD models of workspace designs. Digital human figure modeling has also become a key tool to help ensure that Human Systems Integration (HSI) requirements are met for US Army weapon systems and platforms. However, challenges still exist to the effective application of human figure modeling especially with regard to military platforms. For example, any accommodation analysis of these systems must not only account for the physical dimensions of the target Soldier population but also the specialized mission clothing and equipment such as body armor, hydration packs, extreme cold weather gear and chemical protective equipment to name just a few. Other design aspects such as seating, blast mitigation components, controls and communication equipment are often unique to military platforms and present special
ABSTRACT The objective of this effort is to create a parametric Computer-Aided Design (CAD) accommodation model for the Fixed Heel Point (FHP) driver and crew workstations with specific tasks. The FHP model is a statistical model that was created utilizing data from the Seated Soldier Study (Reed and Ebert, 2013). The final product is a stand-alone CAD model that provides geometric boundaries indicating the required space and adjustments needed for the equipped Soldiers’ helmet, eyes, torso, knees, and seat travel. Clearances between the Soldier and surrounding interior surfaces and direct field of view have been added per MIL-STD-1472G. This CAD model can be applied early in the vehicle design process to ensure accommodation requirements are met and help explore possible design tradeoffs when conflicts with other design parameters exist. The CAD model will be available once it has undergone Verification, Validation, and Accreditation (VV&A) and a user guide has been written
Pelvic orientation in vehicles is crucial for preventing injuries and creating safer vehicles and restraint systems. A better understanding of pelvic orientation could provide more accurate anthropomorphic test device (ATD) models of underrepresented populations such as obese individuals, children, and small females. Sonomicrometry is the use of piezoelectric transducers that transmit ultrasound signals to each other to measure the distance between them. These signals may be aggregated using triangulation. In this experiment, ultrasound crystals were secured to the surface of a porcine surrogate to evaluate pelvic movement. This data was then processed using Sonometrics software to generate a 3D model of four static positions and three dynamic tests. The test was validated using a camera and a 3D measurement arm (CMM) to validate XYZ positions. This article discusses how this method could be helpful for developing more accurate ATD models, preventing fatalities in vehicle crashes
Thorax injuries are a significant cause of mortality in automotive crashes, with varying susceptibility across sex and age demographics. Finite element (FE) human body models (HBMs) offer the potential for injury outcome analysis by incorporating anthropometric variations. Recent advancements in material constitutive models, cortical bone fracture and continuum damage mechanics model (CFraC) and an orthotropic trabecular bone model (OrthoT), offer the opportunity to further improve rib models. In this study, the CFraC and OrthoT material modes, coupled with age-specific material properties, were progressively implemented to the Global Human Body Model Consortium small female 6th rib. Four distinct 6th rib models were developed and compared against sex and age-specific experimental data. The updated material models notably refined the predictions of force–displacement responses, aligning them more closely with the experimental averages. The CFraC model significantly improved the
Occupant packaging is one of the key tasks involved in the early architectural phase of a vehicle. Accommodation, as a convention, is generally considered related to a car’s interior. Typical roominess metrics of the occupant like hip room, shoulder room, and elbow room are defined with the door in its closed condition. Several other roominess metrics like knee room, leg room, head room, and the like are also specified. While all the guidelines are defined with doors in their closed condition, it is also important to consider the dynamics that exist while the occupant is entering the vehicle. This article expands the traditional understanding of occupant accommodation beyond conventionally considering the vehicle interior’s ability to accommodate anthropometry. It broadens the scope to include dynamic conditions, such as when doors are opened, providing a more realistic and practical perspective. As a luxury car manufacturer, it is important to ensure the best overall customer
Game-like navigation visuals Conversational-style voice commands. Contactless biometric sensing. A tidal wave of software code and sensing technologies are being prepped to alter in-vehicle activities. Two supplier companies, TomTom and Mitsubishi Electric Automotive America (MEAA), recently presented their concept cockpit demonstrators to media at TomTom's North American corporate offices in Farmington Hills, Michigan. A few highlights
Designing an automotive seat, it is required to perform a detailed study of anthropometry, which deals with measurement of human individuals and understanding human physical variations. It also requires application-based movement study of driver’s hands, feet’s & overall body movement. It is very difficult to design seat curvatures based on any static manikin-based software. We at VECV, have developed a new concept using mixed reality VR technology to capture all body movements for designing best in class seat curvature to accommodate variety of drivers with different body types. We have designed a specialized static bunk, which has a wide range of seat, steering and ABC paddle adjustments, which are integrated with virtual data. We use to study and capture the data of driving position and other ergonomic postures of wide range of people with different body types on this static bunk according to their comfortable driving posture. In this comfortable driving posture, user is immersed in
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
The purpose of this study is to conduct dynamic seat pressure mapping on vehicle seats during its operation on different test tracks under ambient environmental conditions for a defined speed. The test track comprises of pave roads, high frequency track, low frequency track and twist track. The variations in pressure distribution on seat during diverse road load inputs help to understand the seat cushion and back comfort for unique percentiles of human subjects ranging from 50th to 95th percentile population. For conducting the study, a sport utility vehicle (SUV) loaded with leatherette seats has chosen. Totally six participants (human subjects), five male and one female selected for the study based on their BMI (Body mass index) and body morphology. Pressure mats suitable for taking dynamic load inputs and able to log the data at a defined sampling rate mounted on seats and secured properly. The pressure mats should cover the seat cushion, bolster areas and back seat completely. The
Letter from the Special Issue Editors
In this study, a parametric thoracic spine (T-spine) model was developed to account for morphological variations among the adult population. A total of 84 CT scans were collected, and the subjects were evenly distributed among age groups and both sexes. CT segmentation, landmarking, and mesh morphing were performed to map a template mesh onto the T-spine vertebrae for each sampled subject. Generalized procrustes analysis (GPA), principal component analysis (PCA), and linear regression analysis were then performed to investigate the morphological variations and develop prediction models. A total of 13 statistical models, including 12 T-spine vertebrae and a spinal curvature model, were combined to predict a full T-spine 3D geometry with any combination of age, sex, stature, and body mass index (BMI). A leave-one-out root mean square error (RMSE) analysis was conducted for each node of the mesh predicted by the statistical model for every T-spine vertebra. Most of the RMSEs were less
Pyrotechnic seat belt pretensioners typically remove 8–15 cm of belt slack and help couple an occupant to the seat. Our study investigated pretensioner deployment on forward-leaning, live volunteers. The forward-leaning position was chosen because research indicates that passengers frequently depart from a standard sitting position. Characteristics of the 3D kinematics of forward-leaning volunteers following pretensioner deployment determines if body size is correlated with subject response. Nine adult subjects (three female), ages 18–43 years old, across a wide range of body sizes (50–120 kg) were tested. The age was limited to young, active adults as pyrotechnic pretensioners can deliver a notable force to the trunk. Subjects assumed a forward-leaning position, with 26 cm between C7 and the headrest, in a laboratory setting that replicated the passenger seat of a vehicle. At an unexpected time, the pretensioner was deployed. 3D kinematics were measured through a nine-camera motion
This SAE Standard describes head position contours and procedures for locating the contours in a vehicle. Head position contours are useful in establishing accommodation requirements for head space and are required for several measures defined in SAE J1100. Separate contours are defined depending on occupant seat location and the desired percentage (95 and 99) of occupant accommodation. This document is primarily focused on application to Class A vehicles (see SAE J1100), which include most personal-use vehicles (passenger cars, sport utility vehicles, pick-up trucks). A procedure for use in Class B vehicles can be found in Appendix B
During the early phase of vehicle development, one of the key design attributes to consider is the inner comfort for occupants. Internal spaciousness is the pillar that is responsible for user’s comfort and make into customer comfort needs in engineer metrics. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain internal vehicle characteristics such as the size of shoulder room and the knee clearance are engineer metrics that influence the occupants’ perception for comfort. One specific characteristic influencing satisfaction is the headroom, which is the subject of this paper. The objective of this project is to analyze the relationship between the second row’s vehicle headroom with the occupant’s satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics
The goal of the Pedestrian Test Mannequin Task Force is to develop standard specifications/requirements for pedestrian test mannequins (1 adult and 1 child) that are representative of real pedestrians to the sensors used in Pedestrian Detection systems and can be used for performance assessment of such in-vehicle systems (including warning and/or braking) in real world test scenarios/conditions. This version of the document only includes the pedestrian mannequin for vision, Lidar, and/or 76 to 78 GHz radar based Pedestrian Pre-collision systems
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality. Legal Issues Facing Automated Vehicles, Facial Recognition, and Individual Rights seeks to highlight the benefits of using FRS in public and private transportation technology and
In vehicle collisions, the lap belt should engage the anterior superior iliac spine (ASIS). In this study, three-dimensional (3D) shapes of bones and soft tissues around the pelvis were acquired using a computed tomography (CT) scan of 10 male and 10 female participants wearing a lap belt. Standing, upright sitting, and reclined postures were scanned using an upright CT and a supine CT scan system. In the upright sitting posture, the thigh height was larger with a higher BMI while the ASIS height did not change significantly with BMI. As a result, the height of the ASIS relative to the thigh (ASIS-thigh height) became smaller as the BMI increased. Because the thigh height of females was smaller than that of males, the ASIS-thigh height was larger for females than for males. As the ASIS-thigh height was larger, the overlap of the lap belt with the ASIS increased. Thus, the lap belt overlapped more with the ASIS for the females than for the males. The abdomen outer shape is characterized
Automotive safety devices, such as airbags and seatbelts, are generally designed for optimal performance when occupants adopt a “nominal” upright anatomical sitting position. While a driver’s sitting behavior is largely influenced by the requirements of driving, a passenger may adopt any number of non-nominal positions and behaviors. Very few studies have investigated the behaviors that teen and adult passengers actually adopt. The present study investigates self-reported non-nominal sitting in passengers and quantifies the influence of age and anthropometrics on these behaviors. A better understanding of passenger behavior is a timely research topic because advanced sensors may eventually allow better detection of non-nominal sitting and the advent of autonomous vehicles increases the number of passengers and seating options. Ten online survey questions were created to assess how frequently non-nominal sitting was adopted. Results were obtained from 561 anonymous participants, ranging
We recently developed a three-direction (vertical, longitudinal, and lateral) coupled biodynamic model of seated posture under vibration. However, in that study we only tested one algorithm to identify the model parameters. This article investigates four different optimization solvers in Matlab®, i.e., particle swarm optimization (particleswarm), particle swarm and local optimization method (fmincon), genetic algorithm (ga) and local optimization method (fmincon), and local optimization method (fmincon) to identify coupled biodynamic model parameters. Based on the obtained parameters, it further compares experimental and simulation results to determine the best optimization solver in terms of the root mean square error (RMSE), linear regression (R 2), goodness of fit (ε), and Central Processing Unit (CPU) time. The results show that particle swarm optimization is the best one for identifying the biodynamic model’s parameters
As the technology is growing and the development of electric vehicles is advancing, though there are advancements in technology, an automobile will always have the challenges of Noise, Vibration, and Harshness (NVH). With several years of study and research, various methodologies have been developed for the refinement of NVH in conventional vehicles (IC engines). But in terms of Battery Electric vehicles (BEV), we have new areas to explore to refine NVH. Currently, in the competitive market, developing a fully ground-up Electric vehicle (EV) is a challenge due to the aggressive product development timelines and high cost of development. As a result, many OEMs are considering converting their conventional existing vehicle to battery electric vehicles as they will need lesser product development timelines with their go-to-market strategy. This paper is focused on virtual NVH validations while converting an existing conventional vehicle body architecture to make it to a pure battery
Anthropometric data are crucial to vehicle ergonomics and safety design. The Chinese population has smaller body size than that of the Western population, while the current crash dummies were developed based on statures of the Western population. To provide effective crash protection for Chinese occupants and pedestrians, Chinese anthropometric data are needed. In the present study, three available Chinese anthropometric databases were surveyed and compared, and it was found that none of them can give reliable and complete anthropometric data. Thus, a mapping method was developed based on correlation and regression analysis to rebuild a reasonable and completed Chinese anthropometric database. Furthermore, the differences between Chinese body size and that of the current dummies were discussed and an example was given to demonstrate the influences of body size on injuries
Items per page:
50
1 – 50 of 482