Browse Topic: Vehicle occupants
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
During parking conditions of vehicles, the state of the battery is uncertain as it goes through the relaxation process. In such scenarios, the battery voltage may exceed the functional safety limits. If we cross the functional safety limits, it is hazardous to the driver as well as the occupant. In this case, relaxed voltage plays a crucial role in identifying the safe state of the battery. To estimate the relaxed cell voltage there are methods such as RC filter time constat modeling and relaxation voltage error method. The problem with these solutions is the waiting time and accuracy to determine the relaxation voltage. In this manuscript, a solution is proposed which ensures the above problem is reduced. To achieve the reduction of relaxation voltage estimation time, a python sparse identification of nonlinear dynamics (PySindy) is used which identifies and fits an equation model based on observing the battery characteristics at different SOC and temperatures. The implementation is
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
In automotive engineering, understanding driving behavior is crucial for decision on specifications of future system designs. This study introduces an innovative approach to modeling driving behavior using Graph Attention Networks (GATs). By leveraging spatial relationships encoded in H3 indices, a graph-based model constructed, which captures dependencies between various vehicle operational parameters and their operational regions using H3 indices. The model utilizes CAN signal features such as speed, fuel efficiency, engine temperature, and categorical identifiers of vehicle type and sub-type. Additionally, regional indices are incorporated to enrich the contextual information. The GAT model processes these heterogeneous features, learning to identify patterns indicative of driving behavior. This approach offers several significant advantages. Firstly, it enhances the accuracy of driving behavior modeling by effectively capturing the complex spatial and operational dependencies
This paper presents the design of a cost-effective fuel injector driver designed for accelerated testing of injectors. The driver simulates injection patterns across a wide range of vehicle operating conditions and can be programmed with injection maps for different engines, test cycles based on drawing specifications, pre-defined engine running profiles, and manual control, where the user defines PWM frequency and duty cycle. It also enables remote operation through a Wi Fi access point. An injector driver-based test setup was developed to study wear and evaluate leakage tendency in an injector design. To simulate extended field usage in a short timeframe, an accelerated operating cycle was derived using telematics data. Injector samples were tested with periodic leak rate measurements. Conducting such tests at vehicle level or on engine test bench would involve significant time and cost. This setup is an effective tool for rapid comparative analysis across supplier design, enabling
Items per page:
50
1 – 50 of 6489