Browse Topic: Vehicle occupants

Items (6,256)
ABSTRACT One of the main thrusts in current Army Science & Technology (S&T) activities is the development of occupant-centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle structure is an enabling factor for faster transport, higher mobility, greater fuel conservation, higher payload, and a reduced ground footprint of supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic characteristics for mitigating blast loads are investigated. The Dynamic Response Index (DRI) metric [1] is employed as an occupant injury measure for determining the effectiveness of the each blast mitigation configuration that is considered. A model of the TARDEC Generic V-Hull
Jiang, WeiranVlahopoulos, NickolasCastanier, Matthew P.Thyagarajan, RaviMohammad, Syed
Abstract On the Mobile Detection Assessment Response System (MDARS) production program, General Dynamics Robotics Systems (GDRS) and International Logistics Systems (ILS), are working with the US Army’s Product Manager – Force Protection Systems (PM-FPS) to reduce system costs throughout the production lifecycle. Under this process, GDRS works through an Engineering Change Proposal (ECP) process to improve the reliability and maintainability of subsystem designs with the goal of making the entire system more producible at a lower cost. In addition, GDRS recommends substitutions of Government requirements that are cost drivers with those that reduce cost impact but do not result in reduced capability for the end user. This paper describes the production lifecycle process for the MDARS system and recommends future considerations for fielding of complex autonomous robotic systems
Frederick, BrianVirtz, PaulGrinnell, Michal
In recent years, battery electric vehicles (BEVs) have experienced significant sales growth, marked by advancements in features and market delivery. This evolution intersects with innovative software-defined vehicles, which have transformed automotive supply chains, introducing new BEV brands from both emerging and mature markets. The critical role of software in software-defined battery electric vehicles (SD-BEVs) is pivotal for enhancing user experience and ensuring adherence to rigorous safety, performance, and quality standards. Effective governance and management are crucial, as failures can mar corporate reputations and jeopardize safety-critical systems like advanced driver assistance systems. Product Governance and Management for Software-defined Battery Electric Vehicles addresses the complexities of SD-BEV product governance and management to facilitate safer vehicle deployments. By exploring these challenges, it aims to enhance internal processes and foster cross
Abdul Hamid, Umar Zakir
Road safety remains a critical concern globally, with millions of lives lost annually due to road accidents. In India alone, the year 2021 witnessed over 4,12,432 road accidents resulting in 1,53,972 fatalities and 3,84,448 injuries. The age group most affected by these accidents is 18-45 years, constituting approximately 67% of total deaths. Factors such as speeding, distracted driving, and neglect to use safety gear increases the severity of these incidents. This paper presents a novel approach to address these challenges by introducing a driver safety system aimed at promoting good driving etiquette and mitigating distractions and fatigue. Leveraging Raspberry Pi and computer vision techniques, the system monitors driver behavior in real-time, including head position, eye blinks, mouth opening and closing, hand position, and internal audio levels to detect signs of distraction and drowsiness. The system operates in both passive and active modes, providing alerts and alarms to the
Ganesh, KattaPrasad, Gvl
The integration of Vehicle-to-Everything (V2X) communication technologies holds immense potential to revolutionize the automotive industry by enabling vehicles to communicate with each other (V2V) and with infrastructure (V2I). This paper investigates the feasibility of V2X and V2I communication, exploring available communication methods for vehicles to communicate. Many a times people like to travel together and it involves more than one vehicle travelling together, in such cases they often get lost the information about fellow vehicles due to the traffic condition and different driving behaviors of the individual driver. In such cases they communicate over phones to get to know the location of fellow vehicle or keep sharing their live locations. In such cases they don’t just follow the destination in maps also they should be continuously monitoring their fellow vehicles position. It is important for vehicles travelling in group to have communication and be connected so that they know
Barre, Deva Harshitha
Forward-facing child restraint systems (FF CRS) and high-back boosters often contact the vehicle seat head restraint (HR) when installed, creating a gap between the back surface of the CRS and the vehicle seat. The effects of HR interference on dynamic CRS performance are not well documented. The objective of this study is to quantify the effects of HR interference for FF CRS and high-back boosters in frontal and far-side impacts. Production vehicle seats with prominent, removeable HRs were attached to a sled buck. One FF CRS and two booster models were tested with the HR in place (causing interference) and with the HR removed (no interference). A variety of installation methods were examined for the FF CRS. A total of twenty-four tests were run. In frontal impacts, HR interference produced small but consistent increases in frontal head excursion and HIC36. Head excursions were more directly related to the more forward initial position rather than kinematic differences caused by HR
Mansfield, Julie A.
Since signing the legally binding Paris agreement, fighting climate change has been an increasingly important task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore, long term strategies all over the world have been set up to reduce on-road combustion emissions. One of the emerging alternative technologies to decarbonize the transportation sector is Mobile Carbon Capture (MCC). MCC refers to the on-board separation of CO2 from vehicle exhaust. To accurately assess this technology, a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. Adding to the system capital and operational costs, our study includes mass penalty costs, CO2 offloading and transport costs for different transport scenarios. To better relate to a single consumer (driver), the cost can be converted from euro per-tCO2 to euro per-trip or euro per-mile. A sensitivity analysis is then conducted
SAAFI, Mohamed AliHamad, Esam
Most military wheeled vehicles operate with a simplistic table-based transmission shift strategy. However, Allison Transmission Inc has created an innovative algorithm-based transmission shift strategy known as FuelSense®2.0 with DynActive® Shifting which optimizes gear selection by accounting for driver demand and vehicle load. This method of shifting has the potential to significantly improve fuel economy while only minimally degrading vehicle performance. In this study, FuelSense®2.0 with DynActive® Shifting was evaluated across three platforms which included the Family of Medium Tactical Vehicles (FMTV), and the Heavy Tactical Vehicles (HTV) Heavy Expanded Mobility Tactical Truck (HEMTT) and Palletized Loading System (PLS). The trucks were drive-cycle tested using both an environmentally controlled dynamometer laboratory and a real-world proving ground user trial
Zielinski, StevenBeiter, StevenMach, Newly
In order to meet the driving characteristics and needs of different types of drivers and to improve driving comfort and safety, this article designs personalized variable transmission ratio schemes based on the classification results of drivers’ steering characteristics and proposes a switching strategy for selecting variable transmission ratio schemes in response to changes in driver types. First, data collected from driving simulator experiments are used to classify drivers into three categories using the fuzzy C-means clustering algorithm, and the steering characteristics of each category are analyzed. Subsequently, based on the steering characteristics of each type of driver, suitable speed ranges, steering wheel travel, and yaw rate gain values are selected to design the variable transmission ratio, forming personalized variable transmission ratio schemes. Then, a switching strategy for variable transmission ratio schemes is designed, using a support vector machine to build a
Chen, ChenZheng, HongyuZong, Changfu
India is a diverse country in terms of road conditions, road maintenance, traffic conditions, traffic density, quality of traffic which implies presence of agricultural tractors, bullock carts, autos, motor bikes, oncoming traffic in same lane, vulnerable road users (VRU) walking in the same lanes as vehicles, VRU’s crossing roads without using zebra crossings etc. as additional traffic quality deterrents in comparison to developed countries. The braking capacity of such vivid road users may not be at par with global standards due to their maintenance, loading beyond specifications, driver behavior which includes the tendency to maintain a close gap between the preceding vehicle etc. which may lead to incidents specifically of rear collisions due to the front vehicle going through an emergency braking event. The following paper provides a comprehensive study of the special considerations or intricacies in implementation of Autonomous Emergency Braking (AEBS) feature into Indian traffic
Kartheek, NedunuriKhare, RashmitaSathyamurthy, SainathanManickam, PraveenkumarKuchipudi, Venkata Sai Pavan
Advanced driver assistance systems (ADAS) have become an integral part of today’s vehicle development. These systems are designed to provide secondary support to the driver, but the driver is primarily responsible for the driving task, e.g., lane-keeping assist (LKA). The driving setup and testing of these LKA systems is very time-consuming and usually applied in the car, based on experiences and subjective evaluation. This results in a cost-intensive calibration of the system. An objective-based calibration procedure can increase efficiency. For a targeted calibration of the system, it is necessary to define and identify key performance indicators (KPIs), which are able to describe the secondary support in sufficient detail. Usually, subjective feelings are used to derive KPIs. Vice versa, there are no results on how to design an LKA without any subjective assessment, before the calibration. With this in mind, this paper is focused on filling this unknown aspect by using virtual
Baumann, BenjaminIatropolous, JannesPanzer, AnnaHenze, Roman
In an influential essay in 2019, entitled ‘The Bitter Lesson’, machine learning researcher Richard Sutton observed that the main driver of progress in artificial intelligence (AI) is the continued scaling up of computational power1. This view predicts that while manual approaches that embed human knowledge and understanding in AI agents lead to satisfying advances in the short term, in the long run they only stand in the way of developing more general, scalable methods. This provocative conclusion has led to heated debates about the role of human ingenuity, but the ‘bitter lesson’ paradigm has more or less played out in the area of natural language processing. By using scaled-up neural networks and as many text examples from the internet as possible as training data, researchers could solve previously complex problems of producing human language without syntactical errors. Further scaling has produced general-purpose and multimodal models with billions of parameters such as GPT-4
This SAE Recommended Practice establishes uniform procedures for assuring the manufactured quality, installed utility, and service performance of manual automotive adaptive products, other than those provided by the OEM, intended to provide driving capability for persons with physical disabilities. These devices function as adaptive appliances to compensate for lost or reduced performance in the drivers’ arms or legs, or both. Some of the devices are designed to transfer foot functions to the hands, hand functions to the feet, or functions from one side of the body to the other. This document applies only to primary controls as defined in 3.4.1 and in the Foreword. In particular, this document is specifically concerned with those mechanical and hybrid products that are intended by the manufacturer of the adaptive product to: Be installed within the occupant space of the vehicle Be operated by a vehicle driver with a physical disability Be added to, or substituted for, the OEM vehicle
Adaptive Devices Standards Committee
Continental's Georg Fässler, executive chair of the 2024 SAE COMVEC, details efforts to future-proof forthcoming vehicles. Severe driver shortages, rising fuel and material costs, escalating demand for freight transport, higher sustainability requirements - there is no shortage of challenges facing the transport sector. Commercial vehicle manufacturers and industry suppliers are devoting significant resources to develop, test and bring to market the technological advances that will help alleviate these pressure points. “The digitalization of commercial vehicles and the whole logistics chain is a necessary response and one of the most important developments in the CV industry in my view,” said Continental Automotive's head of commercial and special vehicles, Georg Fässler, in a recent interview with SAE International
Gehm, RyanUhrinek, Gretchen
Occupant packaging is one of the key tasks involved in the early architectural phase of a vehicle. Accommodation, as a convention, is generally considered related to a car’s interior. Typical roominess metrics of the occupant like hip room, shoulder room, and elbow room are defined with the door in its closed condition. Several other roominess metrics like knee room, leg room, head room, and the like are also specified. While all the guidelines are defined with doors in their closed condition, it is also important to consider the dynamics that exist while the occupant is entering the vehicle. This article expands the traditional understanding of occupant accommodation beyond conventionally considering the vehicle interior’s ability to accommodate anthropometry. It broadens the scope to include dynamic conditions, such as when doors are opened, providing a more realistic and practical perspective. As a luxury car manufacturer, it is important to ensure the best overall customer
Rajakumaran, SriramSreenivas, Kalyan
This research aims at understanding how the driver interacts with the steering wheel, in order to detect driving strategies. Such driving strategies will allow in the future to derive accurate holistic driver models for enhancing both safety and comfort of vehicles. The use of an original instrumented steering wheel (ISW) allows to measure at each hand, three forces, three moments, and the grip force. Experiments have been performed with 10 nonprofessional drivers in a high-end dynamic driving simulator. Three aspects of driving strategy were analyzed, namely the amplitudes of the forces and moments applied to the steering wheel, the correlations among the different signals of forces and moments, and the order of activation of the forces and moments. The results obtained on a road test have been compared with the ones coming from a driving simulator, with satisfactory results. Two different strategies for actuating the steering wheel have been identified. In the first strategy, the
Previati, GiorgioMastinu, GianpieroGobbi, Massimiliano
Driving safety in the mixed traffic state of autonomous vehicles and conventional vehicles has always been an important research topic, especially on highways where autonomous driving technology is being more widely adopted. The merging scenario at highway ramps poses high risks with frequent vehicle conflicts, often stemming from misperceived intentions [1]. This study focuses on autonomous and conventional vehicles in merging scenarios, where timely recognition of lane-changing intentions can enhance merging efficiency and reduce accidents. First, trajectory data of merging vehicles and their conflicting vehicles were extracted from the NGSIM open-source database in the I-80 section. The segmented cubic polynomial interpolation method and Savitzky–Golay filtering are utilized for data outlier removal and noise reduction. Second, the processed trajectory data were used as input to a hybrid Gaussian hidden Markov (GMM-HMM) model for driving intention classification, specifically lane
Ren, YouWang, XiyaoSong, JiaqiLu, WenyangLi, PenglongLi, Shangke
This article aims to address the challenge of recognizing driving styles, a task that has become increasingly complex due to the high dimensionality of driving data. To tackle this problem, a novel method for driver style clustering, which leverages the principal component analysis (PCA) for dimensionality reduction and an improved GA-K-means algorithm for clustering, is proposed. In order to distill low-dimensional features from the original dataset, PCA algorithm is employed for feature extraction and dimensionality reduction. Subsequently, an enhanced GA-K-means algorithm is utilized to cluster the extracted driving features. The incorporation of the genetic algorithm circumvents the issue of the model falling into local optima, thereby facilitating effective driver style recognition. The clustering results are evaluated using the silhouette coefficient, Calinski–Harabasz (CH) index, and GAP value, demonstrating that this method yields more stable classification results compared to
Chen, YinghaoWu, GuangqiangWu, JianWang, Hao
Autonomous vehicles (AVs) provide an effective solution for enhancing traffic safety. In the last few years, there have been significant efforts and progress in the development of AVs. However, the public acceptance has not fully kept up with technological advancements. Public acceptance can restrict the growth of AVs. This study focuses on investigating the acceptance and takeover behavior of drivers when interacting with AVs of different styles in various scenarios. Manual and autonomous driving experiments were designed based on the driving simulation platform. To avoid subjective bias, principal component analysis (PCA) and the Gaussian mixture model (GMM) were used to classify driving styles. A total of 34 young participants (male-dominated) were recruited for this study. And they were classified into three driving styles (aggressive, moderate, and conservative). And AV styles were designed into three corresponding categories according to the different driving behavior
Li, GuanyuYu, WenlinChen, XizhengWang, WuhongGuo, HongweiJiang, Xiaobei
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering. The basis for this is the route generation as a result of the evaluation of curve radii from several hundred thousand kilometers of real measurement
Iatropoulos, JannesPanzer, AnnaHenze, Roman
As part of the safety validation of advanced driver assistance systems (ADAS) and automated driving (AD) functions, it is necessary to demonstrate that the frequency at which the system exhibits hazardous behavior (HB) in the field is below an acceptable threshold. This is typically tested by observation of the system behavior in a field operational test (FOT). For situations in which the system under test (SUT) actively intervenes in the dynamic driving behavior of the vehicle, it is assessed whether the SUT exhibits HB. Since the accepted threshold values are generally small, the amount of data required for this strategy is usually very large. This publication proposes an approach to reduce the amount of data required for the evaluation of emergency intervention systems with a state machine based intervention logic by including the time periods between intervention events in the validation process. For this purpose, a proximity measure that indicates how close the system is to an
Schrimpf, MalteBetschinske, DanielPeters, Steven
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving styles based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including the ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel
Ji, DejieFlormann, MaximilianWarnecke, Joana M.Henze, RomanDeserno, Thomas M.
In the realm of transportation science, the advent of deep learning has propelled advancements in predicting longitudinal driving behavior. This study explores the application of deep neural network architectures, specifically long–short-term memory (LSTM) and convolutional neural networks (CNNs), recognized for their effectiveness in handling sequential data. Using a 3-s temporal window that includes past vehicle progress, speed, and acceleration, the proposed model, a hybrid LSTM–CNN architecture, predicts the vehicle’s speed and progress for the next 6 s. The approach achieves state-of-the-art performance, particularly within a 4 s horizon, but remains competitive even for longer-term predictions. This is achieved despite the simplicity of its input space, which does not include information about vehicles other than the target vehicle. As a result, while its performance may decrease slightly for longer-term predictions due to the lack of environmental information, it still offers
Lucente, GiovanniMaarssoe, Mikkel SkovKahl, IrisSchindler, Julian
Modine exec says EV thermal management systems have evolved significantly from the technology used by ICE vehicles just five years ago. A rarity only a few years ago, electric vehicles (EVs) are becoming part of the daily lives of constantly increasing numbers of drivers. In the first quarter of 2024 alone, passenger EV sales soared by about 25% compared to the same period in 2023, according to the IEA's annual Global EV Outlook. While the passenger EV market charges ahead toward widespread adoption, the off-highway vehicle segment lags in electrification. The burly and rugged workhorses that do the heavy lifting in construction and agriculture have been slower in embracing electrification due to their heavier workloads and duty cycles. In addition to larger batteries, traction motors and countless other components, the electrification of this class of vehicles also requires a steep learning curve, all of which impact stakeholders up and down the value chain. For example, navigating
Bonini, Gina Maria
Kodiak Robotics launched its first autonomous military prototype vehicle in December 2023 - a Ford F-150 upfitted with the Kodiak Driver autonomous system. Developed for the Department of Defense (DoD), the vehicle runs the same software as Kodiak's autonomous long-haul trucks but with more robust DefensePod enclosures for the sensors. Now the company is collaborating with Textron Systems to develop a purpose-built uncrewed military vehicle designed without space for a driver and intended for advanced terrain environments. The companies plan to demonstrate driverless operations later in 2024. “The initial integration work is largely being done at a Textron Systems facility in Maine, with testing planned at Kodiak facilities,” Kodiak's chief technology officer Andreas Wendel told Truck & Off-Highway Engineering. He shared his thoughts on the “immense” potential for autonomous technology in tactical vehicles
Gehm, Ryan
iMotions employs neuroscience and AI-powered analysis tools to enhance the tracking, assessment and design of human-machine interfaces inside vehicles. The advancement of vehicles with enhanced safety and infotainment features has made evaluating human-machine interfaces (HMI) in modern commercial and industrial vehicles crucial. Drivers face a steep learning curve due to the complexities of these new technologies. Additionally, the interaction with advanced driver-assistance systems (ADAS) increases concerns about cognitive impact and driver distraction in both passenger and commercial vehicles. As vehicles incorporate more automation, many clients are turning to biosensor technology to monitor drivers' attention and the effects of various systems and interfaces. Utilizing neuroscientific principles and AI, data from eye-tracking, facial expressions and heart rate are informing more effective system and interface design strategies. This approach ensures that automation advancements
Nguyen, Nam
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle. Locating the SgRP as a function of seat height (H30). Establishing seat track dimensions using the seating accommodation model. Establishing a steering wheel position. Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100
Human Accom and Design Devices Stds Comm
With population aging and life expectancy increasing, elderly drivers have been increasing quickly in the United States and the heterogeneity among them with age is also increasingly non-ignorable. Based on traffic crash data of Pennsylvania from 2011 to 2019, this study was designed to identify this heterogeneity by quantifying the relationship between age and crash characteristics using linear regression. It is found that for elderly driver-involved crashes, the proportion leading to casualties significantly increases with age. Meanwhile, the proportions at night, on rainy days, on snowy days, and involving driving under the influence (DUI) decrease linearly with age, implying that elderly drivers tend to avoid traveling in risky scenarios. Regarding collision types, elderly driver-involved crashes are mainly composed of angle, rear-end, and hit-fixed-object collisions, proportions of which increase linearly, decrease linearly, and keep consistent with age, respectively. The increase
Zhang, ZihaoLiu, Chenhui
Artificial intelligence (AI)-based solutions are slowly making their way into mobile devices and other parts of our lives on a daily basis. By integrating AI into vehicles, many manufacturers are looking forward to developing autonomous cars. However, as of today, no existing autonomous vehicles (AVs) that are consumer ready have reached SAE Level 5 automation. To develop a consumer-ready AV, numerous problems need to be addressed. In this chapter we present a few of these unaddressed issues related to human-machine interaction design. They include interface implementation, speech interaction, emotion regulation, emotion detection, and driver trust. For each of these aspects, we present the subject in detail—including the area’s current state of research and development, its current challenges, and proposed solutions worth exploring
Fang, ChenRazdan, rahulBeiker, SvenTaleb-Bendiab, Amine
Force torque sensors are gaining more and more popularity in robotics applications — a clear trend is evident. The key drivers include the growing use of robots in unstructured environments, where they are required to perform more complex and demanding tasks, while working in cooperation with human collaborators
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions. The TTC for sedans is significantly shorter than that for
Matsui, YasuhiroNarita, MasashiOikawa, Shoko
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries. The most problematic of these are AIS 2+ and AIS 3+ upper-extremity and lower-extremity
Dalmotas, DainiusChouinard, AlineComeau, Jean-LouisGerman, AlanRobbins, GlennPrasad, Priya
By installing an automated mechanical transmission (AMT) on heavy-duty vehicles and developing a reasonable shift strategy, it can reduce driver fatigue and eliminate technical differences among drivers, improving vehicle performance. However, after detaching from the experience of good drivers, the current shifting strategy is limited to the vehicle state at the current moment, and cannot make predictive judgment of the road environment ahead, and problems such as cyclic shifting will occur due to insufficient power when driving on the ramp. To improve the adaptability of heavy-duty truck shift strategy to dynamic driving environments, this paper first analyzes the shortcomings of existing traditional heavy-duty truck shift strategies on slopes, and develops a comprehensive performance shift strategy incorporating slope factors. Based on this, forward-looking information is introduced to propose a predictive intelligent shift strategy that balances power and economy. The vehicle power
Zhang, JunfengChen, DaxinWang, Gaoxiang
Autonomous vehicles or self-driving cars and semi-autonomous cars provide numerous driving assistance to the driver and passengers. However, with the advancements in driving technology the driver’s experiences and preferences are also taken into consideration for achieving the advanced safety goals. The drivers’ comfort and experiences are considered with the design and development of modern-day vehicles makes the driver’s preferences crucial for providing the driving experience. During the process of driving, the experience received by the driver is associated with the functional safety of the automotive system and hence the experience should be smooth with respect to safety. In this regard, the personalization in the space of the driver assistance system is gaining importance in analysing the driver’s behaviors and providing personal driving experiences to the driver. From the driver’s perspective the driving environment, the driving patterns of the different drivers, road conditions
Ansari, AsadullahP.C., KarthikD H, SharathSikander, SaheelChidambaram, Vivke
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method. First, the dynamics model of the SBW system is established, thereby laying the foundation for
Chen, ChaoningKaku, ChuyoZheng, Hongyu
ADAS (Advanced Driver Assistance Systems) is a growing technology in automotive industry, intended to provide safety and comfort to the passengers with the help of variety of sensors like radar, camera, LIDAR etc. Though ADAS improved safety of passengers comparing to conventional non-ADAS vehicles, still it has some grey areas for safety enhancement and easy assistance to drivers. BSW (Blind Spot Warning) and LCA (Lane Change Assist) are ADAS function which assists the driver for lane changing. BSW alerts the driver about the vehicles which are in blind zone in adjacent lanes and LCA alerts the driver about approaching vehicles at a high velocity in adjacent lanes. In current ADAS systems, BSW and LCA alerts are given as optical and acoustic warnings which is placed in vehicle side mirrors. During lane change the driver must see the side mirrors to take a decision. Due to this, there is a reaction time for taking a decision since driver must divert attention from windshield to side
R, ManjunathSaddaladinne, Jagadeesh BabuD, Gopinath
Currently, the rapid expansion of the global road transport industry and the imperative to reduce carbon emissions are propelling the advancement of electrified highways (EH). In order to conduct a comprehensive economic analysis of EH, it is crucial to develop a detailed /8.and comprehensive economic model that takes into account various transportation modes and factors that influence the economy. However, the existing economic models for EH lack comprehensiveness in terms of considering different transportation modes and economic factors. This study aims to fill this gap by designing an economic model for an EH-based Online DC-driven system (ODS) for long distance heavy-duty transport vehicle incorporating multi-factor sensitivities. Firstly, the performance parameters of the key components of the system are calculated using vehicle dynamics equations which involves selecting and matching the relevant components and determining the fundamental cost of vehicle transformation. Secondly
Zhou, WenboBi, GaoxinWang, YuhaiZhao, Jian
Reconstruction of inline crashes between vehicles with a low closing speed, so-called “low speed” crashes, continues to be a class of vehicle collisions that reconstructionists require specific methods to handle. In general, these collisions tend to be difficult to reconstruct due primarily to the lack of, or limited amount of, physical evidence available after the crash. Traditional reconstruction methods such as impulse-momentum (non-residual damage based) and CRASH3 (residual damage based) both are formulated without considering tire forces of the vehicles. These forces can be important in this class of collisions. Additionally, the CRASH3 method depends on the use of stiffness coefficients for the vehicles obtained from high-speed crash tests. The question of the applicability of these (high-speed) stiffness coefficients to collisions producing significantly less deformation than experimental crashes on which they are generated, raises questions of the applicability. An alternative
Brach, MatthewStegemann, JacobManuel, Emmanuel JayCivitanova, Nicholas
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios. To conduct this analysis, we utilize SUMO, an open-source microscopic traffic
Shiledar, AnkurSujan, VivekSiekmann, AdamYuan, Jinghui
With further development of autonomous vehicles additional challenges appear. One of these challenges arises in the context of mixed traffic scenarios where automated and autonomous vehicles coexist with manually operated vehicles as well as other road users such as cyclists and pedestrians. In this evolving landscape, understanding, predicting, and mimicking human driving behavior is becoming not only a challenging but also a compelling facet of autonomous driving research. This is necessary not only for safety reasons, but also to promote trust in artificial intelligence (AI), especially in self-driving cars where trust is often compromised by the opacity of neural network models. The central goal of this study is therefore to address this trust issue. A common approach to imitate human driving behavior through expert demonstrations is imitation learning (IL). However, balancing performance and explainability in these models is a major challenge. To efficiently generate training data
Rebling, PatrickKriesten, ReinerNenninger, Philipp
A fully instrumented Tesla Model 3 was used to collect thousands of hours of real-world automated driving data, encompassing both Autopilot and Full Self-Driving modes. This comprehensive dataset included vehicle operational parameters from the data busses, capturing details such as powertrain performance, energy consumption, and the control of advanced driver assistance systems (ADAS). Additionally, interactions with the surrounding traffic were recorded using a perception kit developed in-house equipped with LIDAR and a 360-degree camera system. We collected the data as part of a larger program to assess energy-efficient driving behavior of production connected and automated vehicles. One important aspect of characterizing the test vehicle is predicting its car-following behavior. Using both uncontrolled on-road tests and dedicated tests with a lead car performing set speed maneuvers, we tuned conventional adaptive cruise control (ACC) equations to fit the vehicle’s behavior. We
Duoba, MichaelVellamattathil Baby, TinuPulpeiro Gonzalez, JorgeHomChaudhuri, Baisravan
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model. The model is based on 2799 two-vehicle collision accident data from NHTSA CISS (The Crash Investigation Sampling System of NHTSA) traffic accident database.The results show that the model achieves high-precision prediction of occupant injury MAIS level (recall rate 0.8718, AUC(Area under Curve) 0.8579) without excluding vehicle model, and
Huida, ZhangLiu, YuRui, YangWu, XiaofanFan, TiqiangWan, Xinming
Items per page:
1 – 50 of 6256