Browse Topic: Reaction and response times
Functional safety is driven by number of standards like in automotive its driven by ISO26262, in Aerospace its driven by DO-178C, and in Medical its driven by IEC 60601. Automotive electronic controllers must adhere to state-of-the-art functional safety standard provided by ISO26262. A critical functional safety requirement is the Fault Handling Time Interval (FHTI), which includes the Fault Detection Time Interval (FDTI) and Fault Reaction Time Interval (FRTI). The requirements for FHTI are derived from Failure Mode Effect Analysis (FMEA) conducted at the system level. Various fault categories are analyzed, including electrical faults (e.g., short to battery, short to ground, open circuits), systemic faults (e.g., sensor value stuck, sensor value beyond range), and communication faults (e.g., incorrect CAN message signal values). Controllers employ strategies such as debouncing and fault time maturity to detect these faults. Numerous FDTI requirements must be verified to ensure
Brake failures in the vehicles can cause hazardous accidents so having a better monitoring and emergency braking system is very important. So, this project consists of an autonomous brake failure detector integrated with Automatic Braking using Electromagnetic coil braking which detects the braking failure at the time and applied the combinations of the brakes, to overcome this kind of accidents. So, here the system comprises of IR sensor circuit, control unit and electromagnetic braking system. How it works: The IR sensor monitors the brake wire, and if the wire is broken, the control unit activates the electromagnetic brakes, stopping the vehicle in a safe manner. This system enhances vehicle safety by ensuring immediate braking action without driver intervention. Key advantages include real-time brake monitoring, reduced mechanical wear, quick response time, and an automatic failsafe mechanism. The system’s minimal reliance on hydraulic components also makes it suitable for harsh or
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Camera-based mirror systems (CBMS) are being adopted by commercial fleets based on the potential improvements to operational efficiency through improved aerodynamics, resulting in better fuel economy, improved maneuverability, and the potential improvement for overall safety. Until CBMS are widely adopted it will be expected that drivers will be required to adapt to both conventional glass mirrors and CBMS which could have potential impact on the safety and performance of the driver when moving between vehicles with and without CBMS. To understand the potential impact to driver perception and safety, along with other human factors related to CBMS, laboratory testing was performed to understand the impact of CBMS and conventional glass mirrors. Drivers were subjected to various, nominal driving scenarios using a truck equipped with conventional glass mirrors, CBMS, and both glass mirrors and CBMS, to observe the differences in metrics such as head and eye movement, reaction time, and
The study analyzed data from on-road drives with a pre-production Level 2 (L2) partial automation system using a sample of 27 drivers ranging from 21 to 75 years of age. The system provides continuous automatic lateral and longitudinal control but requires the driver to remain attentive and intervene when necessary. The L2 system was equipped with a Driving Monitoring System (DMS) that issued escalating alerts to remind the driver to pay attention or take over when needed. During the 14-month study period, drivers completed 354,768 miles of travel with the L2 system engaged, totaling 5,913 trips. The results of the study showed that drivers were highly responsive to attention reminders and takeover alerts, with high compliance rates and quick response times. Importantly, there was no evidence of habituation to these alerts over time. These findings support the effectiveness of the system's DMS and alert HMI (Human-Machine Interface) strategy in promoting the proper use of the system
Soft-bending actuators have garnered significant interest in robotics and biomedical engineering due to their ability to mimic the bending motions of natural organisms. Using either positive or negative pressure, most soft pneumatic actuators for bending actuation have modified their design accordingly. In this study, we propose a novel soft bending actuator that utilizes combined positive and negative pressures to achieve enhanced performance and control. The actuator consists of a flexible elastomeric chamber divided into two compartments: a positive pressure chamber and a negative pressure chamber. Controlled bending motion can be achieved by selectively applying positive and negative pressures to the respective chambers. The combined positive and negative pressure allowed for faster response times and increased flexibility compared to traditional soft actuators. Because of its adaptability, controllability, and improved performance can be used for various jobs that call for careful
The truck industry's primary focus is on global transportation, necessitating the efficient movement of goods and materials. There are many types of trucks designed for different purposes, and one of the most significant ones is the tractor trailer which offers great flexibility and can carry heavy loads. The tractor-trailer assembly unit consists of a complex integration of mechanical, electrical, and pneumatic connections, each serving a critical role in the overall functionality and performance of the vehicle. The disconnection of electrical interconnections between the truck trailer and tractor is crucial to prevent damage to the connectors within the wiring harness, which can lead to hazardous situations on the road. The tractor unit serves as the power source, while the trailer is responsible for carrying cargo, with the wiring harness being a crucial yet vulnerable component. When the trailer disengages from the fifth wheel coupling, it is vital to ensure that the electrical
ZF rethinks safety with new airbags, belt tensioner. ZF knows that the steering wheel remains one of the most relevant components in an automotive interior, because this is where drivers have direct contact to the vehicle. As steering wheels become adorned with more functions than some drivers know what to do with, ZF put Marc Schledorn in charge of the teams rethinking how the driver airbag could operate in a world with ever-busier steering wheels. The solution is a new type of steering wheel airbag that ZF Lifetec (ZF's renamed Passive Safety Systems division) announced in June. Instead of moving through a thermoplastic airbag cover mechanically fixed in the center of the wheel, Schledorn told SAE Media, the new design positions the airbag on the top side of the steering wheel and then expands through the upper rim of the wheel when needed.
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Abrasion of the Electromechanical brake (EMB) brake pad during the braking process leads to an increase in brake gap, which adversely affects braking performance. Therefore, it is imperative to promptly detect brake pad abrasion and adjust the brake gap accordingly. However, the addition of extra gap adjustment or sensor detection devices will bring extra size and cost to the brake system. In this study, we propose an innovative EMB gap active adjustment strategy by employing modeling and analysis of the braking process. This strategy involves identifying the contact and separation points of the braking process based on the differential current signal. Theoretical analysis and simulation results demonstrate that this gap adjustment strategy can effectively regulate the brake gap, mitigate the adverse effects of brake disk abrasion, and notably reduce the response time of the braking force output. Monitoring is critical to accurately control EMB clamping force. Pressure transducers are
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance. The evolution of the fouling thickness is evaluated by means of the implementation of a
ABSTRACT This paper discusses the design and implementation of an interactive mixed reality cockpit that enhances Soldier-vehicle interaction by providing a 360-degree situational awareness system. The cockpit uses indirect vision, where cameras outside the vehicle provide a video feed of the surroundings to the cockpit. The cockpit also includes a virtual information dashboard that displays real-time information about the vehicle, mission, and crew status. The visualization of the dashboard is based on past research in information visualization, allowing Soldiers to quickly assess their operational state. The paper presents the results of a usability study on the effectiveness of the mixed reality cockpit, which compared the Vitreous interface, a Soldier-centered mixed reality head-mounted display, with two other interface and display technologies. The study found that the Vitreous UI resulted in better driving performance and better subjective evaluation of the ability to actively
Items per page:
50
1 – 50 of 820