Browse Topic: Medical, health, and wellness

Items (8,254)
In order to reduce traffic accidents and losses in long downhill sections of expressways, giving drivers reasonable prevention and control means of information induction can improve the safety of long downhill sections. The location of the accompanying information service of the driver's vehicle terminal and the rationality of the intervention information are worth studying. This study takes a high-speed long downhill road as an example, divides the risk level of the long downhill road based on the road safety risk index model, and verifies it with the help of driving behavior data. Secondly, three coverage schemes of sensing devices are designed according to the results of risk classification, and the HMI interface of accompanying information service is designed according to the different coverage degrees of sensing devices. Finally, a driving simulation experiment was carried out based on the driving simulator, and the speed control level, psychological comfort level, operational
Wang, YuejiaWeng, WenzhongLuan, SenDai, Yibo
102.5
Catão, Vítor Gustavo GomesMachado, Amanda RibeiroFiorentin, Felipe KleinSilva, João Pedro AnutoBernardino, Lucas GabrielFiorentin, Thiago AntonioCarboni, Andrea Piga
With the continuous progress of modern high-speed railroad technology, the speed of train operation is increasing, and its aerodynamic effect when traversing the tunnel is also getting more and more attention from researchers. In this paper, we constructed a three-dimensional flow field model of the wrist-arm insulator in the tunnel and considered the train speed, tunnel structure, size and position of the wrist-arm insulator, and other factors, and then through the simulation software, we simulated the change of the airflow in the tunnel when the high-speed train enters the tunnel. Through the simulation analysis, we obtained the characteristics of the flow field distribution around the wrist-arm insulator in the tunnel when the high-speed train crosses the tunnel. The results show that when the train crosses the tunnel at a high speed, the airflow inside the tunnel is strongly squeezed and disturbed by the train, forming a complex airflow field. When the train passes by, the wrist
Zhang, KangkangMa, Jianqiao
Chimeric antigen receptor (CAR) T cell therapy represents a breakthrough in cancer treatment. By harnessing the body’s immune system, CAR T therapy provides a powerful, personalized treatment option that can be particularly effective for treating blood cancers like leukemia — potentially offering patients a second chance at life when other treatments have failed.
In this Q&A, Audrey Turley, director of lab operations – biosafety at Nelson Laboratories, spoke with Medical Design Briefs about the critical importance of monitoring and managing material changes in medical devices. Even seemingly minor shifts — such as switching suppliers or altering processing steps — can introduce unknown additives or variations that impact biocompatibility and, ultimately, patient safety. Turley discusses how manufacturers can effectively document and justify changes, maintain regulatory compliance, and strengthen supplier relationships to ensure ongoing device safety. She also shares insights into trends shaping post-pandemic supply-chain strategies and the growing emphasis on proactive risk assessment and communication across the product lifecycle.
For any supplier in the medical device manufacturing industry, sustainable success requires an ability and a willingness to bring customers’ ideas to reality. There are often innovative, potentially life-saving projects that are delayed or even abandoned due to limitations on the manufacturing end. However, many specifications that seem impossible to meet can be achieved with persistence, collaboration, and dedication to customers’ ideas.
As advanced technologies reshape the medical device landscape, the demands placed on contract manufacturers are evolving. Today’s partners are expected to do more than deliver components — they must anticipate disruptions, adapt quickly, and bring a level of technical and strategic depth that supports faster development without compromising quality.
In today’s medical equipment market, reliability is not a luxury — it is a necessity. Every adjustment, every movement, and every interaction with the equipment must be performed flawlessly to ensure patient safety, caregiver efficiency, and long-term service life. Behind this design and precision are highly engineered motion control components, such as gas springs, electric linear actuators, and dampers, that ensure safe, ergonomic operation of medical equipment across a wide range of healthcare applications.
Cornell researchers have developed a low-power microchip they call a “microwave brain,” the first processor to compute on both ultrafast data signals and wireless communication signals by harnessing the physics of microwaves.
The global electronics supply chain has always run in cycles — tight supply followed by sudden gluts — but in recent years, the pace and scale of disruption have accelerated. From semiconductor shortages to shifting trade policies and pandemic-driven bottlenecks, OEMs across every sector have been forced to rethink how they source and secure critical components.
Increasing reservations about the mass consumption of fossil fuels because of their hazardous impact on ecosystem has led to an increased focus to look for renewable alternative. In the last decade, much research is made on production of biodiesel for blending with diesel to reduce diesel consumption in the transport sector. Studies suggest that biofuel do not provide any harm to environment because of their availability from natural resources. Biofuel production and its further utilization requires identifying unknown parameters having nonlinear relationships with each other. Accurate and better predictive tools are required at different stages during its usage. AI technique is one such tool that can provide support during production and utilization. The technique is utilized in designing, monitoring, predicting, decision making and optimizing systems. The present research investigates the areas of AI usage which makes use of models for designing better production strategies, accurate
KUMAR, VIVEKVashist, Devendra
The rapid evolution of autonomy in Off-Highway Vehicles (OHVs)—spanning agriculture, mining, and construction—demands robust cybersecurity strategies. Sensor-control systems, the cognitive core of autonomous OHVs, operate in harsh, connectivity-limited environments. This paper presents a structured approach to applying threat modeling to these architectures, ensuring secure-by-design systems that uphold safety, resilience, and operational integrity.
Kotal, Amit
The increasing demand for alternative fuels due to environmental concerns has sparked interest in biodiesel as a viable substitute for conventional diesel. Most automotive engines use diesel fuel engines. They contribute a major portion of today’s air pollution, which causes serious health issues including chronic bronchitis, respiratory tract infections, heart diseases, and many more. Greenhouse gases are produced using fossil fuel in the engines and causes global warming. To combat air pollution, we need clean renewable and environmentally friendly fuels. Due to depletion of fossil fuels, it has become necessary to find alternative fuel which are safer for the environment and humankind. One such possible solution is Biodiesel. In present study, series of experiments were carried out on 435cc naturally aspirate DI Diesel engine with port water injection and different blend of Jatropha based Biodiesel. Biodiesel was derived from Jatropha oil, produced using a heterogeneous catalyst
Bhoite, VikramSyed, KaleemuddinChaudhari, SandipKhairnar, GirishJagtap, PranjalReddy, Kameswar
Bruno Boutantin, Extrude Hone
Soft robots, medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism — thanks to a metal-free magnetic gel developed by researchers at the University of Michigan and the Max Planck Institute for Intelligent Systems in Stuttgart, Germany.
A noninvasive imaging system combines two advanced techniques to examine both the structure and chemical composition of skin cancers. This approach could improve how doctors diagnose and classify skin cancer and how they monitor treatment responses.
Rice University Houston, TX
Innovators at the NASA Johnson Space Center have developed a soft, wearable, robotic upper limb exoskeleton garment designed to actively control the shoulder and elbow, both positioning the limb in specific orientations and commanding the limb through desired motions. The invention was developed to provide effective upper extremity motor rehabilitation for patients with neurological impairments (e.g., traumatic brain injury, stroke).
In blinding bright light or pitch-black dark, our eyes can adjust to extreme lighting conditions within a few minutes. The human vision system, including the eyes, neurons, and brain, can also learn and memorize settings to adapt faster the next time we encounter similar lighting challenges.
University College London London, England
RMIT University Melbourne, Australia
In an era where technology increasingly merges with healthcare to enhance patient outcomes, a groundbreaking study conducted by Fuyang Yu and his colleagues introduces an innovative approach to lower limb rehabilitation. Their research, published in Cyborg Bionic Systems, outlines the development of a lower limb rehabilitation robot designed to significantly improve the safety and effectiveness of gait training through a novel method based on human-robot interaction force measurement.
Researchers have developed novel ISM-based sweat sensors that feature enhanced signal stability and performance and avoid skin contact, while also being reusable, making them practical for daily use.
KAIST Daejeon, Republic of Korea
In recent years, the vibration comfort of automobiles has become a key consideration for consumers when purchasing vehicles. This study introduces human electrocardiogram (ECG) signals and blood pressure, and proposes a comfort prediction model based on physiological indicators. The research steps include: obtaining riding indicators and subjective feelings on flat and bumpy roads, and analyzing the differences in heart rate variability indicators and blood pressure under different road conditions through paired sample tests; playing different sound signals on bumpy roads, and using repeated measures analysis of variance to explore their impacts on physiological indicators and subjective evaluations; conducting data validity tests on the subjective evaluation results, and constructing a comfort prediction model based on correlation analysis and support vector regression algorithm. The results show that there are significant differences in indicators such as the average RR interval and
Hu, LiChen, HaoWan, YeqingTian, RuiliXu, Jiahao
Reliability engineering is a science and technology to fight against product failure, which includes reliability requirements and allocation, reliability analysis, reliability modeling and prediction, reliability design, reliability test, reliability testing, operational reliability and other activities. The important condition for the high-quality development of rail traffic is the stable operation of equipment, and the electronic equipment of rail traffic vehicles is mostly the “brain” of the key system. At present, the contradiction between performance optimization and structural complexity is increasingly prominent. In order to cope with the variable operating conditions and harsh environment of vehicles, the requirements for reliability are getting higher and higher. It is of great significance to carry out reliability engineering for its high-quality development. This paper introduces the construction of the reliability system of the electronic equipment of rail traffic vehicles
Song, XiaozhongSong, MengsiWang, Lei
Uneven thawing of frozen soil in the subgrade of wide highway leads to settlement difference of the pavement, which affects the driving comfort. The prefabricated bridge-type pavement mitigates the disease of wide subgrade in permafrost region by applying prefabricated slabs in the subgrade. In order to verify the deformation adjustment effect on wide subgrade of prefabricated bridge-type pavement, earth-filled pavement and prefabricated bridge-type pavement numerical models were established and subgrade mechanical behaviors were analyzed under frozen soil thawing in active layer, frozen soil thawing in localized deteriorated zone and vehicle loading. Comparative analysis of pavement settlement of earth-filled pavement and prefabricated bridge-type pavement under various cases is carried out. The results show that the maximum settlement of prefabricated bridge-type pavement decreases by about 32%~48%, and the settlement difference decreases by about 45%~65%, which has a good adjustment
Yu, YuanqingZhang, LiWang, ShanCheng, Litao
In order to explore the actual safety management effect of safety signs and better carry out on-site safety management, this article independently developed an evaluation scale for the management effect of safety signs. Taking a certain marine engineering equipment manufacturing enterprise as the object, the management of safety signs was evaluated and analyzed. Firstly, 11 questions from the SPSSAU online analysis scale were selected as measurement indicators to test safety label management. Factor analysis was used to select three factors: cognitive function, compliance behavior, and leadership attitude. Secondly, a safety identification management model was constructed based on structural equation modeling (SEM) with three factors as latent variable factors. Through fitting tests, it was found that cognitive effects, compliance behaviors, and leadership attitudes have a certain impact on management effectiveness, and there is a positive correlation between the three latent variable
Wang, ChunyuanYang, GuihuaLi, XinyaoZhu, Jie
Background. Road safety is a major public concern, as road traffic accidents result in numerous casualties and significant economic losses. In traffic collisions, the pattern of injuries sustained by drivers often varies depending on various accident factors. The interactions between safety device use, alcohol consumption status, and injury locations can reveal important association patterns and insights. Therefore, we examine patterns in injury locations, accounting for safety device use and alcohol consumption. Method. In this study, we applied two complementary graphical approaches, including multiple correspondence (MCA) analyses and mosaic plots (MPs). Results. The MPs reveal the existence of meaningful patterns between injury location, alcohol consumption, and safety device. Likewise, the MCA reveals that head/neck injuries are more likely to be associated with alcohol impairment. In particular, sober status and safety device used tend to be associated with all injury locations
Chen, Ching-FuWa Lukusa, Martin Tshishimbi
Items per page:
1 – 50 of 8254