Browse Topic: Medical, health, and wellness
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock
This specification covers insecticides for use in disinsection of aircraft as required on international passenger flights
ABSTRACT This study investigated the effect of an innovative chilling device that intends to make subjects more alert and less sleepy. Tests were conducted using a variety of methods including electric-encephalography (EEG) brain tomography. A series of behavioral tests showed an increase in alertness, changes of body temperatures, and performance indicators after usage of this device. The device chills specific areas of the body and disrupts the body’s ability to self-regulate core body temperature. The induced temperature shifts may reduce the body’s capability to go to sleep. Physiological changes and brain wave indicators of alertness were also reviewed in this paper. A full study of alertness indicators in expanded driver simulations is recommended. As for future application of this device to Human Factors aspects, this device may have the potential to enhance alertness in the human dimension of machine operation of manned and unmanned assets with further improvement
ABSTRACT Recent advances in neuroscience, signal processing, machine learning, and related technologies have made it possible to reliably detect brain signatures specific to visual target recognition in real time. Utilizing these technologies together has shown an increase in the speed and accuracy of visual target identification over traditional visual scanning techniques. Images containing a target of interest elicit a unique neural signature in the brain (e.g. P300 event-related potential) when detected by the human observer. Computer vision exploits the P300-based signal to identify specific features in the target image that are different from other non-target images. Coupling the brain and computer in this way along with using rapid serial visual presentation (RSVP) of the images enables large image datasets to be accurately interrogated in a short amount of time. Together this technology allows for potential military applications ranging from image triaging for the image analyst
ABSTRACT The study describes the development of a plug-in module of the realistic 3D Digital Human Modeling (DHM) tool RAMSIS that is used to optimize product development of military vehicle systems. The use of DHM in product development has been established for years. DHM for the development of military vehicles requires not only the representation of the vehicle occupants, but also the representation of equipment and simulation of the impact of such equipment on the Warfighter. To simulate occupants in military vehicles, whether land or air based, realistically, equipment must become an integral part of the extended human model. Simply attaching CAD-geometry to one manikin’s element is not sufficient. Equipment size needs to be scalable with respect to anthropometry, impact on joint mobility needs to be considered with respect to anatomy. Those aspects must be integrated in posture prediction algorithms to generate objective, reliable and reproducible results to help design engineers
ABSTRACT Autonomous robots can maneuver into dangerous situations without endangering Soldiers. The Soldier tasked with the supervision of a route clearing robot vehicle must be located beyond the physical effect of an exploding IED but close enough to understand the environment in which the robot is operating. Additionally, mission duration requirements discourage the use of low level, fatigue inducing, teleoperation. Techniques are needed to reduce the Soldier’s mental stress in this demanding situation, as well as to blend the high level reasoning of a remote human supervisor with the local autonomous capability of a robot to provide effective, long term mission performance. GDRS has developed an advanced supervised autonomy version of its Robotics Kit (GDRK) under the Robotic Mounted Detection System (RMDS) program that provides a cost effective, high-utility automation solution that overcomes the limitations and burden of a purely teleoperated system. GDRK is a modular robotic
ABSTRACT The complexity of the current and future security environment will impose new and ever-changing challenges to Warfighter capabilities. Given the critical nature of Soldier cognitive performance in meeting these increased demands, systems should be designed to work in ways that are consistent with human cognitive function. Here, we argue that traditional approaches to understanding the human and cognitive dimensions of systems development cannot always provide an adequate understanding of human cognitive performance. We suggest that integrating neuroscience approaches and knowledge provides unique opportunities for understanding human cognitive function. Such an approach has the potential to enable more effective systems design – that is, neuroergonomic design – and that it is necessary to obtain these understandings within complex, dynamic environments. Ongoing research efforts utilizing large-scale ride motion simulations that allow researchers to systematically constrain
ABSTRACT The use and operation of unmanned systems are becoming more commonplace and as missions gain complexity, our warfighters are demanding increasing levels of system functionality. At the same time, decision making is becoming increasingly data driven and operators must process large amounts of data while also controlling unmanned assets. Factors impacting robotic/unmanned asset control include mission task complexity, line-of-sight/non-line-of-sight operations, simultaneous UxV control, and communication bandwidth availability. It is critical that any unmanned system requiring human interaction, is designed as a “human-in-the-loop” system from the beginning to ensure that operator cognitive load is minimized and operator effectiveness is optimized. Best practice human factors engineering in the form of human machine interfaces and user-centered design for robotic/unmanned control systems integrated early in platform concept and design phases can significantly impact platform
ABSTRACT In this paper, we discuss a neuroimaging experiment that employed a mission-based scenario (MBS) design, a new approach for designing experiments in simulated environments for human subjects [1]. This approach aims to enhance the realism of the Soldier-task-environment interaction by eliminating many of the tightly-scripted elements of a typical laboratory experiment; however, the absence of these elements introduces several challenges for both the experimental design and statistical analysis of the experimental data. Here, we describe an MBS experiment using a simulated, closed-hatch crewstation environment. For each experimental session, two Soldiers participated as a Commander-Driver team to perform six simulated low-threat security patrol missions. We discuss challenges faced while designing and implementing the experiment before addressing analysis approaches appropriate for this type of experimentation. We conclude by highlighting three example transition pathways from
ABSTRACT As the number of robotic systems on the battlefield increases, the number of operators grows with it, leading to significant cost burden. Autonomous robots are already capable of task execution with limited supervision, and the capabilities of autonomous robots continue to advance rapidly. Because these autonomous systems have the ability to assist and augment human soldiers, commanders need advanced methods for assigning tasks to the systems, monitoring their status and using them to achieve desirable results. Mission Command for Autonomous Systems (MCAS) aims to enable natural interaction between commanders and their autonomous assets without requiring dedicated operators or significantly increasing the commanders’ cognitive burden. This paper discusses the approach, design and challenges of MCAS and present opportunities for future collaboration with industry and academia
ABSTRACT Imagine Soldiers reacting to an unpredictable, dynamic, stressful situation on the battlefield. How those Soldiers think about the information presented to them by the system or other Soldiers during this situation – and how well they translate that into thinking into effective behaviors – is critical to how well they perform. Importantly, those thought processes (i.e., cognition) interact with both external (e.g., the size of the enemy force, weather) and internal (e.g., ability to communicate, personality, fatigue level) factors. The complicated nature of these interactions can have dramatic and unexpected consequences, as is seen in the analysis of military and industrial disasters, such as the shooting down of Iran Air flight 655, or the partial core meltdown on Three Mile Island. In both cases, decision makers needed to interact with equipment and personnel in a stressful, dynamic, and uncertain environment. Similarly, the complex and dynamic nature of the contemporary
ABSTRACT: Ground vehicle survivability and protection systems and subsystems are increasingly employing sensors to augment and enhance overall platform survivability. These systems sense and measure select attributes of the operational environment and pass this measured “data” to a computational controller which then produces a survivability or protective system response based on that computed data. The data collected is usually narrowly defined for that select system’s purpose and is seldom shared or used by adjacent survivability and protection subsystems. The Army approach toward centralized protection system processing (MAPS Modular APS Controller) provides promise that sensor data will be more judiciously shared between platform protection subsystems in the future. However, this system in its current form, falls short of the full protective potential that could be realized from the cumulative sum of sensor data. Platform protection and survivability can be dramatically enhanced if
This study aims to explore the multifaceted influencing factors of market acceptance and consumer behavior of low-altitude flight services through online surveys and advanced neuroscientific methods (such as functional magnetic resonance imaging fMRI, electroencephalography EEG, functional near-infrared spectroscopy fNIRS) combined with artificial intelligence and video advertisement quantitative analysis. We conducted an in-depth study of the current trends in low-altitude flight vehicle development and customer acceptance of low-altitude services, focusing particularly on the survey methods used for market acceptance. To overcome the influence of strong opinion leaders in volunteer group experiments, we designed specialized surveys targeting broader online and social media groups. Utilizing specialized knowledge in aviation psychology, we designed a distinctive questionnaire and, within just 7 days of its launch, gathered a significant number of valid responses. The data was then
Ongoing research in simulated vehicle crash environments utilizes postmortem human subjects (PMHS) as the closest approximation to live human response. Lumbar spine injuries are common in vehicle crashes, necessitating accurate assessment methods of lumbar loads. This study evaluates the effectiveness of lumbar intervertebral disc (IVD) pressure sensors in detecting various loading conditions on component PMHS lumbar spines, aiming to develop a reliable insertion method and assess sensor performance under different loading scenarios. The pressure sensor insertion method development involved selecting a suitable sensor, using a customized needle-insertion technique, and precisely placing sensors into the center of lumbar IVDs. Computed tomography (CT) scans were utilized to determine insertion depth and location, ensuring minimal tissue disruption during sensor insertion. Tests were conducted on PMHS lumbar spines using a robotic test system for controlled loading in flexion
Rear-end vehicle collisions may lead to whiplash-associated disorders (WADs), comprising a variety of neck and head pain responses. Specifically, increased axial head rotation has been associated with the risk of injuries during rear impacts, while specific tissues, including the capsular ligaments, have been implicated in pain response. Given the limited experimental data for out-of-position rear impact scenarios, computational human body models (HBMs) can inform the potential for tissue-level injury. Previous studies have considered external boundary conditions to reposition the head axially but were limited in reproducing a biofidelic movement. The objectives of this study were to implement a novel head repositioning method to achieve targeted axial rotations and evaluate the tissue-level response for a rear impact condition. The repositioning method used reference geometries to rotate the head to three target positions, showing good correspondence to reported interverbal rotations
Thorax injuries are a significant cause of mortality in automotive crashes, with varying susceptibility across sex and age demographics. Finite element (FE) human body models (HBMs) offer the potential for injury outcome analysis by incorporating anthropometric variations. Recent advancements in material constitutive models, cortical bone fracture and continuum damage mechanics model (CFraC) and an orthotropic trabecular bone model (OrthoT), offer the opportunity to further improve rib models. In this study, the CFraC and OrthoT material modes, coupled with age-specific material properties, were progressively implemented to the Global Human Body Model Consortium small female 6th rib. Four distinct 6th rib models were developed and compared against sex and age-specific experimental data. The updated material models notably refined the predictions of force–displacement responses, aligning them more closely with the experimental averages. The CFraC model significantly improved the
Dopamine, a neurotransmitter in our brains, not only regulates our emotions but also serves as a biomarker for the screening of certain cancers and other neurological conditions
Nagoya University Nagoya, Japan
In the quest to develop lifelike materials to replace and repair human body parts, scientists face a formidable challenge: Real tissues are often both strong and stretchable and vary in shape and size
Researchers have succeeded in adding finger straightening or extension to soft rehabilitation gloves through a novel foldable pouch actuator (FPA) without compromising the already existing functionality of finger bending or flexion
When wounds happen, we want them to heal quickly and without complications, but sometimes infections and other complications prevent it. Chronic wounds are a significant health concern affecting tens of millions of Americans
November 20–21, 2024 Santa Clara Convention Center
Researchers have now developed the first hydrogel implant designed for use in fallopian tubes. This innovation performs two functions: one is to act as a contraceptive, the other is to prevent the recipient from developing endometriosis in the first place or to halt the spread if they do
Advances in IoT and electronic technology are enabling more personalized, continuous medical care. People with medical conditions that require a high degree of monitoring and continuous medication infusion can now take advantage of wearable medicine injection devices to treat their problems. Wireless communication allows medical personnel to monitor and adjust the amount and flow rate of an individual’s medication. The small size of the injectors enables the individual to be active and not be burdened or limited by a line-powered instrument (see Figure 1
Did you know that pythons initially hold onto their prey with their sharp, backward-curving teeth? Medical researchers have long been aware that these teeth are perfect for grasping soft tissue rather than cutting through it, but no one has yet been able to put this concept into surgical practice
A new bioink has been designed for engineering human skin constructs using norbornene-pullulan-based hydrogels. The researchers introduced a novel photocrosslinkable bioink designed for engineering human skin constructs, based on thiol-norbornene-pullulan (N-PLN) formulations combined with various crosslinkers
Scientists have developed an innovative wearable fabric that is flexible but can stiffen on demand. Developed through a combination of geometric design, 3D printing, and robotic control, the new technology, RoboFabric, can quickly be made into medical devices or soft robotics
A flexible and stretchable cell has been developed for wearable electronic devices that require a reliable and efficient energy source that can easily be integrated into the human body. Conductive material consisting of carbon nanotubes, crosslinked polymers, and enzymes joined by stretchable connectors, are directly printed onto the material through screenprinting
Electrosurgery has revolutionized the field of medicine, offering precise and efficient methods for tissue cutting, coagulation and ablation. With advancements in technology, new trends are emerging and pushing the boundaries of what’s possible in surgical interventions. Among these trends, pulsed field ablation (PFA) stands out as a promising technique with the potential to redefine electrosurgical procedures. In this blog, we’ll delve into the current trends in electrosurgery, with a special focus on pulsed field ablation
Researchers have shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors
Items per page:
50
1 – 50 of 8111