Browse Topic: Comfort

Items (2,009)
ABSTRACT One of the main thrusts in current Army Science & Technology (S&T) activities is the development of occupant-centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle structure is an enabling factor for faster transport, higher mobility, greater fuel conservation, higher payload, and a reduced ground footprint of supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic characteristics for mitigating blast loads are investigated. The Dynamic Response Index (DRI) metric [1] is employed as an occupant injury measure for determining the effectiveness of the each blast mitigation configuration that is considered. A model of the TARDEC Generic V-Hull
Jiang, WeiranVlahopoulos, NickolasCastanier, Matthew P.Thyagarajan, RaviMohammad, Syed
Airflow directionality in a vehicle cabin is one of the concerns of car owners, researchers, and vehicle manufacturers. After exposed/parked in hot ambient condition for a long time, HVAC system normally takes few minutes to cool down and reach an acceptable cabin temperature for the passenger comfort. To ensure proper airflow distribution inside the cabin, the AC duct & vanes ability to direct airflow must be evaluated. Objective of this work is to propose a methodology for developing the vane design of AC system duct using CFD approach. Two different goals are attempted. Firstly, the effect of horizontal and vertical vane angle on airflow directionality is investigated with DoE approach. Then factors influencing the airflow directionality are investigated using factorial study approach. CFD based factorial analysis (L9 orthogonal array) was conducted using three components at three levels. The impact of number of horizontal vanes, number of vertical vanes and distance between them on
Mahesh, ABaskar, SubramaniyanRaju, KumarGopinathan, Nagarajan
Three dynamic models of a passenger car including the one-dimensional dynamic model, two-dimensional dynamic model, and three-dimensional dynamic model are built to evaluate the ride quality of the passenger car as well as the isolating performance of the SNS (structure of negative stiffness). The decrease of the root-mean-square (RMS) accelerations in the seat and car’s body shaking is the research goal. The investigation results indicate that under all working conditions including the various excitations of the road surface and various velocities of the passenger car, the seat’s acceleration with SNS is strongly ameliorated in comparison without SNS in all three models of the passenger car. Particularly, the RMS seat acceleration with SNS in one-, two-, and three-dimensional models is strongly reduced in comparison without SNS by 76.87%, 66.15%, and 70.59%, respectively. Thus, the seat’s SNS has a good effect in isolating the vertical vibration of the passenger car’s seat. However
Zhang, LeiLi, TaoYang, Guixing
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
In order to meet the driving characteristics and needs of different types of drivers and to improve driving comfort and safety, this article designs personalized variable transmission ratio schemes based on the classification results of drivers’ steering characteristics and proposes a switching strategy for selecting variable transmission ratio schemes in response to changes in driver types. First, data collected from driving simulator experiments are used to classify drivers into three categories using the fuzzy C-means clustering algorithm, and the steering characteristics of each category are analyzed. Subsequently, based on the steering characteristics of each type of driver, suitable speed ranges, steering wheel travel, and yaw rate gain values are selected to design the variable transmission ratio, forming personalized variable transmission ratio schemes. Then, a switching strategy for variable transmission ratio schemes is designed, using a support vector machine to build a
Chen, ChenZheng, HongyuZong, Changfu
Vibration comfort is a critical factor in assessing the overall performance of engineering machinery, with significant implications for operator health and safety. However, current evaluation methods lack specificity for construction machinery, impeding accurate prediction of vibration comfort and hindering the optimization of noise, vibration, and harshness (NVH) performance. To address this challenge, this article proposes a model that combines a random forest with a genetic algorithm (GA-RF) to enable rapid and accurate prediction of vibration comfort in construction machinery cabins. The approach begins with an improved objective evaluation methodology for extracting key features from vibration signals at five measurement points: seat, floor, back, and left and right armrests. Additionally, subjective evaluation technology, combining semantic differential and rating scales, is employed to capture operators’ personal comfort perceptions. The implementation of the GA-RF model
Zhao, JianYin, YingqiChen, JiangfeiZhao, WeidongDing, WeipingHuang, Haibo
A research team at The University of Texas at Austin created a noninvasive electroencephalogram (EEG) sensor that was installed in a Meta VR headset that can be worn comfortably for long periods. The EEG measures the brain’s electrical activity during the immersive VR interactions
For engineers working on soft robotics or wearable devices, keeping things light is a constant challenge: heavier materials require more energy to move around, and — in the case of wearables or prostheses — cause discomfort. Elastomers are synthetic polymers that can be manufactured with a range of mechanical properties, from stiff to stretchy, making them a popular material for such applications. But manufacturing elastomers that can be shaped into complex 3D structures that go from rigid to rubbery has been unfeasible until now
A new groundbreaking “smart glove” is capable of tracking the hand and finger movements of stroke victims during rehabilitation exercises. The glove incorporates a sophisticated network of highly sensitive sensor yarns and pressure sensors that are woven into a comfortable stretchy fabric, enabling it to track, capture, and wirelessly transmit even the smallest hand and finger movements
While semi-active suspensions help improve the ride comfort and road-holding capacity of the vehicle, they tend to be reactive and thus leave a lot of room for improvement. Incorporating road preview data allows these suspensions to become more proactive rather than reactive and helps achieve a higher level of performance. A lot of preview-based control algorithms in literature tend to require high computational effort to arrive at the optimal parameters thus making it difficult to implement in real time. Other algorithms tend to be based upon lookup tables, which classify the road input into different categories and hence lose their effectiveness when mixed types of road profiles are encountered that are difficult to classify. Thus, a novel MPC (model predictive control)-based algorithm is developed which is easy to implement online and more responsive to the varying road profiles that are encountered by the vehicle. The efficacy of the algorithm is tested against a numerical methods
Thamarai Kannan, Harish KumarFerris, John B.
In the highly competitive landscape of the automotive industry, enhancing ride comfort has become a paramount challenge for automakers. To address this challenge, a novel double damper suspension system has been investigated. This system, featuring two single dampers operating collaboratively as an integrated unit, is analyzed with a dual focus: a comprehensive comparison of various control algorithms to identify the one offering superior comfort and the experimental validation of these findings. The modeling process, executed in Simulink, encompasses the representation of pressure, discharge, and force equations, along with the development and testing of multiple control algorithms. The study employs a shock dynamometer, utilizing both the double damper and a single semi-active damper as test subjects in a pseudo-quarter-car test bed setup. Throughout the experimental phase, solenoid actuation in the dampers is guided by specific control logic, utilizing acceleration data for the
Hamedi, BehzadShrikanthan, SudarshanTaheri , Saied
The administration of high-dose biologics presents unique challenges and opportunities for the devel opment of drug-delivery systems. With the advent of innovative reusable drug-delivery devices, the landscape of patient adherence and comfort is evolving significantly. These advanced devices are designed to handle higher concentrations and viscosities of therapeutic drugs, allowing for new routes of administration that can be managed by patients themselves at home
Occupant packaging is one of the key tasks involved in the early architectural phase of a vehicle. Accommodation, as a convention, is generally considered related to a car’s interior. Typical roominess metrics of the occupant like hip room, shoulder room, and elbow room are defined with the door in its closed condition. Several other roominess metrics like knee room, leg room, head room, and the like are also specified. While all the guidelines are defined with doors in their closed condition, it is also important to consider the dynamics that exist while the occupant is entering the vehicle. This article expands the traditional understanding of occupant accommodation beyond conventionally considering the vehicle interior’s ability to accommodate anthropometry. It broadens the scope to include dynamic conditions, such as when doors are opened, providing a more realistic and practical perspective. As a luxury car manufacturer, it is important to ensure the best overall customer
Rajakumaran, SriramSreenivas, Kalyan
This research aims at understanding how the driver interacts with the steering wheel, in order to detect driving strategies. Such driving strategies will allow in the future to derive accurate holistic driver models for enhancing both safety and comfort of vehicles. The use of an original instrumented steering wheel (ISW) allows to measure at each hand, three forces, three moments, and the grip force. Experiments have been performed with 10 nonprofessional drivers in a high-end dynamic driving simulator. Three aspects of driving strategy were analyzed, namely the amplitudes of the forces and moments applied to the steering wheel, the correlations among the different signals of forces and moments, and the order of activation of the forces and moments. The results obtained on a road test have been compared with the ones coming from a driving simulator, with satisfactory results. Two different strategies for actuating the steering wheel have been identified. In the first strategy, the
Previati, GiorgioMastinu, GianpieroGobbi, Massimiliano
The usage of the inerter and its studies has greatly developed in recent years as it offers better performance compared to passive systems and has lower cost and power consumption than active and semi-active systems. This article focuses on studying a half-vehicle model to obtain the optimal layout of the mechatronic inerter, spring, and damper suspension system (ISD) for comfort enhancement with the aid of the structure-immittance approach, ensuring structural simplicity. The mechatronic inerter, which consists of a single capacitance, resistance, and inductance, is added to a half-vehicle model composed of an inerter, spring, and damper. All possible layouts are studied to achieve the optimal design layout. Evaluation criteria such as the performance index, system peak-to-peak value, and settling time are utilized to assess body acceleration, thereby improving passenger comfort. Furthermore, the system’s impact on dynamic tire load and suspension working space under diverse road
Kolta, Michael M.H.Mansour, Nader A.Lashin, ManarSoliman, Aref M.A.
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering. The basis for this is the route generation as a result of the evaluation of curve radii from several hundred thousand kilometers of real measurement
Iatropoulos, JannesPanzer, AnnaHenze, Roman
Linear actuators, in particular, electromechanical linear actuators, have become integral components of modern medical devices because of their high precision, accuracy, and ability to deliver repeatable motion control. Patient comfort, positioning and mobility, robotic surgery, imaging equipment, infusion, and pumping are just a few of the applications where the use of linear actuators has revolutionized the way medical devices are designed, improving patient outcomes and enhancing the overall quality of care
The pace of innovation in automotive and heavy-duty transportation is rapidly accelerating. Manufacturers are harnessing advancements in electrification and electronification, ushering in new levels of safety, comfort, infotainment, connectivity, performance, and sustainability
Taking the semi-active suspension system as the research object, the forward model and inverse model of a continuous damping control (CDC) damper are established based on the characteristic test of the CDC damper. A multi-mode semi-active suspension controller is designed to meet the diverse requirements of vehicle performance under different road conditions. The controller parameters of each mode are determined using a genetic algorithm. In order to achieve automatic switching of the controller modes under different road conditions, a method is proposed to identify the road roughness based on the sprung mass acceleration. The average of the ratio between the squared sprung mass acceleration and the vehicle speed within a specific time window is taken as the identification indicator for road roughness. Simulation results show that the proposed road roughness identification method can accurately identify smooth roads (Class A–B), slightly rough roads (Class C), and severely rough roads
Feng, JieyinYin, ZhihongXia, ZhaoWang, WeiweiShangguan, Wen-BinRakheja, Subhash
In order to efficiently predict and investigate a vehicle’s vertical dynamics, it is necessary to consider the suspension component properties holistically. Although the effects of suspension stiffness and damping characteristics on vertical dynamics are widely understood, the impact of suspension friction in various driving scenarios has rarely been studied in both simulation and road tests for several decades. The present study addresses this issue by performing driving tests using a special device that allows a modification of the shock absorber or damper friction, and thus the suspension friction to be modified independently of other suspension parameters. Initially, its correct functioning is verified on a shock absorber test rig. A calibration and application routine is established in order to assign definite additional friction forces at high reproducibility levels. The device is equipped in a medium-class passenger vehicle, which is driven on various irregular road sections as
Deubel, ClemensSchneider, Scott JarodProkop, Günther
Designing an automotive seat, it is required to perform a detailed study of anthropometry, which deals with measurement of human individuals and understanding human physical variations. It also requires application-based movement study of driver’s hands, feet’s & overall body movement. It is very difficult to design seat curvatures based on any static manikin-based software. We at VECV, have developed a new concept using mixed reality VR technology to capture all body movements for designing best in class seat curvature to accommodate variety of drivers with different body types. We have designed a specialized static bunk, which has a wide range of seat, steering and ABC paddle adjustments, which are integrated with virtual data. We use to study and capture the data of driving position and other ergonomic postures of wide range of people with different body types on this static bunk according to their comfortable driving posture. In this comfortable driving posture, user is immersed in
Bhatnagar, ManasJain, NishantBiswal, JyotiranjanSharma, Ajay
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%. Under fuzzy
Jing, Li Jing
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared. Design a simulation test plan for commonly used B-class road surfaces and a common speed of 60 km/h under
Jie, LiDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
The knowledge of representative load collectives and duty cycles is crucial for designing and dimensioning vehicles and their components. For human driven vehicles, various methods are known for deriving these load spectra directly or indirectly from fleet measurement data of the customer vehicle operation. Due to the lack of market penetration of highly automated and autonomous vehicles, there is no sufficient fleet data available to utilize these methods. As a result of increased demand for ride comfort compared to human driven vehicles, autonomous vehicle operation promises reduced driving speeds as well as reduced lateral and longitudinal accelerations. This can consequently lead to decreasing operation loads, thus enabling potentially more light-weight, cost-effective, resource-saving and energy-efficient vehicle components. In order to unlock this potential of dedicatedly dimensioned components for autonomous vehicles, a methodology for quantifying the loads in customer operation
Brandes, GerritRebesberger, RonSander, MarcelErxleben, LarsHenze, RomanKüçükay, Ferit
Temporal light modulation (TLM), colloquially known as “flicker,” is an issue in almost all lighting applications, due to widespread adoption of LED and OLED sources and their driving electronics. A subset of LED/OLED lighting systems delivers problematic TLM, often in specific types of residential, commercial, outdoor, and vehicular lighting. Dashboard displays, touchscreens, marker lights, taillights, daytime running lights (DRL), interior lighting, etc. frequently use pulse width modulation (PWM) circuits to achieve different luminances for different times of day and users’ visual adaptation levels. The resulting TLM waveforms and viewing conditions can result in distraction and disorientation, nausea, cognitive effects, and serious health consequences in some populations, occurring with or without the driver, passenger, or pedestrian consciously “seeing” the flicker. There are three visual responses to TLM: direct flicker, the stroboscopic effect, and phantom array effect (also
Miller, NaomiIrvin, Lia
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passive
Ali, Shaimaa A.Metered, HassanBassiuny, A. M.Abdel-Ghany, A.M.
Proportional integral derivative (PID) control technique is a famous and cost-effective control strategy, in real implementation, applied in various engineering applications. Also, the ant colony optimization (ACO) algorithm is extensively applied in various industrial problems. This paper addresses the usage of the ACO algorithm to tune the PID controller gains for a semi-active heavy vehicle suspension system integrated with cabin and seat. The magnetorheological (MR) damper is used in main suspension as a semi-active device to enhance the ride comfort and vehicle stability. The proposed semi-active suspension consists of a system controller that calculate the desired damping force using a PID controller tuned using ACO, and a continuous state damper controller that predict the input voltage that is required to track the desired damping force. The ACO algorithm is used to solve the nonlinear optimization problem to search the PID controller gains by finding the optimal problem
Gad, SherifMetered, HassanBassiuny, A. M.Abdel-Ghany, Abdel-Ghany
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system. Moreover, the cost is reduced
M.Faragallah, MohamedMetered, HassanAbdelaziz, Taha H.
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model. Next, the damping force optimal control strategy is designed by comprising of the Genetic Algorithm (GA) and the Linear Quadratic Regulator (LQR
Zhao, JianLi, WantingZhu, BingChen, ZhichengDing, ShuweiLi, JunweiHao, WenquanZhang, Yong
The soft and rough terrain on the planet's surface significantly affects the ride and safety of rovers during high-speed driving, which imposes high requirements for the control of the suspension system of planet rovers. To ensure good ride comfort of the planet rover during operation in the low-gravity environment of the planet's surface, this study develops an active suspension control strategy for torsion spring and torsional damper suspension systems for planet rovers. Firstly, an equivalent dynamic model of the suspension system is derived. Based on fractal principles, a road model of planetary surface is established. Then, a fuzzy-PID based control strategy aimed at improving ride comfort for the planet rover suspension is established and validated on both flat and rough terrains. This study provides an advanced suspension system control strategy for planet rovers' ride comfort and safety during high-speed driving, ensuring the smooth operation of vehicles on the rough
Liu, JunZhang, KaidiShi, JunweiWu, JinglaiZhang, Yunqing
In order to solve the problems of the shuffle caused by internal and external excitation and the difficulty in obtaining the real-time accurate engine torque during the parallel mode operation of hybrid electric vehicles, a dynamic coordination control strategy for suppressing the jitter of hybrid electric vehicles based on the closed-loop control of engine speed was proposed. The engine torque filtering control method based on the slope limit was adopted to limit the rate of change of the engine torque and reduce the impact caused by the sudden change of the engine torque; the engine speed closed-loop control method was used to take the motor speed which is easy to be measured accurately in real time as the feedback control variable, which solved the problem of the real-time accurate estimation of the engine torque online. In parallel mode, the motor torque accounts for a small proportion because the torque distribution method gives priority to the engine. When the amplitude of the
Jing, JunchaoZhang, JunzhiWang, ZhentaoLiu, YiqiangHuang, Weishan
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company. Five different suspension systems were examined, including a wheel rotational speed-driven damper
Kikuchi, HironobuInaba, Kazuaki
This paper presents an adaptive H2/H∞ control strategy for a semi-active suspension system with unknown suspension parameters. The proposed strategy takes into account the damping force characteristics of continuous damping control (CDC) damper. Initially, the external characteristics of CDC damper were measured, and a forward model and a back propagation (BP) neural network inverse model of CDC damper were proposed using the measured data. Subsequently, a seven-degree-of-freedom vehicle with semi-active suspension system and H2/H∞ controller was designed. Multiple feedback control matrices corresponding to different sprung mass parameter values were determined by analyzing time and frequency domain performance. Finally, a dual observer system combining suspension state and parameter estimation based on the Kalman filter algorithm was established. The estimated parameter was used to determine feedback control matrix, while the observed states were used to calculate the desired damping
Du, CanjieYin, ZhihongXia, ZhaoWang, WeiweiShangguan, Wen-Bin
The accuracy of chassis control for intelligent electric vehicles (IEVs), especially in road-based IEVs control for improving road holding and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate road-based control algorithms, how to precisely and effectively choose a reasonable road-based control algorithm become a hot topic in both academia and industry. To address and improve the performance of road holding and ride comfort of IEVs by using a semi-active suspension system, an adaptive sliding mode control (ASMC) algorithm-based road information is proposed to realize the overall performance of the intelligent vehicle chassis system in the paper. Firstly, the models of road excitation and equivalent hybrid control of a quarter semi-active suspension system are established. Secondly, connecting with the minimum redundancy maximum relevance (MRMR) approach and probability neural network (PNN) theory, the method of
Wang, ZhenfengLiao, YinshengZhang, ZhijieHu, ZhimingZhao, GaomingHuang, TaishuoZhang, Lei
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception. The driving mode has a minor effect on the passenger riding experience
Hu, HongyuZhang, GuojuanCheng, MingLi, ZhengyiHe, LeiSu, Lili
Road roughness is the most important source of vertical loads for road vehicles. To capture this during durability engineering, various mathematical models for describing road profiles have been developed. The Laplace process has turned out to be a suitable model, which can describe road profiles in a more flexible way than e.g., Gaussian processes. The Laplace model essentially contains two parameters called C and ν (to be explained below), which need to be adapted to represent a road with certain roughness properties. Usually, local road authorities provide such properties along a road on sections of constant length, say, 100 m. Often the ISO 8608 roughness coefficient or the IRI (International Roughness Index) are used. In such cases, there are well known explicit formulas for finding the parameters C and ν of the Laplace process, which best fits the road under certain assumptions. Besides local road authorities there are also other sources of roughness data, for instance commercial
Speckert, MichaelDahlheimer, ThorstenFiedler, Jochen
In recent years, with the advent of the Fourth Industrial Revolution and the COVID-19 pandemic, people's lives worldwide have undergone significant changes. Additionally, the emergence of a new generation of consumers known as the millennial generation has led to a high demand for multipurpose family cars. The perspective is shifting towards choosing premium products that enhance the quality of life and pursue their own happiness and comfort through technology, rather than simply selecting a midsize SUV based on the increase in family size. We aim to meet the needs of these global customers by conducting research and developing various new features that were not previously available in midsize SUVs. In this study, we defined the actual target users for midsize SUVs and established UX concepts by analyzing their characteristics. Based on this, we employed an optimal design approach by analyzing the evaluation results by country for the various features implemented within the vehicle
Zoo, HeeenKim, ChangsubPark, Keun-Ryang
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
Rajakumaran, SriramS, RahulVasireddy, Rakesh MitraNair, Suhas
University of North Carolina at Chapel Hill scientists created a new drug-delivery system, called the Spatiotemporal On-Demand Patch (SOP), which can receive commands wirelessly from a smartphone or computer to schedule and trigger the release of drugs from individual microneedles. The patch’s thin, soft platform resembles a Band-Aid and was designed to enhance user comfort and convenience, since wearability is a crucial factor for chronically ill patients
This article introduces a methodology for conducting comparative evaluations of vibration-induced discomfort. The aim is to outline a procedure specifically focused on assessing and comparing the discomfort caused by vibrations. The article emphasizes the metrics that can effectively quantify vibration-induced discomfort and provides insights on utilizing available information to facilitate the assessment of differences observed during the comparisons. The study also addresses the selection of appropriate target scenarios and test environments within the context of the comparative evaluation procedure. A practical case study is presented, highlighting the comparison of wheel corner concepts in the development of new vehicle architectures. Currently, the evaluation criteria and difference thresholds available allow for comparative evaluations within a limited range of vehicle vibration characteristics
Kat, Cor-JacquesSkrickij, ViktorShyrokau, BarysKojis, PauliusDhaens, MiguelMantovani, SaraGherardini, FrancescoStrano, SalvatoreTerzo, MarioFujimoto, HiroshiSorniotti, AldoCamocardi, PabloVictorino, Alessandro CorrêaIvanov, Valentin
Researchers have created electrostatic materials that function even with extremely weak ultrasound, heralding the era of permanent implantable electronic devices in biomedicine. Recent research explores implantable medical devices that operate wirelessly, yet finding a safe energy source and protective materials remains challenging. Presently, titanium (Ti) is used due to its biocompatibility and durability. However, radio waves cannot pass through this metal, necessitating a separate antenna for wireless power transmission. Consequently, this enlarges the device size, creating more discomfort for patients
ECGs help manage cardiovascular disease — which affects around 4 million Australians and kills more than 100 people every day — by alerting users to seek medical care
The “Integrated Wheelchair Bed” is an innovative assistive technology designed to address the unique needs of individuals with mobility challenges. This duality concept is born out of a deep understanding of the daily challenges faced by those who require mobility aids for transportation and also need to rest periodically throughout the day, allowing for seamless transitions between mobility and rest. This dichotomy promotes both physical well-being and emotional independence, enhancing the overall quality of life for users. The need for a new wheelchair bed hybrid arises from evolving user requirements, such as improved comfort, compactness, customization, safety, technology integration, cost-efficiency, durability, versatility, aesthetics, healthcare integration, and sustainability. To overcome these problems, we have proposed a wheelchair that can be transformed into a bed using a two-bar linkage with a slot lock mechanism. The two-bar linkage facilitates the easy conversion system
Senthil Kumar, R.Mohamed Hanifa, M.Jayasooriya, M.Lekshmikanth, L.Krishnaraj, S.Subathra, T.
A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations. The PID control parameter optimization method presented in this article is versatile and can be used to optimize PID control parameters under different
Li, JieDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
The evaluations of ride comfort in gear shifting have been known as one of the dominant factors for vehicle quality assessment. However, those factors have not been assessed and analyzed objectively in-depth in conjunction and integration with general ride and handling parameters. In recent, the criteria set by customer have changed on account of heightened expectations, resulting in a growing demand for enhanced ride comfort. the quality of gear shifting experienced by a customer is evaluated subjectively on road leads to difficulty in arriving inferences and taking decisions due to variation in responses of people on the same situation. This study is involved the process of conversion from subjective to objective assessment on gear shifting quality by identifying the objective parameters for contributing the quality of gear shifting feel. Measuring and analyzing those parameters like lever travel, lever effort, and noise while shifting during dynamic condition at vehicle level on
Manoranjan, R.K S, Sreekanth
The automotive seat has undergone significant advancements in technology due to changing customer demands, levels of autonomy and vehicle regulations. These advancements have presented both opportunities and challenges in creating a pleasant experience for customers by ensuring optimal seat comfort and a joyful human experience. Seats are always being built to accommodate different percentiles of occupant comfort requirements; original equipment manufacturers come up with various seating adjustment features. However, there is considerable variation among each percentile of occupants in how they utilize these features to achieve a comfortable seating position based on their unique preferences and circumstances. Additionally, there are variations in occupant postures due to the ways people have adapted their driving habits or styles when it comes to the way they sit. The objective of this paper is to understand the sensitivity of seat adjustments and occupant postures on static seat
H S, RakeshLal G M, SherinRahmani, Reza
Items per page:
1 – 50 of 2009