Browse Topic: Comfort
In vehicle development, occupant-centered design is crucial to ensuring customer satisfaction. Key factors such as visibility, access, interior roominess, driver ergonomics, interior storage and trunk space directly impact the daily experience of vehicle occupants. While automakers rely on engineering metrics to guide architectural decisions, however in some cases doesn’t exist a clear correlation between these quantitative parameters and the subjective satisfaction of end users. This study develops a methodology which addresses that gap by proposing the creation of quantitative satisfaction curves for critical engineering metrics, providing a robust tool to support decision-making during the early stages of vehicle design. Through a combination of clinics, research, and statistical analysis, this project outlines a step-by-step process for developing (dis)satisfaction curves, offering a clearer understanding of how dimensions like headroom, glove box volume, and A-pillar obscuration
Occupant comfort is a fundamental consideration during the early stages of vehicle development, with internal spaciousness serving as a key pillar in creating a pleasant in-cabin experience. Among the various factors that contribute to this perception, legroom plays a particularly significant role, especially for rear-seat passengers. This study investigates the relationship between second-row legroom and occupant satisfaction under real-world driving conditions, employing a combination of research, statistical data analysis, and dynamic clinics to assess perceptual comfort. The findings reveal that shin and leg heights are the primary drivers of satisfaction or discomfort, while gender and overall height exhibit only minor influences on perceived comfort. Additionally, the study highlights the importance of other interior dimensions, such as shoulder room, knee clearance, and chair height, in shaping overall comfort since if they were poorly chosen, they would have affected clinic
Whether it’s the meeting room of an office building, the exhibition room of a museum or the waiting area of a government office, many people gather in such places, and quickly the air becomes thick. This is partly due to the increased humidity. Ventilation systems are commonly used in office and administrative buildings to dehumidify rooms and ensure a comfortable atmosphere. Mechanical dehumidification works reliably, but it costs energy and — depending on the electricity used — has a negative climate impact.
Researchers have developed novel ISM-based sweat sensors that feature enhanced signal stability and performance and avoid skin contact, while also being reusable, making them practical for daily use.
In today’s medtech landscape, innovation isn’t just about what a device does — it’s about how reliably and cost-effectively it gets to market. As devices grow smaller, smarter, and more user-centered, materials like liquid silicone rubber (LSR) play a bigger role in enabling performance, comfort, and compliance. From implantables to connected wearables, LSR is helping engineers meet growing design and usability demands. As demand for the material grows, so do the pressures on supply chains, including launch timelines, increased regulatory scrutiny, and rising technical complexity.
The interaction of electric, electronic (E/E) and mechanical components defines the quality of a BEV’s powertrain. Component selection, their integration and calibration aim at meeting legal requirements for EMC and safety as well as competitive targets for efficiency, NVH and driving comfort. These tasks in particular need attention on electromagnetic events on the DC bus, the high-power electronics of inverters, the e-motors, and the drive shaft. Each component within this environment is defined by its electromechanical features with variabilities selected from a large set of operating parameters. Consequently, a complete powertrain and its controllers give rise to endless combinations for powertrain operation. How to understand and avoid risk laden and ineffective parameter options, how to find powertrain control parameters for safe, efficient and comfortable operation? And how to find solutions within competitive development timeframes? Particular issues include high voltage risks
Virtual reality (VR) video games that combine screen time with exercise are a great way to get fit, but game designers face a major challenge — adherence to ‘exergames’ is low, with most users dropping out once they start to feel uncomfortable or bored.
What if the clothes you wear could care for your health? MIT researchers have developed an autonomous programmable computer in the form of an elastic fiber, which could monitor health conditions and physical activity, alerting the wearer to potential health risks in real time. Clothing containing the fiber computer was comfortable and machine washable, and the fibers were nearly imperceptible to the wearer, the researchers report.
The desert landscapes of the western United States have changed since Mr. Duke and Dr. Gonzo blazed a trail across them in a drug-infused haze. But their advice to buy the ticket and take the ride is still a wise mantra - especially in the serene comfort of a modern full-size pickup. As inhospitable as southern Nevada can be outside Sin City, the amenities within the climate-controlled and leather-lined cabin of the latest Ram pickups insulate you from those realities. SAE Media was invited to sample the latest heavy haulers in Ram's portfolio, including the new 2500 and 3500 models with the high-output version of the Cummins B6.7 diesel.
Letter from the Guest Editors
In the highly competitive automotive industry, optimizing vehicle components for superior performance and customer satisfaction is paramount. Hydrobushes play an integral role within vehicle suspension systems by absorbing vibrations and improving ride comfort. However, the traditional methods for tuning these components are time-consuming and heavily reliant on extensive empirical testing. This paper explores the advancing field of artificial intelligence (AI) and machine learning (ML) in the hydrobush tuning process, utilizing algorithms such as random forest, artificial neural networks, and logistic regression to efficiently analyze large datasets, uncover patterns, and predict optimal configurations. The study focuses on comparing these three AI/ML-based approaches to assess their effectiveness in improving the tuning process. A case study is presented, evaluating their performance and validating the most effective method through physical application, highlighting the potential
Not only the use, but also the wearing time of medical wearables continues to increase in modern healthcare. However, to ensure that wearable products do not cause skin irritation, product designers must consider the moisture vapor transmission rate (MVTR) during development. It plays an important role in skin compatibility and wearing comfort — and can be decisively influenced by the right joining technology.
Items per page:
50
1 – 50 of 2105