Browse Topic: Telecommunications
ABSTRACT The roll-up roll-away Tactical Vehicle-to-Grid / Vehicle-to-Vehicle (V2G/V2V) system provides a plug-and-play, very fast forming, smart, aggregated, and efficient power solution for an emerging (including austere) contingency base that is ready to generate up to 240kW of 208 VAC 3-phase power in less than 20 minutes. The system is designed to provide grid services (peak shaving, Volt/VAR control, power regulation, and current source mode) beneficial to emerging and mature grids (CONUS or OCONUS). The system uses vehicle Transmission-Integrated Generators (TIGs) to produce 600VDC power for use by vehicle hotel-loads (electrification) and off-board loads (tents/shelters, communications centers, or other electrical loads). Each vehicle is equipped with a Vehicle Communication Module (VCM), which provided the communication capability prior to initiation of transfer of up to 100kW of power via the J1772 SAE Combo Connector between vehicles (V2V) and/or for export power off-vehicle
ABSTRACT US Army and Marine Corps tactical networking and command post programs have a widely-acknowledged critical need to improve mobility, including the objective of moving to mobile, vehicle-mounted command posts that can move hourly. The current state of the art for tent-based command posts requires hours of setup, which includes thousands of feet of copper wiring that delay network availability. To enable mobility for warfighting, the National Security Agency (NSA) established a program (with a set of guidelines) called “Commercial Solutions for Classified” (CSfC). CSfC-based mobility solutions have great potential to enable command post mobility and soldier dismounted situational awareness using ground vehicles as network nodes. However, the extensive requirements and processes involved are complex and not well understood. This paper compares various CSfC network architectures, and proposes several approaches for CSfC solutions optimized for mobility use cases. The paper further
ABSTRACT This paper focuses on the use of PKI within intra vehicle networks in compliance with the VICTORY specification. It will describe how the use of PKI within vehicle networks can leverage and integrate with the other PKI efforts across the Army to ensure a consistent and interoperable solution. It will also describe some of the challenges with implementing PKI as part of VICTORY and introduce possible solutions to address these challenges
ABSTRACT Curtiss-Wright has developed an open-standard approach for real time control over Ethernet, incorporating VICTORY .specifications. The paper presents definitions for Real Time, traditional perceptions of Ethernet for real-time usage, solutions for real time, a comparison to MIL-STD-1553, and suggestions for additional specifications to include in VICTORY
ABSTRACT The goal of Secure Wireless Communications is to provide controlled access to classified or controlled unclassified information (CUI) over any RF transport in the field – between vehicles and end users alike. Secure – yet simplified – system deployment, node integration, managed accessibility, network situational awareness, and configuration management are all essential for maintainability. Citation: D. Jedynak, C. Kawasaki, D. Gregory, “Managing Next Generation Open Standard Vehicle Electronics Architectures”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
ABSTRACT Continued proliferation of terrorist activities throughout the globe, as well as other low to medium intensity conflicts, present unique challenges to the US Army, Marines, and Special Operating Forces, especially in times of reduced manpower and operating budgets. Soldiers are called upon to do increasingly complex, dangerous, and lengthy missions with reduced troop strength and in more remote and austere conditions often far from traditional means of ready resupply. The need for organic persistent surveillance of potentially hostile areas is also of significant value to improve situational awareness and preserve the tactical advantage. The high risk nature of these missions can be significantly mitigated and operational tempo (OPTEMPO) improved by using unmanned solutions. Previously proposed solutions attempting to make use of Unmanned Ground Vehicles (UGVs) or Unmanned Air Vehicles (UAVs) alone experienced multiple problems. One solution that addresses these issues is to
ABSTRACT Most of the current fielded Unmanned Ground Vehicle (UGV) functionality is dependent on the ability to drive the UGV using tele-operation technology. In addition, a large number of payloads require tele-operation to perform the mission function. Tele-operation technology is dependent on providing the operator streaming video, which is reliant on radio capabilities along with video format, resolution and compression routines. There have been Army efforts to perform real-time network modeling as part of Program Executive Office-Integration (PEO-I). These are primarily related to the passing of C2 tactical information from vehicle to vehicle. Ground Vehicle Robotics (GVR) has funded a ‘proof of principle’ effort that culminated in a demonstration performed in February, 2011. This effort modeled the impact of latency, packet/data loss and distorted signal on streaming video being sent from a virtual UGV to the Operator Control Unit (OCU). These distorted signals, cause loss of
ABSTRACT This paper describes the use of neural networks to enhance simulations for subsequent training of anomaly-detection systems. Simulations can provide edge conditions for anomaly detection which may be sparse or non-existent in real-world data. Simulations suffer, however, by producing data that is “too clean” resulting in anomaly detection systems that cannot transition from simulated data to actual conditions. Our approach enhances simulations using neural networks trained on real-world data to create outputs that are more realistic and variable than traditional simulations. Citation: P.Feldman, “Training robust anomaly detection using ML-Enhanced simulations”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
ABSTRACT Building embedded systems is nothing like building desktop applications, as the hard real time requirements and relative harshness of the operating environment further constrains design choices to meet real world needs. Those familiar with mainframe or server farm hosted, high volume, wide bandwidth applications know similar harsh computing environments for application development. Given that more man-hours have been devoted to web application development over the past decade than have been devoted to embedded application development, there may be some valuable lessons to be learned that can be adopted by the embedded community for in-vehicle computing. The best web application development teams successfully apply the notions of Representational State Transformation (REST) and Resource Description Framework (RDF) to handle the increasing demands on their sites. We have taken these technologies and applied them to the smaller scale vehicle telematics platforms (PowerPC, ARM
ABSTRACT To improve robustness of autonomous vehicles, deployments have evolved from a single intelligent system to a combination of several within a platoon. Platooning vehicles move together as a unit, communicating with each other to navigate the changing environment safely. While the technology is robust, there is a large dependence on data collection and communication. Issues with sensors or communication systems can cause significant problems for the system. There are several uncertainties that impact a system’s fidelity. Small errors in data accuracy can lead to system failure under certain circumstances. We define stale data as a perturbation within a system that causes it to repetitively rely on old data from external data sources (e.g. other cars in the platoon). This paper conducts a fault injection campaign to analyze the impact of stale data in a platooning model, where stale data occurs in the car’s communication and/or perception system. The fault injection campaign
ABSTRACT This paper discusses how programs can leverage VICTORY architecture and specifications in order to achieve interoperability between electronics systems integrated with ground vehicles. It explains the contents of the VICTORY architecture, and the concept of compliance with the VICTORY system and component type specifications. It suggests a model for Army ground vehicle programs to utilize the VICTORY architecture and specifications, and a process called guided self-verification to test components for compliance with VICTORY specifications
ABSTRACT The demand for mobile, secure communications has been and will continue to be a fundamental requirement for dismounted, urban and distributed operations in the field. It is imperative that soldiers on the front lines receive actionable information in a timely, secured and uninterrupted manner to increase force protection and effectiveness. In this paper, we describe a novel, high technical maturity (TRL 8+) communications link that offers the mounted and dismounted soldier secure, beyond line of sight, encrypted capability for weapons control and command & control of multiple platforms. An innovative spread spectrum waveform was designed from the ground up to deliver necessary functionality for reliable communications amongst multiple nodes with a data rate and range commensurate with battlefield scenarios
ABSTRACT Individual complex systems routinely operate with other complex systems (in a complex environment no less!) to achieve desired military capabilities; generally speaking, Lethality, Mobility and Survivability. While challenging in itself, this scenario is complicated by the fact that new systems are being deployed and retired which imposes training requirements and adaptation on the part of users and maintainers. The author will characterize the challenge and describe an approach to coping with the challenge and mitigating its impact. Specifically, ground combat vehicle capabilities are undergoing a transformation which can be accelerated by employing some of the techniques described and improve our soldiers’ ability to meet and defeat rapidly changing threats. The technique is generically referred to as Capability Planning and it is supported by set of software tools and analytic techniques, commonly called a Decision Support Framework. This paper characterizes the techniques
ABSTRACT The authors studied the effects of different types of armor on the performance of spin-torque microwave detectors (STMD). Working prototypes of novel nano-sized spintronic sensors of microwave radiation for battlefield anti-radar and wireless communications applications are being integrated into Sensor Enhanced Armor (SEA) and Multifunctional Armor (MFA) and tested in SEA-NDE Lab at TARDEC. The preliminary theoretical estimations have shown that STMD based on the spin-torque effect in magnetic tunnel junctions (MTJ), when placed in the external electromagnetic field of a microwave frequency, can work as diode detectors with the maximum theoretical sensitivity of 1000 V/W. These STNO detectors could be scaled to sub-micron size, are frequency-selective and tunable, and are tolerant to ionizing radiation. We studied the performance of a STMD in two different dynamical regimes of detector operation: in well-known traditional in-plane regime of STMD operation and in recently
ABSTRACT This paper describes an approach to aid the many military unmanned ground vehicles which are still teleoperated using a wireless Operator Control Unit (OCU). Our approach provides reliable control over long-distance, highly-latent, low-bandwidth communication links. The innovation in our approach allows refinement of the vehicle’s planned trajectory at any point in time along the path. Our approach uses hand-gestures to provide intuitive fast path editing options, avoiding traditional keyboard/mouse inputs which can be cumbersome for this application. Our local reactive planner is used for vehicle safeguarding. Using this approach, we have performed successful teleoperation nearly 1500 miles away over a cellular-based communications channel. We also discuss results from our user-tests which have evaluated our innovative controller approach with more traditional teleoperation over highly-latent communication links
ABSTRACT Connected and automated vehicles (CAVs) leverage onboard sensing and external connectivity using Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies to "know" the upcoming operating environment with some degree of certainty, significantly narrowing prior information gaps. These technologies have been traditionally developed and used for driver assistance and safety but are now being used to operate the vehicle more efficiently [1–5]. The eco-driving algorithm, which leverages the data available through these streams, performs two key functions: (1) acceleration smoothing and (2) eco-approach and departure (Eco-AND) at signalized intersections. The algorithm uses information from neighboring vehicles and signalized intersections to calculate an energy-efficient speed trajectory. This paper presents the development of an Android-based driver advisory application that leverages cellular Internet connectivity and Traffic
ABSTRACT Communications has come a long way from the two dimensional model provided by voice and data. Today complete situational awareness requires bringing a third dimension, video, into the mix. Implementing this unified view into today’s military vehicles calls for a unit with a well thought out design that interfaces thoroughly with other equipment and minimizes SWAP-C impact. This paper addresses the efficient convergence of video with existing voice and data presenting unified communications into a single SWAP-C device
ABSTRACT Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with well-defined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves
ABSTRACT This paper discusses various soft security considerations that should be accounted for in the next generation of advanced military unmanned systems. By modeling unmanned system teams as mobile ad hoc networks, we underscore the different types of information-based security vulnerabilities that motivated adversaries may be able to exploit in unmanned systems. Then we provide an overview of computational trust and show that it can be used to defend against these vulnerabilities by finding the most reliable agents to interact with from a pool of potential agents. Finally, we discuss ongoing work at U.S. Army TARDEC that is applying computational trust within a vehicle controller for autonomous convoy operations
ABSTRACT Over time, the National Institute of Standards and Technology (NIST) has refined the 4Dimension / Real-time Control System (4D/RCS) architecture for use in Unmanned Ground Vehicles (UGVs). This architecture, when applied to a fully autonomous vehicle designed for missions in urban environments, can greatly assist in the process of saving time and lives by creating a more intelligent vehicle that acts in a safer and more efficient manner. Southwest Research Institute (SwRI®) has undertaken the Southwest Safe Transport Initiative (SSTI) aimed at investigating the development and commercialization of vehicle autonomy as well as vehicle-based telemetry systems to improve active safety systems and autonomy. This paper will discuss the implementation of the 4D/RCS architecture to the SSTI autonomous vehicle, a 2006 Ford Explorer
ABSTRACT The confluence of intra-vehicle networks, Vehicular Integration for (C4ISR) Command, Control Communication, Computers, Intelligence, Surveillance, Reconnaissance/(EW) Electronic Warfare Interoperability (VICTORY) standards and onboard general-purpose processors creates an opportunity to implement Army combat ground vehicle intercommunications (intercom) capability in software. The benefits of such an implementation include 1) SWAP savings, 2) cost savings, 3) simplified path to future upgrades and 4) enabling of potential new capabilities such as voice activated mission command. The VICTORY Standards Support Office (VSSO), working at the direction of its Executive Steering Group (ESG) members (Program Executive Office (PEO) Ground Combat Systems (GCS), PEO Combat Support and Combat Service Support (CS&CSS), PEO Command Control Communications-Tactical (C3T) and PEO Intelligence, Electronic Warfare and Sensors (IEW&S)), has developed and demonstrated a software intercom
ABSTRACT Materials and parts in complex systems, such as ground vehicles, can suffer from fatigue due to use, age and other stresses experienced during service. It is therefore essential to evaluate damage and predict the remaining life, reliability and safety of the vehicle. This paper describes the design of a wireless system for real-time monitoring of ground vehicles using Lamb waves. The proposed approach integrates sensor technology, signal processing and wireless networking into a single solution for online structural health monitoring (SHM). Lamb wave inspection is accomplished by inexpensive piezoelectric transducer patches (PZT), which are surface-mounted on the critical components of the vehicle without interrupting its operation. Lamb wave scattering from damage is obtained by comparing the recorded signal with the healthy sample and then damage-related features are identified using Probability Diagnostic Imaging (PDI). The problem of multiple Lamb wave modes is addressed
ABSTRACT Recent advances in spintronics resulted in the development of a new class of radiation-resistant nano-sized microwave devices - spin-torque nano-oscillators (STNO). To use these novel nano-scale devices in wireless communications system as either microwave sources or detectors it is necessary to develop antennas coupled to STNO and providing efficient radiation and reception of microwave radiation. We demonstrate that it is possible to design antennas of a sub-wavelength size that have sufficiently high efficiency to be successfully used in spintronic communication devices. A coplanar antenna has the best performance characteristics, because its impedance could be easily matched with the impedance of nano-scale spintronic devices. We developed prototype spintronic devices with matched coplanar antennas (oscillators and radar detectors) which could be embedded into armor, thereby improving the survivability of the antennas as well as reducing the visual signature of antennas on
Items per page:
50
1 – 50 of 4264