Browse Topic: Telecommunications

Items (4,402)
This study investigates urban traffic congestion optimisation strategies based on V2X technology. V2X technology (Vehicles and Internet of Everything) aims to alleviate urban traffic congestion, improve access efficiency, and reduce tailpipe emissions through real-time collection and fusion of traffic data to optimise traffic signal control and path planning. The efficacy of the optimisation strategies under different V2X penetration rates is evaluated by conducting multi-factor orthogonal experiments in different typical congestion scenarios. The experimental results show that the V2X-based signal optimisation, path induction, and event response combination strategies exhibit significant optimisation effects in all three scenarios: node bottleneck, corridor congestion, and event induction. Under the condition of 100% penetration, the combined strategy reduces delay by 41.9% in the node bottleneck scenario, improves accessibility by 28.1% in the corridor congestion scenario, and
Xi, ChaohuLi, JiashengQu, FengzhenLiu, HongjunLiu, XiaoruiWang, Chunpeng
In contemporary society, where Global Navigation Satellite Systems (GNSS) are utilised extensively, their inherent fragility gives rise to potential hazards with respect to the safety of ship navigation. In order to address this issue, the present study focuses on an ASM signal delay measurement system based on software defined radio peripherals. The system comprises two distinct components: a transmitting end and a receiving end. At the transmitting end, a signal generator, a first time-frequency synchronisation device, and a VHF transmitting antenna are employed to transmit ASM signals comprising dual Barker 13 code training sequences. At the receiving end, signals are received via software-defined radio equipment, a second time-frequency synchronisation device, a computing host, and a VHF receiving antenna. Utilising sliding correlation algorithms enables accurate time delay estimation. The present study leverages the high performance and low cost advantages of the universal
Li, HaoSun, XiaowenWang, TianqiZhou, ZeliangWang, Xiaoye
Manufacturers need pragmatic guidance when choosing network protocols that must balance responsiveness, high data throughput, and long-term maintainability. This paper presents a step-by-step, criteria-driven framework that scores protocols on six practical dimensions, real-time behavior, bandwidth, interoperability, security, IIoT readiness, and legacy support and demonstrates the approach on both greenfield and brownfield scenarios. By combining vendor specifications, peer-reviewed studies, and field experience, the framework delivers transparent, weighted rankings designed to help engineers make defensible deployment choices. This paper explores how network protocols can be mapped to different layers of the automation pyramid, ranging from field-level communication to enterprise-level. For example, Profinet is shown to be highly effective for time-critical applications such as robotic assembly and motion control due to its deterministic, real-time ethernet capabilities. Meanwhile
Tarapure, Prasad
Tool management remains a persistent challenge in manufacturing, where misplaced or poorly calibrated tools such as torque guns and screwdrivers cause downtime, quality defects, and compliance risks. The Internet of Things (IoT) is transforming tool management from manual entries in spreadsheets and logs to real-time, data-driven solutions that enhance operational efficiency. With ongoing advancements in IoT architecture, a range of cost-effective tracking approaches is now available, including Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), Wi-Fi, RFID, and LoRaWAN. This paper evaluates these technologies, comparing their trade-offs in accuracy, scalability, and cost for tool-management scenarios such as high-precision station tracking, zonal monitoring, and wide-area yard visibility. Unlike prior work that focuses on asset tracking in general, this study provides an ROI-driven, scenario-based comparison and offers recommendations for selecting appropriate technologies based on
Patel, Shravani Prashant
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Singh, Rana Shakti
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
Periwal, GarvitKoparde, PrashantSewalkar, Swarupanand
Ensuring secure and ultra-reliable low-latency communication (URLLC) is critical for Vehicle-to-Everything (V2X) systems, which form the backbone of autonomous transportation. This paper presents a theoretical framework for designing secure communication protocols tailored for V2X systems with stringent latency and reliability requirements. The proposed framework incorporates dynamic message prioritization, adaptive encryption, and lightweight authentication to address the unique challenges of V2X networks. The study provides mathematical models to predict latency and security performance under varying network conditions, with a focus on scalability and efficiency. This work aims to contribute a foundational approach for future advancements in URLLC protocols in autonomous vehicle ecosystems.
Imran, Shaik Moinuddin
The synergistic adoption of automated driving technologies and the electrification of the vehicle power train offers the possibility of proposing new and innovative solutions for public transportation systems. In particular, an interesting solution is represented by modular systems in which multiple autonomous vehicles/transportation modules can be aggregated to form reconfigurable compositions according to desired transportation demand. In this work, a configurable connection between vehicles is adopted, as convoying ensures the possibility of power sharing between vehicles, allowing coordinated power management throughout the composition. Connected vehicles can also share power between batteries for battery recharge that is performed using a custom solution from a tram-like catenary. In this work, the authors design a demonstrator to investigate the feasibility of the proposed solution. Once designed, the proposed system has been assembled and tested at the ENEA Casaccia Research
Alessandrini, AdrianoBerzi, LorenzoFabbri, MarcoFranci, MichaelGulino, Michelangelo SantoPugi, LucaOrtenzi, FernandoVitiello, Francesco
A road simulator reproduction method was developed to reproduce the off-road conditions of utility vehicles in a laboratory setting. Off-road running behavior can be reproduced by considering the effects of inertial forces from jump landings owing to uneven terrain and slow-speed navigation. However, extremely low-frequency components and behaviors, including inertial forces from jumps, vehicle acceleration and deceleration, are difficult to reproduce with a normal road simulator in the limited test space of a laboratory. Therefore, it is common practice to intentionally remove input components below 1 Hz. Alternatively, inertial forces can be reproduced by adding a restraining device to the sprung mass of the vehicle along the wheel-axle inputs. Therefore, the former method excludes extremely low-frequency components, whereas the effects between actuators, which increase the test complexity and time required, should be canceled in the latter method. Furthermore, the restraining device
Miyasaka, TakahiroShimizu, Ryota
This SAE Standard describes classes of Aftermarket V2X Devices (AVDs) intended to support particular services, provides their respective requirements (including RF performance requirements), and specifies their radio profiles. This document is targeted to enable near- and long-term deployments by supporting different classes of AVDs that could interact with other onboard units (OBUs) and roadside units (RSUs). Users of this document include manufacturers of vehicles and micro-mobility conveyances, developers of hardware and applications, as well as those interested in LTE-V2X system architecture, testing, and certification.
C-V2X Technical Committee
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
AS-3 Fiber Optics and Applied Photonics Committee
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
In the context of intelligent transportation systems and applications such as autonomous driving, it is essential to predict a vehicle’s immediate future states to enable precise and timely prediction of vehicles’ movements. This article proposes a hybrid short-term kinematic vehicle prediction framework that integrates a novel object detection model, You Only Look Once version 11 (YOLOv11), with an unscented Kalman filter (UKF), a reliable state estimation technique. This study provides a unique method for real-time detection of vehicles in traffic scenes, tracking and predicting their short-term kinematics. Locating the vehicle accurately and classifying it in a range of dynamic scenarios is achievable by the enhanced detection capabilities of YOLOv11. These detections are used as inputs by the UKF to estimate and predict the future positions of the vehicles while considering measurement noise and dynamic model errors. The focus of this work is on individual vehicle motion prediction
Pahal, SudeshNandal, Priyanka
Use Decision Making Trial and Evaluation Laborator (DEMATEL) and Analytic Hierarchy Process (AHP) to jointly analysis and determine the key factors of Guangzhou intelligent logistics. Through the questionnaire survey of 92 logistics enterprises in Guangzhou, it is concluded that Information infrastructure, big data, Internet of Things, artificial intelligence, Logistics dynamic updates, and Smart warehousing have a great impact on intelligent logistics. Combining practical engineering with theory to make the implementation of Guangzhou’s smart logistics project more scientific, It is characterized by a higher degree of scientificity. Moreover, it is of great warning value, which can alert relevant parties to potential issues. Meanwhile, it provides essential guidance for the implementation of the smart city project in Guangzhou, facilitating a more efficient and well - directed execution process. This study is limited to logistics business respondents in Guangzhou and may limit the
Zhang, ShuangshuangChen, NingKhaw, Khai WahLiu, ChenxiJin, Lili
Based on the similarity analysis of Intelligent Connected Vehicles (ICVs), a distributed V2X hardware-in-the-loop test system for ICVs is designed, including the PanoSim autonomous driving simulation engine, GNSS simulator, V2X simulator, and management and cooperative control software. The system integrates the major technologies of distributed interaction, including operation management, time synchronization, coordinate conversion, and data preprocessing, and realizes the spatial and temporal consistency of each simulation node. 89 V2X first-stage application scenarios (e.g., FCW, RLVW) and 5 V2X second-stage application scenarios (e.g., CLC) use case experimental results have proved the reliability of the system. The FCW use case experiment results show that its simulation results pass with high confidence. The study emphasizes the value of the system in reducing development costs, improving safety, and accelerating the deployment of V2X applications, while identifying future
Gao, TianfangZhang, XingHuiChen, LiangHuang, ZhichenNi, Dong
The adhesion condition of the road surface is an important factor in the driving decision-making, and the lower the adhesion coefficient of the road, the greater the risk of safety. In order to study the development and progress in the research of the substances, a comparative analysis of Chinese and foreign references was carried out. The sensitive factors to the adhesion coefficient and influence of adhesion condition on driving were summarized. Then two main strategies to avoid a collision were presented, including longitudinal braking and lateral lane change. A detailed description of three methods used in automotive decision-making processes was offered, including rule-based method, supervised learning method, and reinforcement learning method, each characterized with certain attributes. Topics in the field of driving decision-making considering adhesion condition for intelligent connected vehicles were pointed out and future-oriented research formulations were provided. These
Wang, HongHou, De-Zao
In order to determine the actual position of the beacon buoy, improve the casting accuracy of the beacon buoy, and reduce the frequency of the beacon buoy being hit, the mean shift model of the sinker location was established according to the real-time position data of the beacon telemetry and remote control, and the probability density distribution of the beacon buoy position was obtained and the actual position of the beacon buoy was analyzed. In order to ensure the comprehensiveness and accuracy of the research results, real-time data of light buoy positions in different sea areas and at different times were selected, and MATLAB simulation experiments were conducted to compare the actual sinker location with the designed position. The experimental results show that the mean shift algorithm can accurately predict the actual position of the stone, which provides a useful reference for improving the casting accuracy of the Marine light buoy.
Liu, HuanSong, ShaozhenJu, XinLin, Xiaozhuo
Smart airport is a key driver for the future development of civil aviation and a cornerstone of China’s ongoing “Four Airport” construction initiative. It is important to improve technology in many areas. This includes airport building, daily work, management, and making decisions. As air travel changes, using new tools like artificial intelligence, big data, and the Internet of Things (IoT) is very important. These tools help make airports more efficient, safe, and better for the environment. Because of this, building smart airports is not just a big goal but also a new way to deal with the challenges in today’s air travel systems. A key part in building smart airports is making a full evaluation system to check how well the projects are working. When a strong index system is made for smart airports, people involved can see clearly what is working well and what is not. So, chose using a three-scale hierarchical analysis method gives a clear and step-by-step way to look at different
Li, Shi-lingFu, Lu
Trains traditionally transmit braking and mitigation commands through the air tube filling and exhausting method, which is easy to cause local large longitudinal impact. In order to meet the high-precision requirements of synchronous transmission of commands for heavy-duty trains with large groupings, this paper proposes a laser+industrial Ethernet network control system, which can meet the requirements of flexible train grouping and virtual connecting under the premise of ensuring synchronous transmission of commands for trains with large groupings. The system consists of central control unit, locomotive laser communication module, locomotive switch, mobile wireless communication terminal, security gateway, vehicle control unit, vehicle laser communication module, vehicle switch, etc. It is designed according to the three-layer architecture of vehicle-level network, train-level network and line-level network, which can realise the issuance of internal control commands and status
Meng, XiangzhenLi, ChuanhuZhu, Youlong
Items per page:
1 – 50 of 4402