Browse Topic: Telecommunications

Items (4,406)
The traditional hydraulic braking system with vacuum booster technology is very mature, but it is not suitable for use in electric vehicles due to the lack of a vacuum source. The brake system by wire is an innovative electronic controlled braking technology, and the Electro-Hydraulic Brake is currently the most widely used brake system by wire in electric vehicles. The classification, structure, working principle, and advantages of Electro-Hydraulic Brake as a braking system for electric automobiles and intelligent connected vehicles are studied. The structure, working principle, advantages and disadvantages of Pump-Electro - Hydraulic Brake and Integrated Electro-Hydraulic Brake are compared and analyzed.
Song, JiantongZhu, ChunhongRen, Xiaolong
The introduction of renewable energy systems offers the opportunity to achieve energy self-sufficiency or autarky in addition to contributing towards carbon neutrality by reducing the dependency on energy logistics. Amidst growing geo-political conflicts and natural calamities, the scenario of energy shortage or disruption of energy logistics is a major threat, especially for Europe due to the significant reliance on import of primary energy. Achieving autarky, however, requires a distinction between energy consumers that need uninterrupted energy supply and consumers that could potentially be cut-off during energy shortages to avoid prohibitive costs resulting from oversizing the system. Critical infrastructure such as hospitals, communication systems, emergency services and key mobility nodes like fuelling stations and charging points needed to sustain the services provided by them, always need continuous energy supply. The architecture in current tools for optimising the design and
Vijay, ArjunThaler, BernhardKöcheler, ValentinOppl, ThomasTrapp, Christian
This article entails the design, manufacturing, application, testing, and analysis/discussion of a controller area network (CAN)–based vehicle safety system that detects vehicle failure such as brake failure, gear failure, tire blowouts, and other failures that can be monitored using digital or analogue sensors. The aim and objectives are to implement a real-life tire blowout on an Iveco S-Way Euro III and design a system that sends out CAN-based messages using J1939 protocol to the Iveco S-Way Euro III to downshift the gears, retarders, activate the limp mode braking system, activate the hooter, and activate the hazards. The system is split into five sections: (1) detection and activation, (2) gear control system, (3) retarder control system, (4) braking control system, and (5) hooter and hazard control system; while analyzing the: acceleration in the lateral, longitudinal, and vertical acceleration (g) vs. time (s), vehicle speed (km/h), rate of deflation (s), and the steering torque
Rampath, AmaanStopforth, RiaanProctor-Parker, Craig
When identifying the content of this report, one of the goals was that it supports a nationally interoperable method for connected vehicles (CVs) to make traffic signal priority and/or preemption (TSPP) requests of connected intersections (CIs) that support priority and/or preemption services. Given that, this report specifies the over-the-air (OTA) interface between CVs and CIs to support TSPP applications using updated revisions of the SAE J2735 Signal Request Message (SRM) and Signal Status Message (SSM) and the use of a Wireless Access in Vehicular Environments (WAVE) Service Advertisement (WSA) to advertise support for TSPP at a CI. Included are a concept of operations, requirements, design, and message structure definitions developed using a detailed systems engineering process.
null, null
This document describes the functional safety (FuSa) assurance data to be included when communicating safety-related A_PDUs using either the Multi-PG service or the FD Transport service within an SAE J1939-22 protocol stack. It specifies the following: The parameters that make up the FuSa assurance information The behavioral requirements when producing and consuming FuSa assurance information The technical requirements for different FuSa profiles intended to meet different application requirements The trailer formats for the different FuSa profiles that can be incorporated into Multi-PG and FD Transport services This document does not specify the assignment of a FuSa profile to any values of the TOS and TF fields when using the Multi-PG service, or to any value of the AD TYPE field when using the FD Transport service; instead, SAE J1939-22, or an OEM in the manufacturer-specific ranges of these fields, specifies the assignments for these fields.
Truck and Bus Control and Communications Network Committee
This document provides the technical requirements for implementing the SAE J1939 Functional Safety Communication Protocol in a manner determined suitable for meeting industry applicable functional safety standards.
Truck and Bus Control and Communications Network Committee
This study investigates urban traffic congestion optimisation strategies based on V2X technology. V2X technology (Vehicles and Internet of Everything) aims to alleviate urban traffic congestion, improve access efficiency, and reduce tailpipe emissions through real-time collection and fusion of traffic data to optimise traffic signal control and path planning. The efficacy of the optimisation strategies under different V2X penetration rates is evaluated by conducting multi-factor orthogonal experiments in different typical congestion scenarios. The experimental results show that the V2X-based signal optimisation, path induction, and event response combination strategies exhibit significant optimisation effects in all three scenarios: node bottleneck, corridor congestion, and event induction. Under the condition of 100% penetration, the combined strategy reduces delay by 41.9% in the node bottleneck scenario, improves accessibility by 28.1% in the corridor congestion scenario, and
Xi, ChaohuLi, JiashengQu, FengzhenLiu, HongjunLiu, XiaoruiWang, Chunpeng
In contemporary society, where Global Navigation Satellite Systems (GNSS) are utilised extensively, their inherent fragility gives rise to potential hazards with respect to the safety of ship navigation. In order to address this issue, the present study focuses on an ASM signal delay measurement system based on software defined radio peripherals. The system comprises two distinct components: a transmitting end and a receiving end. At the transmitting end, a signal generator, a first time-frequency synchronisation device, and a VHF transmitting antenna are employed to transmit ASM signals comprising dual Barker 13 code training sequences. At the receiving end, signals are received via software-defined radio equipment, a second time-frequency synchronisation device, a computing host, and a VHF receiving antenna. Utilising sliding correlation algorithms enables accurate time delay estimation. The present study leverages the high performance and low cost advantages of the universal
Li, HaoSun, XiaowenWang, TianqiZhou, ZeliangWang, Xiaoye
This document establishes training guidelines applicable to fiber optic installer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
Periwal, GarvitKoparde, PrashantSewalkar, Swarupanand
Ensuring secure and ultra-reliable low-latency communication (URLLC) is critical for Vehicle-to-Everything (V2X) systems, which form the backbone of autonomous transportation. This paper presents a theoretical framework for designing secure communication protocols tailored for V2X systems with stringent latency and reliability requirements. The proposed framework incorporates dynamic message prioritization, adaptive encryption, and lightweight authentication to address the unique challenges of V2X networks. The study provides mathematical models to predict latency and security performance under varying network conditions, with a focus on scalability and efficiency. This work aims to contribute a foundational approach for future advancements in URLLC protocols in autonomous vehicle ecosystems.
Imran, Shaik Moinuddin
Tool management remains a persistent challenge in manufacturing, where misplaced or poorly calibrated tools such as torque guns and screwdrivers cause downtime, quality defects, and compliance risks. The Internet of Things (IoT) is transforming tool management from manual entries in spreadsheets and logs to real-time, data-driven solutions that enhance operational efficiency. With ongoing advancements in IoT architecture, a range of cost-effective tracking approaches is now available, including Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), Wi-Fi, RFID, and LoRaWAN. This paper evaluates these technologies, comparing their trade-offs in accuracy, scalability, and cost for tool-management scenarios such as high-precision station tracking, zonal monitoring, and wide-area yard visibility. Unlike prior work that focuses on asset tracking in general, this study provides an ROI-driven, scenario-based comparison and offers recommendations for selecting appropriate technologies based on
Patel, Shravani Prashant
Manufacturers need pragmatic guidance when choosing network protocols that must balance responsiveness, high data throughput, and long-term maintainability. This paper presents a step-by-step, criteria-driven framework that scores protocols on six practical dimensions, real-time behavior, bandwidth, interoperability, security, IIoT readiness, and legacy support and demonstrates the approach on both greenfield and brownfield scenarios. By combining vendor specifications, peer-reviewed studies, and field experience, the framework delivers transparent, weighted rankings designed to help engineers make defensible deployment choices. This paper explores how network protocols can be mapped to different layers of the automation pyramid, ranging from field-level communication to enterprise-level. For example, Profinet is shown to be highly effective for time-critical applications such as robotic assembly and motion control due to its deterministic, real-time ethernet capabilities. Meanwhile
Tarapure, Prasad
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Singh, Rana ShaktiStallin, Saravanan
A road simulator reproduction method was developed to reproduce the off-road conditions of utility vehicles in a laboratory setting. Off-road running behavior can be reproduced by considering the effects of inertial forces from jump landings owing to uneven terrain and slow-speed navigation. However, extremely low-frequency components and behaviors, including inertial forces from jumps, vehicle acceleration and deceleration, are difficult to reproduce with a normal road simulator in the limited test space of a laboratory. Therefore, it is common practice to intentionally remove input components below 1 Hz. Alternatively, inertial forces can be reproduced by adding a restraining device to the sprung mass of the vehicle along the wheel-axle inputs. Therefore, the former method excludes extremely low-frequency components, whereas the effects between actuators, which increase the test complexity and time required, should be canceled in the latter method. Furthermore, the restraining device
Miyasaka, TakahiroShimizu, Ryota
The synergistic adoption of automated driving technologies and the electrification of the vehicle power train offers the possibility of proposing new and innovative solutions for public transportation systems. In particular, an interesting solution is represented by modular systems in which multiple autonomous vehicles/transportation modules can be aggregated to form reconfigurable compositions according to desired transportation demand. In this work, a configurable connection between vehicles is adopted, as convoying ensures the possibility of power sharing between vehicles, allowing coordinated power management throughout the composition. Connected vehicles can also share power between batteries for battery recharge that is performed using a custom solution from a tram-like catenary. In this work, the authors design a demonstrator to investigate the feasibility of the proposed solution. Once designed, the proposed system has been assembled and tested at the ENEA Casaccia Research
Alessandrini, AdrianoBerzi, LorenzoFabbri, MarcoFranci, MichaelGulino, Michelangelo SantoPugi, LucaOrtenzi, FernandoVitiello, Francesco
Items per page:
1 – 50 of 4406