Browse Topic: Communication systems
This document establishes training guidelines applicable to fiber optics engineer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Trainers/Instructors Third Party Maintenance Agencies Production
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
A road simulator reproduction method was developed to reproduce the off-road conditions of utility vehicles in a laboratory setting. Off-road running behavior can be reproduced by considering the effects of inertial forces from jump landings owing to uneven terrain and slow-speed navigation. However, extremely low-frequency components and behaviors, including inertial forces from jumps, vehicle acceleration and deceleration, are difficult to reproduce with a normal road simulator in the limited test space of a laboratory. Therefore, it is common practice to intentionally remove input components below 1 Hz. Alternatively, inertial forces can be reproduced by adding a restraining device to the sprung mass of the vehicle along the wheel-axle inputs. Therefore, the former method excludes extremely low-frequency components, whereas the effects between actuators, which increase the test complexity and time required, should be canceled in the latter method. Furthermore, the restraining device
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This SAE Standard describes a reference system architecture based on LTE-V2X technology defined in the set of ETSI standards based on 3GPP Release 14. It also describes cross-cutting features unique to LTE-V2X PC5 sidelink (mode 4) that can be used by current and future application standards. The audience for this document includes the developers of applications and application specifications, as well as those interested in LTE-V2X system architecture, testing, and certification.
This SAE Standard specifies system requirements for an onboard vehicle-to-vehicle (V2V) safety communications system for vehicle classes of 2, 3, 4, and 5,1 including standards profiles, functional requirements, and performance requirements. The system is capable of transmitting and receiving the SAE J2735-defined basic safety message (BSM) over a PC5 Sidelink V2X (mode 4) communications link as defined in ETSI Release 14.2,3 The system uses Institute of Electrical and Electronics Engineers (IEEE) 1609 standards for network and transport layer communications, as well as security.
The next generation of mobility, driven by shared, driverless, connected, and electrified vehicles, holds strong potential to advance sustainability through lower emissions and improved resource efficiency. However, critical questions remain regarding their true environmental impact, including battery lifecycle management, material consumption, and circular manufacturing practices. Sustainable Circular Future Mobility: Environmental Impact of Next-gen Vehicles explores these unresolved issues, focusing on the shift from internal combustion to electric vehicles, supply chain challenges, regulatory gaps, and the operational realities of sustainable productization. It also critically examines the risks of greenwashing, the need for consistent standards, and the role of intersectoral collaboration—with energy, urban planning, information and communications technologies, and waste management sectors—in building resilient, scalable solutions. The report provides strategic recommendations and
Data security remains an issue of the utmost concern in contested environments. Mechanisms such as data encryption, beam-forming antennas, and frequency-hopping radio have emerged to mitigate some of the concerns in radio-frequency (RF) communications, but they do not remove all risk. Consequently, there is still a consistent appetite for alternative solutions. This paper presents a case for the use of the free-space optical (FSO) communications technology ImpLi-Fi as one such alternative. FSO communication is promising because of the ease with which the signal beam may be steered and limited, making detection and interception more difficult than with RF, and ImpLi-Fi in particular is desirable for its exceptional outdoor performance and ease of integration into existing light sources. The paper briefly illustrates the origins of the contested logistics (CL) problem and CL use cases for secure communication channels, before describing the ImpLi-Fi technology in some detail; exploring
The U-Shift IV represents the latest evolution in modular urban mobility solutions, offering significant advancements over its predecessors. This innovative vehicle concept introduces a distinct separation between the drive module, known as the driveboard, and the transport capsules. The driveboard contains all the necessary components for autonomous driving, allowing it to operate independently. This separation not only enables versatile applications - such as easily swapping capsules for passenger or goods transportation - but also significantly improves the utilization of the driveboard. By allowing a single driveboard to be paired with different capsules, operational efficiency is maximized, enabling continuous deployment of driveboards while the individual capsules are in use. The primary focus of U-Shift IV was to obtain a permit for operating at the Federal Garden Show 2023. To achieve this goal, we built the vehicle around the specific requirements for semi-public road
This article introduces a comprehensive cooperative navigation algorithm to improve vehicular system safety and efficiency. The algorithm employs surrogate optimization to prevent collisions with cooperative cruise control and lane-keeping functionalities. These strategies address real-world traffic challenges. The dynamic model supports precise prediction and optimization within the MPC framework, enabling effective real-time decision-making for collision avoidance. The critical component of the algorithm incorporates multiple parameters such as relative vehicle positions, velocities, and safety margins to ensure optimal and safe navigation. In the cybersecurity evaluation, the four scenarios explore the system’s response to different types of cyberattacks, including data manipulation, signal interference, and spoofing. These scenarios test the algorithm’s ability to detect and mitigate the effects of malicious disruptions. Evaluate how well the system can maintain stability and avoid
Researchers have created a 98-milligram sensor system — about one tenth the weight of a jellybean or less than one-hundredth of an ounce — that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination. Then, when a researcher sends a Bluetooth command, the sensor is released from its perch and can fall up to 72 feet — from about the sixth floor of a building — and land without breaking. Once on the ground, the sensor can collect data, such as temperature or humidity, for almost three years.
Letter from the Guest Editors
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
This document describes machine-to-machine (M2M)1 communication to enable cooperation between two or more traffic participants or CDA devices hosted or controlled by said traffic participants. The cooperation supports or enables performance of the dynamic driving task (DDT) for a subject vehicle equipped with an engaged driving automation system feature and a CDA device. Other participants may include other vehicles with driving automation feature(s) engaged, shared road users (e.g., drivers of conventional vehicles or pedestrians or cyclists carrying compatible personal devices), or compatible road operator devices (e.g., those used by personnel who maintain or operate traffic signals or work zones). Cooperative driving automation (CDA) aims to improve the safety and flow of traffic and/or facilitate road operations by supporting the safer and more efficient movement of multiple vehicles in proximity to one another. This is accomplished, for example, by sharing information that can be
Items per page:
50
1 – 50 of 1956